В пособии приведены краткие правильные ответы на билеты, которые будут вынесены на устный экзамен по биологии в 11 классах общеобразовательных учреждений. С помощью пособия можно эффективно повторить весь пройденный материал и очень быстро подготовиться к успешной сдаче экзамена.
Литагент «Научная книга»5078daf4-9e1a-102b-b665-7cd09fa97345 Примерные вопросы и ответы для подготовки к экзамену по биологии. 11 класс Правообладатель ЛА «Научная книга» М.

Ирина Валерьевна Ткаченко, Татьяна Юрьевна Лапухина, Ирина Петровна Анисимова

Примерные вопросы и ответы для подготовки к экзамену по биологии. 11 класс

СОДЕРЖАНИЕ

Билет № 1

1. Клетка – структурная и функциональная единица организмов всех царств живой природы

2. Палеонтологические, сравнительно-аналитические, эмбриологические доказательства эволюции органического мира

3. Рассмотреть внешнее строение цветка насекомоопыляемого растения и выявить приспособленность к опылению насекомыми. Объяснить, как могло возникнуть это приспособление

Билет № 2

1. Строение и жизнедеятельность растительной клетки

2. Ароморфоз – главное направление эволюции. Основные ароморфозы в эволюции позвоночных

3. Рассмотреть расположение листьев у комнатного растения и выявить приспособленность к поглощению света

Билет № 3

1. Строение и жизнедеятельность клетки животного

2. Вид – надорганизменная система, его критерии

3. Решить задачу на анализирующее скрещивание

Билет № 4

1. Основные положения клеточной теории, ее значение

2. Половое размножение. Строение и функции мужских и женских гамет

3. Рассмотреть гербарные экземпляры растений разных видов одного рода, сравнить их и выявить различия по морфологическому критерию

Билет № 5

1. Химический состав клетки. Роль органических веществ в ее строении и жизнедеятельности

2. Модификационная изменчивость, ее значение в жизни организма

3. Решить задачу на наследование гемофилии

Билет № 6

1. Вирусы, их строение и функционирование. Вирусы – возбудители опасных заболеваний

2. Основные ароморфозы в эволюции растительного мира

3. Рассмотреть внешнее строение кактуса и найти черты приспособленности к жизни в засушливых условиях. Объяснить возникновение этих приспособлений в процессе эволюции

Билет № 7

1. Обмен веществ и превращение энергии в клетке. Ферменты, их роль в реакциях обмена веществ

2. Идиоадаптация – направление эволюции органического мира. Значение идиоадаптации

3. Решить задачу на независимое наследование при дегибридном скрещивании

Билет № 8

1. Энергетический обмен в клетках растений и животных, его значение

2. Движущие силы эволюции, их роль в образовании новых видов

3. Рассмотреть обитателей аквариума и составить пищевую цепь. Объяснить, почему в аквариуме пищевые цепи короткие

Билет № 9

1. Пластический обмен. Биосинтез белка. Матричный характер биосинтеза

2. Наследственная изменчивость, ее виды. Виды мутаций, их причины. Роль мутаций в эволюции органического мира и селекции

3. Рассмотреть обитателей аквариума и составить схему круговорота углерода в нем. Объяснить, почему необходимо систематически подкармливать рыб

Билет № 10

1. Особенности пластического обмена у растений. Фотосинтез. Строение хлоропластов и их роль в этом процессе

2. Эволюция человека. Доказательства происхождения человека от млекопитающих животных

3. Рассмотреть обитателей аквариума и составить схему круговорота кислорода в нем. Объяснить, почему необходимо периодически накачивать в аквариум воздух

Билет № 11

1. Деление клеток – основа размножения и роста организмов. Роль ядра и хромосом в деление клеток. Митоз и его значение

2. Движущие силы эволюции человека. Основные стадии эволюции человека. Биологические и социальные факторы эволюции

3. Сравнить колосья двух сортов пшеницы или ржи (или два комнатных растения одного вида) и выявить у них различия по фенотипу

Билет № 12

1. Мейоз, его значение, отличие от митоза. Набор хромосом в гаметах и соматических клетках

2. Популяция – структурная единица вида. Причины колебания численности популяций

3. Составить вариационный ряд изменчивости семян фасоли или листьев какого-либо растения одного возраста. Выявить закономерности изменчивости выбранного признака

Билет № 13

1. Половое размножение организмов. Оплодотворение, его значение

2. Наследственность, ее материальные основы. Гибридологический метод изучения наследственности

3. Рассмотреть готовый микропрепарат растительной клетки, назвать ее основные части и их функции

Билет № 14

1. Индивидуальное развитие организмов. Эмбриональное развитие животных (на примере ланцетника)

2. Правило единообразия гибридов первого поколения. Наследование доминантных и рецессивных признаков

3. С помощью опыта выяснить наличие ферментов в клубнях картофеля

Билет № 15

1. Послезародышевое развитие: прямое и непрямое

2. Закон расщепления признаков во втором поколении

3. Решить задачу на построение и-РНК на основе известной последовательности ДНК

Билет № 16

1. Гены и хромосомы как материальные основы наследственности. Их строение и функционирование

2. Биогеоценоз как экологическая система, его звенья, связи между ними

3. Решить задачу на сцепленное с полом наследование

Билет № 17

1. Закон независимого наследования признаков. Причина расщепления признаков у гетерозигот

2. Биогеоценоз дубравы

3. Рассмотреть под микроскопом микропрепарат митоза в клетках корешка лука, найти клетку в состоянии интерфазы, зарисовать ее и назвать признаки интерфазы

Билет № 18

1. Закон сцепленного наследования, его материальные основы. Значение кроссинговера

2. Биогеоценоз хвойного леса. Цепи питания

3. Рассмотреть под микроскопом микропрепарат митоза в клетках корешка лука, найти клетку в состоянии профазы, зарисовать ее и назвать признаки профазы

Билет № 19

1. Половые хромосомы и аутосомы. Сцепленное с полом наследование

2. Биогеоценоз водоема. Цепи питания

3. Рассмотреть под микроскопом микропрепарат митоза в клетках корешка лука, найти клетку в состоянии метафазы, зарисовать ее и назвать признаки метафазы

Билет № 20

1. Взаимодействие и множественное действие генов как основа целостности генотипа

2. Соотношение организмов-продуцентов, консументов, редуцентов в экосистеме

3. С помощью опыта доказать, что фермент в клетках клубня картофеля, расщепляющий перекись водорода, имеет белковую природу. Какова химическая природа всех ферментов?

Билет № 21

1. Генетика человека. Методы изучения наследственности человека, наследственные заболевания, их профилактика

2. Саморегуляция в биогеоценозе. Многообразие видов, их приспособленность к совместному обитанию

3. Рассмотреть в аквариуме рыб, найти разные виды и объяснить, почему особи разных видов не скрещиваются между собой

Билет № 22

1. Роль генотипа и среды в повышении продуктивности сельскохозяйственных растений и животных

2. Изменения в биогеоценозах. Причины смены биогеоценозов. Охрана биогеоценозов

3. Рассмотреть на влажном препарате клубеньки на корнях бобовых. Описать характер взаимоотношений клубеньковых бактерий и бобовых растений. Сравнить цепь питания с включением в нее данных организмов

Билет № 23

1. Разнообразие сортов растений и пород животных – результат селекционной работы ученых. Закон Н. И. Вавилова о гомологических радах в наследственной изменчивости

2. Агроценоз (агроэкосистема), его отличие от биогеоценоза. Пути повышения продуктивности агроценоза

3. Описать фенотип своего организма и высказать предположение о его генотипе по ряду признаков, например, по цвету волос и глаз, росту

Билет № 24

1. Основные методы селекции растений и животных: гибридизация и искусственный отбор

2. Круговорот веществ в экосистеме. Основной источник энергии, обеспечивающий круговорот веществ

3. Решить задачу на определение аминокислот в молекуле белка с использованием таблицы генетического кода

Билет № 25

1. Гетерозис, полиплоидия, мутагенез, их использование в селекции

2. Изменение биогеоценозов под влиянием деятельности человека, их последствия. Меры охраны биогеоценозов (на примере либо водоема, либо леса, либо болота)

3. Рассмотреть микропрепарат покровной ткани листа, выявить особенности ее строения, обеспечивающие поступление углекислого газа в лист и испарение воды

Билет № 26

1. Естественный и искусственный отборы, их сходство и отличия, роль в возникновении многообразия органического мира

2. Биосфера, ее границы. Причины бедности жизни в морских глубинах, в литосфере, в верхних слоях атмосферы

3. Рассмотреть микропрепарат поперечного среза листа, найти основную ткань, выявить особенности ее строения и черты приспособленности к фотосинтезу

Билет № 27

1. Сорта растений и породы животных как искусственные популяции, их сходство и отличия с естественными популяциями. Причины многообразия сортов, пород и естественных популяций

2. Биомасса или живое вещество биосферы. Закономерности распространения биомассы в биосфере, тенденция ее изменения под влиянием деятельности человека

3. Из предложенных гербарных материалов, коллекций, муляжей, чучел составить цепь питания, определить направление движения вещества и энергии в ней. Объяснить, почему в данной цепи начальное звено составляют растения

Билет № 28

1. Многообразие видов в природе, его причины. Влияние деятельности человека на многообразие видов. Биологический прогресс и регресс

2. Живое вещество и его роль в круговороте веществ и превращении энергии в биосфере

3. Рассмотреть под микроскопом лист элодеи, найти хлоропласты в клетках и объяснить их роль в фотосинтезе

Билет № 29

1. Приспособленность организмов к среде обитания, ее причины. Относительный характер приспособленности организмов. Приспособленность растений к использованию света в биогеоценозе

2. Изменения в биосфере под влиянием деятельности человека. Сохранение равновесия в биосфере как основа ее целостности

3. Решить задачу на промежуточный характер наследования

Билет № 30

1. Экологическое и географическое видообразования, их сходство и различие

2. Учение В. И. Вернадского о биосфере. Ведущая роль живого вещества в преобразовании биосферы

3. Решить задачу на моногибридное скрещивание

ОТВЕТЫ НА ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ

Билет № 1

Вопрос 1. Клетка – структурная и функциональная единица организмов всех царств живой природы

Все ныне существующее разнообразие живых организмов ученые распределяют по четырем царствам: вирусы, грибы, растения, животные. Представители трех последних царств имеют клеточное строение, что свидетельствует об их родстве. Вирусы – неклеточная форма жизни.

Организмы могут быть представлены одной-единственной клеткой (простейшие) или могут состоять из множества клеток. Одноклеточные стоят на более низком уровне развития, нежели многоклеточные, но строение и функционирование клеток тех и других практически одинаково, что говорит об их филогенетическом родстве (многоклеточные произошли от одноклеточных). Преимущество многоклеточных состоит в том, что все свойства и особенности клеток (обмен веществ, движение, размножение, смерть) повторены много раз, что приводит к увеличению продолжительности жизни особи, возможности оставить больше потомков и меньшей зависимости от внешних условий.

Клетки разных организмов имеют сходное строение. Все живые организмы по строению клеток делятся на две основные группы: прокариоты и эукариоты. Прокариоты не имеют четко оформленного ядра, органеллы (кроме рибосом) заменены мембранными структурами. В клетках эукариотических организмов имеются ядра и набор органелл в зависимости от вида и функций клетки. Несмотря на единый принцип строения и сходный химический состав, между клетками эукариотических организмов разных царств имеются существенные различия. Все клетки имеют оболочку – плазмалемму, выполняющую одинаковые функции независимо от принадлежности клетки к какому-либо царству. Клетки растений и грибов имеют жесткую клеточную оболочку – клеточную стенку. У грибных клеток она состоит из хитина, а у растительных – из целлюлозы. Клетки бактерий окружены слизистой капсулой. Животные клетки клеточной стенки не имеют. Форма, размеры клеток различны и зависят от выполняемых функций. Точно так же все клетки имеют ядро и цитоплазму с основным набором органелл: эндоплазматической сетью, аппаратом Гольджи, рибосомами, митохондриями, лизосомами. Каждая из этих органелл выполняет свою функцию, но их деятельность в зависимости от потребностей клетки ослабевает или усиливается.

Клетка – не только структурная, но и функциональная единица живого организма, так как способна потреблять и преобразовывать энергию и вещество. Все вещества, поступившие в клетку извне, вовлекаются в метаболизм состоящий из пластического обмена и энергетического обмена. Эти два процесса неразрывно связаны между собой. Синтетические реакции, в ходе которых вырабатываются вещества, необходимые клетке, нуждаются в энергии. Энергия освобождается при распаде (окислении) веществ в ходе диссимиляции. Реакции распада происходят в присутствии ферментов, образуемых при ассимиляции. Взаимосвязь пластического и энергетического обменов определяет функциональную целостность клетки.

Все клетки растут и размножаются. Размножение происходит путем митоза. Деление наступает из-за изменения отношения объема цитоплазмы к объему ядра. При митозе наследственная информация передается дочерним клеткам целиком. В результате митоза получаются генетически идентичные клетки (особи у простейших). В многоклеточном организме митоз – способ роста.

Таким образом, по положению «один» клеточной теории, клетка – структурная и функциональная единица всего живого.

Вопрос 2. Палеонтологические, сравнительно-анатомические, эмбриологические доказательства эволюции органического мира

Сведения, подтверждающие теорию эволюции органического мира, поступают из разных разделов биологии. Среди них – палеонтология, сравнительная эмбриология, анатомия и морфология.

Палеонтология изучает ископаемые останки организмов, живших когда-то на планете. Установление возраста пород, в которых были найдены останки, позволяет определить период, в котором жил данный организм. На основе этого была построена геохронологическая шкала групп животных и растений. Самые древние организмы были очень примитивны и неразнообразны. Их останки находят в древних породах. В молодых породах появляются останки все более разнообразных и усложняющихся организмов. Существование переходных форм, сочетающих примитивные и более высокоорганизованные признаки – одно из основных доказательств эволюции. Каждый вид появлялся в соответствии с условиями, преобладающими в его время, процветал, а затем вымирал, уступая близкородственному виду. Примерами таких переходных форм являются: 1) археоптерикс – ископаемая первоптица юрского периода, связующее звено между рептилиями и птицами, 2) семенные папоротники – переходная форма между папоротниковидными и голосеменными.

Ископаемые данные не дают полной картины развития органического мира (следствие неблагоприятных условий для окаменения, быстрого разложения мягкотелых организмов, затруднения при исследовании морского дна), но все же свидетельствуют о прогрессивном развитии органического мира.

Сравнительно-анатомические доказательства эволюции появляются при установлении степени сходства и различий в строении организмов. Во-первых, все организмы имеют клеточное строение. Во-вторых, при сравнении организмов можно выделить гомологичные и аналогичные органы. Гомологичные органы имеют общее происхождение, сходное строение и положение в организме, но выполняют различные функции. Они являются примерами адаптации к разным условиям среды и доказательством близкого филогенетического родства. Примером могут служить конечности позвоночных, построенные по одному плану пятипалой конечности. Аналогичные органы не обладают общим строением и происхождением, но выполняют сходные функции. Примеры: глаза позвоночных и насекомых, крылья бабочек и птиц. Аналогичные органы служат доказательством приспособительного характера эволюции.

Существование рудиментов (аппендикса у человека, тазовых костей змей и китов и др.), проявление атавизмов (обильного волосяного покрова на лице, руках и теле, увеличение числа копчиковых позвонков у людей) также являются доказательствами эволюции.

Данные эмбриологии имеют очень большое значение для обоснования теории эволюции. Геккелем был сформулирован биогенетический закон: зародыш в своем развитии (онтогенезе) повторяет историческое развитие группы, к которой он принадлежит (филогенез). Например, если взять позвоночных, их зародыш на определенных этапах приобретает жабры и жаберные щели, двухкамерное сердце с одним кругом кровообращения и т. п.

В дальнейшем различные ученые (А. Н. Северцев, А. О. Ковалевский) уточняли данные эмбриологии и доказали, что онтогенез повторяет не строение взрослых предковых форм, а стадии их зародышей.

Имеются биохимические доказательства родства и эволюции мира: сходство аминокислотных последовательностей в белках и нуклеотидных последовательностей в ДНК у разных таксономических групп (чем больше сходства, тем ближе родство) и другие.

Вопрос 3. Рассмотреть внешнее строение цветка насекомоопыляемого растения и выявить приспособленность к опылению насекомыми. Объяснить, как могло возникнуть это приспособление

Переносчиками пыльцы при перекрестном опылении чаще всего являются насекомые. Эволюция покрытосеменных насекомоопыляемых растений шла совместно с эволюцией насекомых-опылителей по пути тесного приспособления цветка и насекомого друг к другу.

К числу таких приспособлений следует отнести оптические средства привлечения, которые способствуют зрительной ориентации насекомых в поисках нужного растения. Цветки насекомоопыляемых растений, как правило, либо крупные, одиночные, ярко окрашенные (шиповник, пион, гвоздика, мак и др.), либо мелкие, собранные в хорошо заметные соцветия, имитирующие цветок (корзинки сложноцветных, соцветия сирени, акации, черемухи и т. д.). Немаловажную роль играет окраска лепестков венчика цветка. Раннецветущие виды растений имеют чаще всего фиолетовые и синие цветки, заметные на фоне проталин. Белые и желтые венчики выделяются на фоне ярко-зеленой травы у тех видов растений, которые цветут в летний период. Каждому виду насекомых-опылителей свойственно определенное цветовосприятие, поэтому их привлекают цветки определенной окраски. Кроме того, у львиного зева, орхидных основание венчика имеет характерный рисунок в виде точек и пунктирных линий, указывающий насекомому место посадки.

Большое значение в поисках пищи для насекомых имеют запахи цветков. Хорошо развитое обоняние позволяет насекомым находить цветки как с приятным ароматом, так и с резким запахом.

Окраска, форма, размеры, запахи цветков служат для насекомых лишь указателями на присутствие в них главной приманки – пыльцы и нектара.

Строение ротового аппарата насекомых-опылителей, посещающих цветки растений определенного вида, приспособлены для сбора нектара, который находится у основания лепестков венчика в виде специальных кармашков-нектарников (лютиковые).

Цветки некоторых растений насекомые посещают ради пыльцы, которую они поедают сразу или собирают в прок как пищу для личинок. Большое количество тычинок (до 100 и более), хорошо развитые крупные пыльники на относительно коротких тычиночных нитях являются признаками цветков насекомоопыляемых растений.

Билет № 2

Вопрос 1. Строение и жизнедеятельность растительной клетки

Растительная клетка, как типичная эукариотическая, состоит из трех компонентов: оболочки, цитоплазмы и ядра. Характерными ее особенностями являются толстая целлюлозная клеточная стенка, наличие в цитоплазме вакуолей, пластид, отсутствие центриоли. Резервный углевод – крахмал.

Оболочку составляют цитоплазматическая мембрана (плазмалемма) и клеточная стенка, которая отходит кнаружи от мембраны. Клеточная стенка состоит из целлюлозы, поэтому она определяет форму клетки; дает прочность. Через срединные пластинки, соединяющие соседние клеточные стенки, проходят плазмодесмы, осуществляющие связь соседних протопластов в единую систему.

Ядро – наиболее важная структура клетки, необходимая для жизнедеятельности. Ядро окружено ядерной оболочкой из двух мембран, в которой имеются поры, через них происходит обмен веществ между ядром и цитоплазмой. Внутри находится нуклеоплазма (кариоплазма), содержащая ионы, белки, нуклеотиды, хроматин и ядрышко. Хроматин – спирально закрученные молекулы ДНК, соединенные с белками-гистонами. В ядре заметно ядрышко – округлая структура, выполняющая функцию синтеза рибосомальных единиц. Клетку заполняет цитоплазма, состоящая из основного вещества, органелл и включений. Основное вещество– водный раствор неорганических и органических веществ, заполняющий пространство между органеллами. В нем протекают различные химические реакции и физиологические процессы.

Включения – временные образования в клетке, появляющиеся и исчезающие в процессе метаболизма (секреторные гранулы, запасающие вещества; продукты обмена веществ и т. д.).

В клетках содержаться мембранные и немембранные органеллы. К немембранным относят цитоскелет и рибосомы. Цитоскелет формируется из микротрубочек, он поддерживает форму клетки, осуществляет внутриклеточный транспорт и участвует в эндоцитозе. Рибосомы – очень мелкие органеллы, состоящие из двух субъединиц, большой и малой, содержат белок и РНК. Их функция – синтез белков.

Эндоплазматическая сеть (ЭПС) – одномембранная органелла, разветвленная система канальцев и цистерн. ЭПС бывает шероховатой и гладкой. К шероховатой ЭПС прикреплены рибосомы. Здесь происходит модификация белков. В гладкой ЭПС синтезируются липиды, гормоны. ЭПС дает начало аппарату Гольджи, лизосомам, вакуолям.

Аппарат Гольджи (АГ) представляет стопку мембранных пузырьков. В АГ происходит накопление веществ синтезированных в ЭПС, а также регенерация и рост плазмалеммы; от АГ отщепляются лизосомы.

Лизосомы – одномембранные органеллы в виде сферических мешочков, заполненных ферментами. Лизосомы могут переваривать компоненты собственной клетки, например, в условиях голодания или деградирования структуры.

Митохондрии – двухмембранные органеллы, внутренняя мембрана образует многочисленные выросты – кристы. Пространство между кристами заполнено матриксом. На кристах и в матриксе содержатся ферменты, участвующие в катаболизме. Пластиды свойственны только растительной клетке, являются местом синтеза и хранения углеводов. Все пластиды двухмембранны.

В хлоропластах идет процесс фотосинтеза. При распаде хлорофилла хлоропласты переходят в хромопласты, которые за счет каротиноидов обеспечивают различную окраску: красную, желтую, желто-бурую. Очень много хромопластов содержится в цветках и плодах растений. Для хранения питательных веществ приспособлены лейкопласты. Их много в корнях, семенах и т. д.

Вакуоли растительных клеток крупные, одномембранные. Заполняет вакуоль клеточный сок – водный раствор неорганических солей, органических веществ, кислорода, углекислого газа и т. д. Вакуоль поддерживает тургор клетки и играет роль в общем водном режиме растения.

Вопрос 2. Ароморфоз – главное направление эволюции. Основные ароморфозы в эволюции позвоночных

С момента своего возникновения жизнь на нашей планете развивалась от простого к сложному, увеличивала свое разнообразие, специализировалась, приспосабливалась к различным и меняющимся условиям. Разработкой проблемы главных направлений эволюции занимались Ж. Б. Ламарк, Ч. Дарвин, Б. Реши, Дж. Хаксли, а в нашей стране этот вопрос разрабатывался А. Н. Северцовым и его школой. Он предложил выделить биологический прогресс из общего понятия эволюции. Биологический прогресс (вида и надвидных таксонов) характеризуется увеличением численности, расширением занимаемого ареала и увеличением количества таксонов. Одним из основных путей биологического прогресса является ароморфоз. Ароморфозы – это усложнения строения и функций, ведущие к общему повышению уровня жизнеспособности.

Ароморфозы обеспечивают поднятие уровня организации организмов на более высокий уровень. Изменения в строении организмов носят общий характер, не являются приспособлением к каким-либо специальным условиям.

Прогресс достигается усилением, дифференцировкой и усложнением функций органов и соответствующими изменениями в строении этих органов.

В основе ароморфозов лежит какое-либо частное приспособление, дающее в данных условиях среды крупное преимущество для организма и ставящее его в благоприятные условия для размножения, увеличивая численность. В этих благоприятных условиях затем перестраивается вся его организация. Ароморфозы передаются из поколения в поколение и приводят к образованию крупных таксонов – классов, типов и т. д.

Ароморфозы формируются на основе наследственной изменчивости и естественного отбора и являются приспособлениями широкого значения. Они дают преимущества в борьбе за существование и открывают возможности освоения новой, прежде недоступной среды обитания.

Основные ароморфозы позвоночных:

· возникновение у панцирных рыб челюстей для активной охоты в результате жесткой конкуренции за пищевые ресурсы;

· легочное дыхание и трехкамерное сердце у двоякодышащих и кистеперых рыб;

· развитие пятипалой конечности у первых наземных позвоночных – стегоцефалов;

· роговой покров тела у пресмыкающихся, защищающий организм от обезвоживания;

· возникновение оболочек в яйце пресмыкающихся, защищающих зародыш от высыхания;

· внутреннее оплодотворение, повышающее вероятность встречи сперматозоида с яйцеклеткой;

· появление у птиц четырехкамерного сердца и теплокровности;

· возникновение перьев птиц из роговых чешуй рептилий;

· значительное увеличение размеров больших полушарий;

· появление коры головного мозга;

· увеличение запаса питательных веществ в яйце;

· теплокровность и четырехкамерное сердце млекопитающих;

· прогрессивное развитие головного мозга;

· появление волосяного покрова;

· живорождение;

· развитие желез, в том числе молочных для выкармливания детенышей.

Все эти изменения повышают интенсивность жизнедеятельности животных, уменьшают их зависимость от условий среды обитания. Итак, ароморфоз – это очень глубокая перестройка организма, которая обеспечивает меньшую зависимость от условий окружающей среды, высокую численность, успешное расселение и длительное существование группы во времени.

Вопрос 3. Рассмотреть расположение листьев у комнатного растения и выявить приспособленность к поглощению света

Рассмотрим расположение листьев на примере наиболее популярных комнатных растений.

Плющ обыкновенный – самое распространенное декоративно-лиственное растение в комнатной культуре. Его темно-зеленые глянцевые лопастные листья расположены на стебле – лиане поочередно, но стебель изгибается так, что листья образуют листовую мозаику – листорасположение, при котором ни один лист не затеняет другие. Мелкие листья, как правило, располагаются в центре мозаики, крупные – по краям. Мозаичное расположение листьев, как одно из приспособлений к поглощению света, имеют многие комнатные растения, например, плектрантус, хойя, крестовник, традесканция, колеус.

У сенполий, или узамбарских фиалок, листья расположены в виде розетки на сильно укороченном стебле, что позволяет растению максимально использовать для фотосинтеза яркий, но рассеянный свет. Розеточное расположение листьев имеют также глоксиния и стрептокарпус – представители семейства геснериевых.

У каланхоэ (бриофиллума) и толстянки листья на стебле расположены супротивно, то есть друг против друга, причем одна пара листьев сориентирована перпендикулярно другой, не затеняя ее.

Билет № 3

Вопрос 1. Строение и жизнедеятельность клетки животного

Животная клетка имеет в своем составе оболочку, плазмалемму (плазматическую мембрану), цитоплазму и ядро. Плазмалемма имеет типичное строение: бимолекулярный слой липидов со встроенными белками. Углеводный компонент животных клеток тонок и называется гликокаликс. В нем может происходить внеклеточное расщепление сложных молекул до мономеров. Через мембрану происходит обмен веществами между клеткой и средой; она отграничивает клетку; реагирует на различные молекулы и сигналы извне.

Центриоли – органоиды животных клеток. Это цилиндрические структуры, состоящие из девяти триплетов микротрубочек. В клетке обычно две центриоли, называемые диплосомой. Перед делением клетки каждая центриоль удваивается, и новые пары расходятся к полюсам веретена деления. Центриоли играют организующую роль в построении цитоскелета.

Ядро контролирует жизнедеятельность, разитие и рост клетки. Обычно клетки одноядерные, но некоторые утрачивают ядра (эритроциты млекопитающих) или становятся двухядерными (клетки печени), многоядерными (клетки простейших, костного мозга, скелетных мышц). Ядро окружено двухмембранной оболочкой, внутри которой между мембранами находится перинуклеарное пространство. Внешняя мембрана переходит в эндоплазматическую сеть в цитоплазме. При слиянии мембран ядра образуются поры, через которые из ядра в цитоплазму транспортируются рРНК, рибосомальные субъединицы, а в ядро – аминокислоты, нуклеотиды.

Внутри ядра находится ядерный сок, содержащий хроматин и ядрышко. Хроматин – структуры, состоящие из ДНК в комплексе с белками-гистонами. Ядрышко – округлая структура, функцией которого является производство рибосом. Ядрышек может быть несколько.

Цитоплазма состоит из основного вещества и органелл. Основное вещество представляет собой водный раствор органических и неорганических молекул, ионов. Здесь протекают процессы метаболизма.

Эндоплазматическая сеть – система разветвленных цистерн, полостей, мешочков, отходящая от наружной мембраны ядра. Если на ЭПС есть рибосомы, то ее называют шероховатой или гранулярной; если рибосом нет – гладкой или агранулярной. Рибосомы – немембранные структуры округлой формы, состоящие из двух субъединиц – большой и малой и рРНК, синтезируемых в ядрышке. Функции рибосом – синтез полипептидных цепей на матрице рРНК. Рибосомы также могут свободно находиться в гиалоплазме. Дальнейшая модификация молекулы белка осуществляется на шероховатой ЭПС. В гладкой ЭПС синтезируются липиды.

Аппарат Гольджи – система уплощенных мембранных цистерн, уложенных в стопку. АГ накапливает и модифицирует вещества, синтезированные в ЭПС; осуществляет синтез глико– и липопротеидов; участвует в росте и регенерации плазмалеммы, формирует лизосомы.

Лизосомы представляют собой простые одномембранные мешочки, внутри которых находятся ферменты, способные деполимеризовать органическую молекулу. Лизосомы могут уничтожать всю клетку (старую, больную, ненужную, как при исчезновении хвоста у головастика).

Митоходрии – органеллы, окруженные двумя мембранами. Внутренняя мембрана образует выросты внутрь митохондрии, называемые кристами. Между кристами пространство заполнено матриксом. Митохондрии поставляют энергию клетке и запасают ее в виде АТФ.

Вопрос 2. Вид – надорганизменная система, его критерии

В 1686 г. Дж. Рей ввел термин «вид» и установил, что виды представлены множеством организмов, сходных между собой, и что вид – самовоспроизводящаяся единица. Далее Линней доказал, что вид – основная единица органического мира. Вид стали рассматривать как основную классификационную группу. Большой вклад в развитие представлений о виде внесли наши ученые, такие как В. Л. Комаров, Н. И. Вавилов, В. Н. Сукачев, К. В. Арнольди и др. Они уточнили структуру вида, взаимосвязи, генетические связи.

Видом считают совокупность особей, обладающих общим происхождением, наследственным сходством морфологических, физиологических и биохимических особенностей, способных свободно скрещиваться и давать плодовитое потомство, приспособленных к определенным условиям среды и занимающих определенный ареал.

В настоящее время выделяют характерные для вида признаки и особенности, называемые критериями; совокупность критериев свидетельствует о реальности вида.

Морфологический критерий показывает сходство внешнего и внутреннего строения. Очень относителен из-за изменчивости особей в пределах вида (сезонной, возрастной, половой) и наличия видов-двойников (морфологически сходных, но не скрещивающихся; например у крыс, тлей).

Физиологический критерий характеризует сходство процессов жизнедеятельности у особей вида, особенно сходство размножения. Разные виды не могут скрещиваться и давать потомство из-за разного строения половых органов, разных сроков размножения, разного набора хромосом (хотя некоторые виды зябликов, тополей дают плодовитое потомство). У многих видов тропических и арктических рыб относительно одновременно и похоже активизируются и замедляются процессы жизнедеятельности.

Генетический критерий – определенный набор хромосом вида, определенный кариотип. Это главный видовой признак. Особи одного вида различаются в основном лишь аллелями своих генов. Таким образом, вид представляет собой совокупность сходных и способных к скрещиванию между собой особей. Но необходимо напомнить, что возможны различные мутации и повреждения хромосом, допустим, при делении.

Географический критерий – определенный ареал, занимаемый видом. Также неабсолютен из-за совпадения ареалов ряда видов-космополитов (домовая мышь), изменения границ под воздействием антропогенных факторов, наличия у перелетных птиц ареала гнездования и ареала зимовки.

Экологический критерий – сходство факторов внешней среды, в которой обитает вид. Позволяет определить место вида в биогеоценозе. Для особей одного вида характерны одинаковые взаимоотношения со средой: каждый вид занимает свою особую экологическую нишу. Но в сходных условиях могут существовать разные виды. По этому критерию трудно отделить наследственные признаки от приспособительных.

Биохимический критерий основан на способности синтезировать специфические белки. Проблематичен для близкородственных видов.

Вид – единственная реально существующая категория. Его общий генофонд обеспечивает достаточную изменчивость, но, с другой стороны, настолько един, что может поддерживать достаточно стабильное состояние вида как размножающегося сообщества и экологического единства. Появление вида сделало невозможным смешение уже стабилизировавшихся генотипов.

Вопрос 3. Решить задачу на анализирующее скрещивание

Задача.

У морских свинок мохнатая шерсть (R) доминирует над гладкой (ч). Мохнатая морская свинка при скрещивании с гладкой дала 18 мохнатых и 20 гладких потомков. Каковы генотипы родителей и потомков?

Решение:

R – мохнатая шерсть;

r– гладкая шерсть;

P: мохнатая свинка х гладкая свинка

F1: 18 мохнатых: 20 гладких

1. По условию задачи признак мохнатой шерсти доминирует над гладкой, значит генотип одного из родителей rr, т. е. гомозигота по рецессиву.

2. Для записи генотипа второго родителя используем фенотипический радикал, его генотип – R.

3. Проанализируем схему расщепления по фенотипу в F1 (18 мохнатых: 20 гладких), что составляет приблизительно 1:1, следовательно, один из родителей гетерозиготен (Aa), так как при анализирующем скрещивании (скрещивании исследуемых особей с особями рецессивной исходной формы) наблюдается расщепление: 1 часть потомства несет доминантный признак (18 мохнатых свинок) и 1 часть – рецессивный (20 гладких свинок).

4. Сделаем запись скрещивания:

P: Rr x rr

мохн. глад.

Ошибка: источник перекрестной ссылки не найден

Ответ: генотипы родителей:

мохнатая свинка – Rr (гетерозигота),

гладкая свинка – rr (гомозигота по рецессиву).

Генотипы потомства:

18 мохнатых свинок – Rr (гетерозиготы),

20 гладких свинок – rr (гомозиготы по рецессиву).

Билет № 4

Вопрос 1. Основные положения клеточной теории, ее значение

В течение XVII–XIX вв. накапливались знания о клетке. Изобретение микроскопа дало возможность изучать клетки. Клеточное ядро первым увидел Ф. Фонтана в клетках кожи угря, но его описания прошли незамеченными. Переоткрыто оно было 45 лет спустя. Термины «ядро» и «ядрышко» были введены Г. Валентином, но никто еще не догадывался об истинном значении этих образований. Открытие клетки принадлежит английскому естествоиспытателю Р. Гуку, который в 1665 г. впервые рассмотрел тонкий срез пробки под микроскопом. На срезе было видно, что пробка имеет ячеистое строение. Эти ячейки Р. Гук назвал клетками. В 1674 г. А. Ван Левенгук открыл одноклеточные организмы – инфузории, амебы, бактерии. Он также впервые наблюдал животные клетки – эритроциты крови и сперматозоиды.

К концу 30-х гг. ХIХ в. клетка признается основным структурным элементом всего живого. Ее функции и свойства определялись оболочкой, а о возникновении клеток было ничего не известно. Матиас Шлейден, работая с клетками растений, первым начал разрабатывать эту проблему. И в 1838 г. он выдвигает гипотезу «цитогенезиса», согласно которой новые клетки образуются из старых путем распада ядра и собирания вещества вокруг ядрышек. Следом Т. Шванн проводит исследования с животными клетками. В итоге работы Шванна и Шлейдена легли в основу клеточной теории (1839 г.).

1. Все организмы состоят из клеток, имеющих сходное строение.

2. Клетка является структурно-функциональной единицей живых существ.

3. Клетки образуются из бесструктурного вещества, находящегося внутри них и вне клеток.

4. Свойства организма являются суммой свойств всех клеток.

Несмотря на целый ряд ошибочных предположений и теорий (о главенстве оболочки, возникновении клеток из неклеточного вещества и др.), Шлейден и Шванн показали морфологическое единство животного и растительного мира и подвели базу для укрепления эволюционной теории.

Дальнейшая разработка клеточной теории шла в направлении изучения внутреннего содержимого клетки. После работ Геккеля была признана мысль, что клетка простейших соответствует клеткам остальных животных, названных многоклеточными. В 1856 г. Кон утверждал, что вещество клеток животных соответствует протоплазме растений, а Лейден высказал мысль о том, что главными в клетке являются ядро и протоплазма, а не оболочка.

Возникновение клеток описывалось ошибочными способами и идеями. В 1855 г. Р. Вирхов доказал, что новые клетки происходят из старых, а не из ядер (как считал Шлейден) и не из неклеточного вещества (Шванн).

В свою очередь этот закон направил биологов на явление наследственности, а сама клеточная теория стала предпосылкой для эволюционного учения, большим прорывом и важной вехой в биологии.

С усовершенствованием методов исследования (изобретение электронного микроскопа, метода культуры тканей, метода меченных атомов и т. д.) накапливаются новые знания о строении и функционировании клетки. Ошибки и неточности клеточной теории были устранены, но идея осталась неизменной. В настоящее время клеточная теория включает следующие основные положения:

1) клетка – структурная и функциональная единица всего живого, за исключением вирусов;

2) клетки сходны по строению, химическому составу, обмену веществ и проявлениям жизнедеятельности;

3) клетки образуются из материнских путем деления, в многоклеточных организмах они дифференцируются, объединяются в ткани и органы, связанные в системы, находящиеся под контролем различных форм регуляции.

Вопрос 2. Половое размножение. Строение и функции мужских и женских гамет

Выделяют два основных типа размножения – бесполое и половое. Половое размножение появилось около 3 млрд лет назад и является более продвинутым и выгодным в эволюционном плане. В его основе лежит процесс слияния мужских и женских половых клеток (гамет), которые гаплоидны. Потомство получает по половине генетической информации от каждого родителя, в результате чего образуется уникальная комбинация генов. Эти особи отличаются друг от друга и от родителей по генотипу, а значит и по многим признакам. Такое генетическое разнообразие обеспечивает адаптивные возможности вида и, как следствие, эволюционный прогресс. Потомки, наиболее приспособленные к условиям среды (часто экстремальным и меняющимся), имеют больше шансов выжить и передать свой генотип следующим поколениям. Благодаря этому вид прогрессирует, изменяется и может дать начало новому виду.

Таким образом, значение полового процесса заключается в восстановлении диплоидности зиготы, самовоспроизведении особей, обеспечении биологического (генотипического) разнообразия вида, его приспособительных возможностей, и в общем эволюции и видообразования.

Рассмотрим строение половых клеток животных. Сперматозоиды образуются в мужских гонадах – семенниках в очень больших количествах (часто они исчисляются миллионами). Сперматозоиды – очень мелкие, подвижные, у разных видов разной формы, но все они имеют в своем строении головку, шейку, промежуточный отдел и хвост (жгутик). В головке находится гаплоидное ядро и очень мало цитоплазмы. Спереди головки располагается особая структура – акросома, которая образуется при сперматогенезе из комплекса Гольджи. Акросома содержит набор гидролитических ферментов и растворяет оболочку яйцеклетки при оплодотворении. В шейке находятся две центриоли, расположенные под прямым углом друг к другу. Они образуют осевую нить жгутика. В промежуточном отделе находятся многочисленные митохондрии. Их деятельность дает энергию для движения жгутика. Жгутики имеют типичное строение; они могут быть извитыми, в виде запятой и другие. Основная функция сперматозоида – доставить генетический материал к неподвижной яйцеклетке.

Яйцеклетки – относительно крупные клетки, неподвижные, содержат много цитоплазмы, запасные питательные вещества в виде желтка. В ядрах синтезируется большое количество рибосомных генов и рРНК для быстрого синтеза белков после оплодотворения, накапливаются гистоны. Таким образом, главная функция яйцеклетки – запасание питательных веществ, которые будут использоваться зародышем на раннем этапе развития. Зрелая яйцеклетка, как и сперматозоид, содержит в себе половинное число хромосом, так как в период созревания ооциты первого порядка претерпевают мейоз. Яйцеклетки чаще всего имеют сферическую форму и значительно крупнее соматических клеток. Оболочки яйцеклеток выполняют защитные функции, обеспечивают обмен веществ с окружающей средой, а у плацентарных– служат для внедрения зародыша в стенку матки.

Организмы – гермафродиты – образуют как мужские, так и женские половые клетки. В этом случае, как правило, имеется ряд приспособлений, препятствующих самооплодотворению.

Гаметы могут вырабатываться в течение всей жизни или только в период половой активности, с момента полового созревания до затухания деятельности желез в старости.

На половые клетки и на процесс их образования неблагоприятно (иногда и губительно) влияют ионы металлов, хинин, наркотические вещества, пары эфира, бензина, бензола, различных кислот и многие другие вещества.

Вопрос 3. Рассмотреть гербарные экземпляры растений разных видов одного рода, сравнить их и выявить различия по морфологическому критерию

Рассмотрим два растения семейства розоцветных, относящихся к одному роду – лапчатке. Видовое название одного растения – лапчатка гусиная, другого – лапчатка серебристая.

Выявим различия по морфологическому критерию (совокупности особенностей внешнего строения), сравнив виды между собой, рассмотрев органы растений.

Лапчатка гусиная имеет крупные, одиночные цветки желтого цвета, а лапчатка серебристая образует метельчатые соцветия, состоящие из мелких беловатых цветков.

Стебель лапчатки гусиной сильно укорочен, боковые побеги ползучие, укореняющиеся в узлах. У лапчатки серебристой стебли прямостоящие, опушенные.

Листья лапчатки гусиной перистой формы, сложные, расположены в виде прикорневой розетки. Листья лапчатки серебристой сложные, пятипальчатые, двусторонние: сверху – зеленые, гладкие, снизу – беловато-войлочные.

Корневые системы у обоих видов растений представлены видоизмененными побегами – корневищами, но у лапчатки серебристой корневище развито лучше.

Билет № 5

Вопрос 1. Химический состав клетки. Роль органических веществ в ее строении и жизнедеятельности

В клетке находится множество органических и минеральных веществ. Все вещества состоят из химических элементов. По их процентному содержанию в клетке выделяют макро-, микро– и ультрамикроэлементы.

К макроэлементам относят водород, углерод, кислород, азот. Они составляют почти 98 % всех химических элементов клетки и входят в состав всех жизненно необходимых органических веществ. Микроэлементы содержатся в клетке в десятых и сотых долях процента. Это магний, калий, сера, фосфор, железо, натрий, кальций, хлор. Всего их порядка 2–3 %. Ультрамикроэлементы обнаруживаются в исключительно малых количествах. К ним принадлежат медь, цинк, йод, фтор, марганец, кобальт, никель и другие.

Микро– и ультрамикроэлементы чрезвычайно важны для жизнедеятельности как определенной клетки, так и организма в целом. Они входят в состав ферментов, гормонов, витаминов. Например медь содержат ферменты, участвующие в тканевом дыхании. В гормоне инсулине содержится цинк, кобальт – компонент витамина В12.

Вода – простое неорганическое соединение, важнейший компонент клетки. Вода – лучший растворитель для таких веществ, как соль, сахар, спирты, некоторые белки (гистоны, альбумины). Эти вещества называются гидрофильными. Вода обладает высокой теплоемкостью и высокой теплопроводностью, что обеспечивает постоянство температурного режима клетки и равномерное распределение тепла между соседними клетками, тканями, органами. Вода создает и определяет упругость и объем клетки. Вода необходима для фотосинтеза и гидролиза веществ. Разная концентрация растворенных в воде ионов в клетке и вне ее поддерживает разность потенциалов, необходимую для прохождения через мембрану различных молекул, для передачи возбуждения по нерву.

К органическим веществам относят углеводы, липиды, белки, нуклеиновые кислоты. Они составляют около 90 % сухой массы клетки. В животных клетках содержание углеводов колеблется от 1 % до 5 % (в клетках печени), в растительных доходит до 70 %. Углеводы участвуют в синтезе нуклеиновых кислот (пентозы, глюкозы, фруктозы, гектозы) являются поставщиками энергии, могут откладываться в клетках как запасное вещество (крахмал) или использоваться в качестве строительного материала (целлюлоза).

Липиды являются продуктом взаимодействия жирных кислот и спиртов. Основные функции липидов: энергетическое депо, структурная (фосфолипиды входят в состав мембран), некоторые липиды являются гормонами (половые гормоны). Кроме того, липиды способствуют термоизоляции, являются источником метаболической воды.

Белки являются главным компонентом клетки, ибо существует множество функций, выполняемыми белковыми молекулами: ферментативная (катализаторы химических реакций), структурная (входят в состав мембран, клеточных органелл); сократительная (обеспечивают движение внутриклеточных структур), транспортная (перенос различных молекул), запасающая (обеспечивают питание).

Среди нуклеиновых кислот различают дезоксирибонуклеиновую и рибонуклеиновую кислоты.

ДНК – самые крупные биополимеры клетки, в которых хранится вся наследственная информация. Она кодируется азотистыми основаниями нуклеотидов, составляющих двойную спиральную молекулу.

РНК – второй вид нуклеиновых кислот клетки. Эти молекулы значительно меньше по размеру, состоят из одной цепи нуклеотидов. В зависимости от выполняемых функций различают три вида РНК: информационную, транспортную, рибосомную.

Вопрос 2. Модификационная изменчивость, ее значение в жизни организма

Изменчивость – свойство организмов приобретать различия внутри видов и между ними. Благодаря изменчивости популяция разнородна, что является основой, предпосылкой для эволюции. Различают наследственную (связанную с изменением генетического материала) и ненаследственную, или модификационную, изменчивость (под влиянием среды).

Модификационная изменчивость – изменение фенотипа, обусловленное влиянием среды на проявление генотипа. Сюда относятся адаптивные и неадаптивные модификации, или морфозы.

Модификационной изменчивости подвержены как количественные, так и качественные признаки. Возникновение модификаций связано с тем, что такие важнейшие факторы среды, как свет, тепло, влага, химический состав почв, воздух, воздействуют на активность ферментов организма. При определенных сочетаниях этих факторов изменяется ход биологических реакций, а значит, меняется степень проявления признака. Так, при изменении температуры и влажности воздуха изменяется окраска цветков у примулы или шерсть у гималайских кроликов.

Модификационная изменчивость в естественных условиях носит приспособительный характер и в этом смысле имеет важное значение в эволюции. Обусловленные различным влиянием среды адаптивные модификации дают возможность организму выжить и оставить потомство в изменившихся условиях среды. Знание закономерностей модификационной изменчивости имеет большое практическое значение в селекции организмов, так как позволяет предвидеть и заранее планировать максимальное использование возможностей каждого сорта растений и породы животных. Степень варьирования признака или пределы модификационной изменчивости называется нормой реакции. Диапазон нормы реакции обусловлен генотипом и зависит от важности признака в жизни организма. Узкая норма реакции свойственна таким признакам, как размеры сердца или головного мозга. У растений, опыляемых насекомыми, мало изменчиво строение цветка, но широко изменяются размеры листьев. С другой стороны, такие признаки, как количество жира в организме, изменяются в широких пределах. Модификации не затрагивают нормального равновесия физиологических процессов и носят обычно массовый характер, т. е. проявляются у всех или у большинства особей популяции.

Модификации бывают адаптивные и неадаптивные. Адаптивные модификации носят приспособительный характер, не передаются по наследству, а способствуют выживанию организма в нестабильных условиях.

Неадаптивные модификации не носят приспособительного характера. Они возникают при экстремальных изменениях внешних факторов, выходящих за пределы нормы реакции (доза облучения, света, температуры). Организмы приобретают патологические признаки (например позеленение клубней картофеля на свету). Их появление связано с условиями, в которые организм не попадал или не должен попадать, и норма реакции на него не распространилась. Морфозы трудно отличить от мутаций.

Таким образом, модификационная изменчивость характеризуется следующими признаками: 1) ненаследуемостью; 2) групповым характером изменений; 3) соответствием изменений действию определенного фактора среды; 4) обусловленностью пределов изменчивости генотипом (хотя направленность изменений одинакова, степень изменения различна у разных организмов).

Вопрос 3. Решите задачу на наследование гемофилии

Задача.

Классическая гемофилия передается как рецессивный, сцепленный с Х-хромосомой, признак.

Мужчина, больной гемофилией, женился на здоровой женщине (все ее предки были здоровы).

У них родилась здоровая дочь. Определить вероятность рождения больного гемофилией ребенка от брака этой дочери со здоровым мужчиной.

Решение.

H – нормальная свертываемость крови

h – гемофилия

1. Мужчина болен гемофилией, следовательно, его генотип XhY.

2. Женщина здорова, значит, она несет доминантный ген H. Все ее предки были здоровы (чистая линия), следовательно, она не является носительницей и ее генотип XHXH.

3. Одну X-хромосому дочь получила от матери, другую от отца. Мать могла передать ей только хромосому XH, а отец – только Xh. Генотип дочери XHXh, следовательно, она является носительницей признака гемофилии.

4. Генотип мужа дочери XHY (здоров) по условию задачи.

Запись брака

P: ♀XHXH x ♂XhY

здорова гемофилия

Ошибка: источник перекрестной ссылки не найден

F1: ♀XHXh x ♂XHY

носительница здоров

гемофилии

Ошибка: источник перекрестной ссылки не найден

F2:

Ответ: вероятность рождения в данной семье больного гемофилией ребенка 25 % (50 % мальчиков будут страдать гемофилией).

Билет № 6

Вопрос 1. Вирусы, их строение и функционирование. Вирусы – возбудители опасных заболеваний

Вирусы – это мельчайшие живые организмы, размеры которых варьируют от 20 до 300 нанометров; в среднем они раз в пятьдесят меньше бактерий. Вирусы нельзя увидеть при помощи светового микроскопа, и они проходят через фильтры, которые задерживают бактериальные клетки.

В 1852 г. русский ботаник Д. И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, способный задерживать бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово «вирус» (от латинского слова, означающего «яд»), чтобы обозначить этим термином инфекционную природу некоторых профильтрованных растительных жидкостей.

Вирусы были исследованы в 30-е гг. после изобретения электронного микроскопа.

Вирусы могут воспроизводить себя только внутри живой клетки, поэтому они являются облигатными (обязательными) паразитами. Обычно они вызывают явные признаки заболевания. Попав внутрь клетки-хозяина, они дают клетке команду синтезировать новые копии вируса. Вирусы передаются из клетки в клетку в виде инертных частиц.

Устроены вирусы довольно просто. Они состоят из фрагмента генетического материала: либо ДНК, либо РНК, составляющей сердцевину вируса и окружающей эту сердцевину защитной белковой оболочкой. Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов, таких, как вирусы герпеса или гриппа есть еще и дополнительная липопротеидная оболочка, которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения. Оболочка вирусов часто бывает построена из идентичных повторяющихся субъединиц – капсомеров. Из капсомеров образуются структуры с высокой степенью симметрии, способные кристаллизоваться. Как только в клетке-хозяине появляются субъединицы вируса, они сразу проявляют способность к самосборке в целый вирус.

Эволюционное происхождение вирусов.

Наиболее правдоподобной является гипотеза о том, что вирусы произошли из нуклеиновой кислоты, которая приобрела способность реплицироваться независимо от той клетки, из которой она возникла, хотя при этом подразумевается, что такая ДНК реплицируется с паразитическим использованием структур этой или других клеток. Таким образом, вирусы скорее всего произошли от клеточных организмов и их не следует рассматривать в качестве предшественников клеточных организмов.

Вирусы всегда являются паразитами и поэтому вызывают у своих хозяев определенные симптомы того или иного заболевания. К серьезным заболеваниям животных можно отнести ящур крупного рогатого скота, рожистое воспаление у свиней, чуму птиц и миксоматоз кроликов. Все эти болезни вызываются вирусами. Вирусное заражение растений обычно приводит либо к появлению крапинок на листьях, либо к морщинистости листьев. Вирусы также вызывают задержку роста растений, что ведет к снижению урожайности. Вирусы растений практически всегда относятся к РНК-содержащим вирусам.

У человека вирусными заболеваниями являются грипп, оспа, свинка, корь, коревая краснуха, полиомиелит (детский паралич), желтая лихорадка, ВИЧ-инфекция.

Вопрос 2. Основные ароморфозы в эволюции растительного мира

Развитие живой природы осуществляется от менее сложного к более сложному, от менее совершенного к более совершенному, о чем свидетельствует анализ палеонтологических данных. Процесс эволюции идет непрерывно в направлении максимального приспособления живых организмов к условиям окружающей среды, то есть происходит возрастание приспособленности потомков по сравнению с предками. Такое возрастание приспособленности организмов к окружающей среде русский ученый А.Н. Северцов назвал биологическим прогрессом. Согласно современной и широко распространенной теории А. Н. Северцова и И. И. Шмальгаузена о направлениях эволюции, оценка направлений может быть сделана только при рассмотрении целых систематических групп (видов, родов, отрядов, семейств и т. д.) а не отдельных существ. При этом, оценка направления эволюции какой-либо группы может быть сделана лишь при учете не только морфологического, физиологического критериев, но и экологических критериев, которые включают в себя: 1) параметры условий среды обитания; 2) многообразие и число мелких систематических таксонов в составе более крупных; 3) численность особей в таксонах; 4) степень расселения данной группы. Критериями биологическогопрогресса являются: 1) увеличение численности; 2) расширение ареала; 3) прогрессивная дифференциация – увеличение числа систематических групп, составляющих данный таксон.

Биологический прогресс достигается различными путями: ароморфозами, идиоадаптациями, дегенерацией. Ароморфозами называются приспособительные изменения морфофизиологических процессов и свойств живых существ, которые имеют универсальное значение и сохраняют свою полезность при переходе в новую среду обитания, повышают уровень организации особей в природе. Изменения по типу ароморфозов могут происходить как на клеточном, так и на органном и организменном уровне.

Ароморфозы формируются на основе наследственной изменчивости и естественного отбора и являются приспособлениями широкого значения. Они дают преимущества в борьбе за существование и открывают возможности освоения новой, прежде недоступной среды обитания.

В качестве примеров ароморфозов у растений Северцов рассматривал:

– возникновение специализированных клеток (гистологические изменения);

– органные изменения (появление органов у многоклеточных растений);

Возникновение монадной формы строения в виде подвижной жгутиконосной клетки имело значение как для расселения, так и для следующих процессов:

· появление полового процесса в архее, что дало широкие возможности для эволюции;

· появление фотосинтезирующих организмов;

· вследствие фотосинтеза и появления кислорода в атмосфере сформировалось аэробное дыхание;

· обособление ядра;

· возникновение многоклеточности для лучшего питания и размножения;

· появление в жизненном цикле смены бесполого и полового поколения;

· выход растений-псилофитов на сушу (силур);

· возникновение проводящей, механической и покровной тканей;

· развитие корневой системы;

· дифференцировка побега на стебли и листья;

· появление семени у голосеменных;

· уменьшение гаметофита до семязачатка;

· происхождение цветка;

· совершенствование процессов опыления;

· образование пыльцевой трубки;

· двойное оплодотворение;

· возникновение плода.

Вопрос 3. Рассмотреть внешнее строение кактуса и найти черты приспособленности к жизни в засушливых условиях. Объяснить возникновение этих приспособлений в процессе эволюции.

В ходе эволюции у кактусов возникли приспособления к жизни в засушливых климатических условиях. Во внешнем строении появился целый ряд адаптаций к условиям жизни.

Дефицит влаги привел к тому, что растение в период дождей начало активно запасать воду, необходимую для фотосинтеза, роста и развития клеток, тканей и органов. У кактуса роль такого влагозапасающего органа играет стебель.

Сочный стебель кактуса несет видоизмененные листья – колючки. Роль таких листьев двояка. С одной стороны, колючки защищают сочный стебель кактуса от травоядных животных, с другой – уменьшают транспирацию, т. е. испарение воды листьями, из-за существенного сокращения площади поверхности листьев и уменьшения числа устьиц на покровной ткани, поэтому наличие колючек позволяет кактусам длительное время удерживать баланс между поступлением и расходованием воды в условиях ее недостатка.

Некоторые виды кактусов, лишенные колючек, для уменьшения испарения и защиты от перегрева солнечными лучами имеют густое опушение в виде волосков, придающих им характерную серовато-зеленую окраску.

Наличие колючек на стебле является относительным приспособлением, так как спасает кактусы лишь от крупных млекопитающих, но не помогает от гусениц некоторых видов бабочек.

При наличии достаточного количества влаги в почве на стебле кактуса появляются ярко окрашенные цветки с множеством тычинок для привлечения насекомых-опылителей.

Билет № 7

Вопрос 1. Обмен веществ и превращение энергии в клетке. Ферменты, их роль в реакциях обмена веществ

Клетка постоянно обменивается с окружающей средой веществом и энергией. Метаболизм (обмен веществ) – совокупность взаимосвязанных процессов, представляющих собой различные химические преобразования веществ. Его составляют анаболизм и катаболизм. Анаболизм (ассимиляция, пластический обмен) – реакции синтеза, идущие с потреблением энергии. Катаболизм (диссимиляция, энергетический обмен) – процессы расщепления веществ с высвобождением энергии. Анаболизм и катаболизм неразрывно связаны.

Энергия используется клеткой для обеспечения процессов своей жизнедеятельности. Энергия в клетках образуется при энергетическом обмене и запасается в виде АТФ. Процесс диссимиляции имеет три этапа (у анаэробов – первые два) – подготовительный, бескислородный и полное окисление. На подготовительном этапе сложные органические соединения распадаются до простых. Для дыхания используют в основном углеводы. На втором этапе происходит дальнейшее расщепление органических субстратов без кислорода. Такое расщепление глюкозы называется гликолизом. В ходе гликолиза шестиуглеродный сахар превращается в две молекулы трехуглеродной пировиноградной кислоты (ПВК). Эти реакции протекают в цитоплазме. Суммарное уравнение можно записать так:

C6H12O6 → 2C3H4O3 + 4H + 2АТФ.

При аэробном дыхании ПВК направляется в митохондрии для дальнейшего расщепления. При этом ПВК с коферментом А образует ацетилкофермент А, который включается в цикл Кребса. В результате образуются две молекулы CO2, одна АТФ и четыре пары атомов водорода.

Атомы водорода присоединяются к НАД или ФАД и попадают на внутреннюю мембрану митохондрий, где по цепи встроенных в мембрану белков транспортируются так, что протоны накапливаются в межмембранном пространстве, а электроны передаются на внутреннюю поверхность внутренней мембраны митохондрии, где соединяются с кислородом. Создается разность потенциалов, в результате чего протоны водорода проходят внутрь мембраны через ионные каналы фермента АТФ-синтетазы, встроенного в эту мембрану. Там протоны соединяются с кислородом и образуют воду. А энергия прохождения протонов через канал используется для синтеза АТФ. Суммарная реакция клеточного дыхания:

C6H12O6 + 6O2 → 6CO2 + 6H2O + 38АТФ.

Аэробное дыхание в 19 раз эффективнее и выгоднее по сравнению с анаэробным. Пластический обмен протекает по-разному в разных клетках. Клетки гетеротрофных организмов строят собственные молекулы из компонентов молекул, поступающих извне. Клетки автотрофов синтезируют органические вещества из неорганических в процессе фото– и хемосинтеза.

Ферменты – биологические катализаторы белковой природы, они ускоряют многие реакции. Действуют они последовательно и специфично, то есть фермент катализирует определенную реакцию. Активность зависит от pH, температуры, концентрации субстрата. В связь с субстратом вступают лишь несколько аминокислот, называемых активным центром. Фермент имеет конфигурацию, подходящую к субстрату как «ключ» к «замку». Субстрат видоизменяется, образуются продукты и фермент отсоединяется. Существуют соединения, могущие тормозить деятельность фементов. Это ионы тяжелых металлов (мышьяка, свинца), лекарственные препараты и др. Без ферментов клетка не смогла бы существовать, так как химические реакции протекали бы слишком медленно.

Вопрос 2. Идиоадаптация – направление эволюции органического мира. Значение идиоадаптаций

Идиоадаптацией называются частные приспособления, полезные в определенных (конкретных) условиях среды, приуроченные к определенному месту обитания и экологической нише. Морфологические и физиологические изменения у живых существ по типу идиоадаптаций не ведут к повышению общего уровня их организации, а имеют лишь частное значение и способствуют специализации живых существ. На основе идиоадаптаций первоначально однородная систематическая группа распадается на множество мелких высокоспециализированных групп, приспособленных к определенным условиям на отдельных участках ареала вида. Таким образом, идиоадаптация – это путь биологического прогресса, при котором формируются многообразие и специализация живых существ.

Приспособления, появляющиеся у организмов, полезны в борьбе за существование и возникают они в группе с большим количеством особей внутри определенной среды. Они очень разнообразны по форме и масштабу, поэтому в настоящее время существует огромное количество видов животных и растений. Идиоадаптации повышают численность популяций и внутривидовую дифференцировку на расы.

Примерами идиоадаптации могут служить многочисленные частные приспособления, обеспечивающие опыление цветков покрытосеменных растений конкретными видами насекомых; морфологические приспособления семян к распространению ветром, птицами, млекопитающими; различные виды

покровительственной окраски, мимикрии и маскировки у организмов разных сред обитания. С идиоадаптацией связано формирование специализированных конечностей у птиц и млекопитающих – от примитивной пятипалой конечности до крыла у птиц и летучих мышей и до кисти у человека. В процессе приспособления к разным экологическим нишам у членистоногих появилась сложная дифференциация ротового аппарата, а у млекопитающих – сложная дифференциация зубов (наличие резцов, клыков, больших и малых коренных зубов, особенно у отрядов травоядных и хищных животных).

Рептилии, исходно передвигавшиеся однотипно, в результате идиоадаптаций приобрели возможность лазать, бегать. Водные животные имеют обтекаемую форму тела (киты, пингвины, рыбы). Растения имеют различные приспособления к опылению.

Частными случаями идиоадаптации являются телогенез и гипергенез. При телогенезе приспособления вырабатываются приспособления к узким условиям среды и существования. Например миноги и миксины из-за полупаразитического образа жизни приобрели специализированные ротовые органы. Или у грызуна слепыша, который ведет подземный образ жизни, заросли глаза, редуцировался хвост. Телогенез ведет к снижению эволюционной пластичности и такая специализация при изменившихся условиях может привести к вымиранию группы.

Гипергенез приводит к увеличению органов или самих организмов. Это было характерно для ископаемых форм. Огромные папоротники, насекомые, рога у оленей, бивни у мамонтов и т. д. Обычно гипергенез дает снижение плодовитости, замедление реакций на внешние раздражители. Поэтому гипергенез не стал распространенным направлением эволюции.

При гипогенезе организм недоразвивается. Видимо в меняющихся условиях личиночная стадия является наиболее адаптивной и экономной. Пример: аксолотль (личинка тритона) становится половозрелым, не метаморфизируясь во взрослую стадию.

Вопрос 3. Решите задачу на независимое наследование при дигибридном скрещивании

Задача.

У плодовой мушки дрозофилы серая окраска тела и наличие щетинок – доминантные признаки, которые наследуются независимо.

Какое потомство следует ожидать от скрещивания желтой самки без щетинок с гетерозиготным по обоим признакам самцом?

Решение:

A – серое тело; а– желтое тело;

B – щетинки.; в– отсутствие щетинок

1. Желтая самка без щетинок является гомозиготной, рецессивной по обоим признакам особью, следовательно, ее генотип aabb.

2. Самец гетерозиготен по обоим признакам, следовательно, генотип дигетерозиготной особи AaBb.

Запись скрещивания:

Самка образует только один сорт гамет, как гомозиготная особь, а самец – 4 сорта гамет, так как при их образовании в анафазе мейоза имеет место случайное независимое расхождение хромосом и их перекомбинация.

Ошибка: источник перекрестной ссылки не найден

Ответ: следует ожидать 25 % потомства, подобного отцу, 25 % – подобного матери, и по 25 % особей, сочетающих признаки обоих родителей.

Билет № 8

Вопрос 1. Энергетический обмен в клетках растений и животных, его значение

Процессом, противоположным синтезу, является диссимиляция – совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки или катаболизмом.

Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекулах органических соединений.

Часть энергии, освобождаемой из питательных веществ, рассеивается в виде теплоты, а часть аккумулируется, т. е. накапливается в богатых энергией фосфатных связях АТФ. Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос веществ через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов.

Благодаря богатым энергией связям в молекулах АТФ клетка может накапливать большое количество энергии в очень небольшом пространстве и расходовать ее по мере надобности. Синтез АТФ осуществляется в митохондриях. Отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.

Этапы энергетического обмена. Энергетический обмен обычно делят на три этапа. Первый этап – подготовительный. На этом этапе молекулы ди– и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот – на нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап – бескислородный, или неполный. Он называется также анаэробным дыханием (гликолизом), или брожением. Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению. Например в мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы пировиноградной кислоты (С3Н4О3), которые затем восстанавливаются в молочную кислоту (С3Н6О3). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ. В суммарном виде это выглядит так:

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О.

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О.

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40 % энергии, а остальная рассеивается в виде теплоты.

Третий этап энергетического обмена – стадия аэробного дыхания, или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе кислорода к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов – Н2О и СО2. Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее в молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так:

3Н6О3 + 6О2 + 36Н3РО4 + 36АДФ → 6СО2 + 38Н2О + 36АТФ.

Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Вопрос 2. Движущие силы эволюции, их роль в образовании новых видов

В XIX в. Ч. Дарвин создает учение о происхождении и эволюции видов. Движущей силой эволюции Ч. Дарвин считал естественный отбор, наследственность и изменчивость.

Под наследственностью Дарвин понимал способность организмов сохранять в потомках свои видовые и индивидуальные особенности. Изменчивость – это свойство организмов приобретать новые признаки, т. е. это различия между особями в пределах вида.

Естественный отбор – это постоянно происходящий в пределах любого вида отбор наиболее приспособленных особей, который приводит к сохранению и накоплению изменений, полезных для вида в данных условиях, и к уничтожению вредных изменений.

Материалом для естественного отбора служит наследственная изменчивость. Избирательное сохранение лучших и избирательная гибель худших особей происходит через борьбу за существование.

Под термином «борьба за существование» понимают различные взаимоотношения, в которые вступают организмы между собой, а также все возможные взаимосвязи, которые возникают между организмами и условиями неживой природы.

Существуют следующие формы борьбы за существование:

1) внутривидовая борьба, или конкуренция, между особями одного и того же вида;

2) межвидовая борьба, которая возникает на разных уровнях (отношения «хищник – жертва», конкурентные отношения между разными видами растений в лесу и т. д.);

3) борьба организмов с неблагоприятными факторами неживой природы.

Исходные признаки и свойства в различных направлениях изменяет мутационный процесс. Частота возникновения отдельных мутаций очень низка, но в связи с большим числом генов общая частота возникающих мутаций у живых организмов относительно высока.

Один из важнейших эволюционных факторов – периодические изменения численности особей, популяционные волны; они являются поставщиками эволюционного материала, выводящие ряд генотипов случайно и ненаправленно на эволюционную арену.

Важный элементарный эволюционный фактор – изоляция, возникновение барьеров, нарушающих свободное скрещивание. Изоляция закрепляет возникшие случайно (в результате работы мутационного процесса и «волн жизни») и под влиянием отбора различия в наборах генотипов в разных частях популяции. Существует два основных типа изоляции: пространственная (при которой популяция разделяется на части барьерами, лежащими вне ее) и биологическая (при которой степень изоляции в пределах популяции основывается на возникновении соответствующих биологических различий).

Изоляция – один из важнейших факторов видообразования, так как препятствует скрещиванию и тем самым обмену наследственной информацией между обособленными популяциями. Пусковой механизм эволюции функционирует в результате совместного действия эволюционных факторов. У всех организмов постоянно идет мутационный процесс. Во всех популяциях происходят колебания численности особей. Явление изоляции входит в определение понятия «популяция», всегда присутствует в природе и естественный отбор. Влияние всех этих факторов может меняться независимо друг от друга, но они приводят к элементарным эволюционным изменениям. Со временем некоторые из них суммируются и ведут к возникновению новых приспособлений, что лежит в начале видообразования.

Вопрос 3. Рассмотреть обитателей аквариума и составить пищевую цепь. Объяснить, почему в аквариуме пищевые цепи короткие

Аквариум является упрощенной моделью экологической системы, созданной руками человека.

В качестве обязательного компонента данной экосистемы выступают зеленые растения (элодея канадская, валлиснерия, роголистник), являющиеся основными производителями (продуцентами) биомассы в аквариуме.

В роли потребителей (консументов) произведенных растениями в результате фотосинтеза органических веществ чаще всего выступают рыбы (гуппи, меченосцы, вуалехвосты) и моллюски (катушки, ампуллярии, прудовики), реже земноводные (шпорцевые лягушки, тритоны) и пресмыкающиеся (водяные черепахи).

Роль разрушителей (редуцентов) биомассы в аквариуме выполняют разнообразные микроорганизмы и простейшие, составляющие своеобразную микросреду, от которой во многом зависит устойчивость биоравновесия данной модели экосистемы.

Жизнь всех обитателей полностью зависит от условий, создаваемых и поддерживаемых человеком в аквариуме: освещенности, температуры воды, аэрации, состава грунта и других факторов.

Пример пищевой цепи:

одноклеточные зеленые водоросли → дафнии → гуппи → цихлозома.

Пищевые цепи в аквариуме короткие, так как ограниченность жизненного пространства и условий обитания не позволяют одновременно содержать большое количество видов растений и особенно животных, например, хищных рыб и их потенциальных жертв, конкурирующих видов, что может привести к нарушению биологического равновесия.

Билет № 9

Вопрос 1. Пластический обмен. Биосинтез белка. Матричный характер биосинтеза

Пластический обмен (ассимиляция, или конструктивный обмен) – совокупность всех процессов синтеза сложных органических веществ. Эти вещества идут на построение органелл клетки, на создание новых клеток при делении. Пластический обмен всегда сопровождается поглощением энергии.

Рассмотрим этот процесс на примере образования важнейших органических соединений клетки – белков. Структура белка определяется участком молекулы ДНК, называемым геном. Каждые три последовательности нуклеотидов кодируют одну аминокислоту. Молекулы ДНК не являются непосредственно матрицами в самом процессе синтеза белка. Сначала происходит перенос генетической информации о нуклеотидном строении ДНК на иРНК (процесс транскрипции). Строится молекула иРНК на одной из цепочек молекулы ДНК-матрицы во время ее раздвоения при участии специального фермента РНК-полимеразы. Спаривание нуклеотидов идет по принципу комплементарности: последовательность нуклеотидов в молекуле определяется их последовательностью в цепочке ДНК. Как только заканчивается построение на ДНК-матрице цепи иРНК, она сразу же переходит в цитоплазму и прикрепляется там к одной из рибосом. Вслед за этим начинается синтез белка. Процесс синтеза полипептидной цепи на матрице иРНК называется трансляцией. Происходит этот процесс в рибосомах с участием фермента пептидполимеразы. Рибосомы построены из белка и РНК. Эта РНК называется рибосомной (рРНК). Прикрепившись на конце нити иРНК, рибосома начинает синтез полипептидной цепи. Передвигаясь в одном определенном направлении, она считывает по три нуклеотида и добавляет к растущей полипертидной цепи по одной аминокислоте.

Перенос аминокислот к рибосомам выполняет транспортная РНК (тРНК). Молекула тРНК по сравнению с молекулой и-РНК небольшая, она содержит всего 70–80 нуклеотидов. Ее полинуклеотидная цепочка примерно поцентру перегибается, и две половины спирально закручиваются между собой. На одном конце молекулы тРНК должны быть основания, комплементарные соответствующему участку (кодону) в цепи иРНК, и на другом конце – способные «узнавать» определенную аминокислоту. Конец, к которому присоединяется аминокислота, у всех тРНК имеет одинаковые нуклеотиды – ЦЦА. Для каждой аминокислоты существует своя особая тРНК. Достигнув другого конца цепочки иРНК, рибосома отделяется, и в раствор выходит новая синтезированная молекула белка. Молекулярная скорость трансляции и транскрипции огромна – около 1000 триплетов иРНК в одну минуту на одну рибосому, а всего в минуту, например, клетка Е. coli собирает около 15*106 аминокислот в белки.

Затем линейная молекула полипентидной цепи приобретает объектную структуру. Под влиянием возникающих водородных связей полипептидная цепочка скручивается в спираль, и белковая молекула принимает биологически активную конфигурацию.

Ведущая роль в биосинтезе белка принадлежит ДНК. В зависимости от расположения кодирующих триплетов вдоль ее цепи на ней синтезируется молекула информационной РНК, которая реализует эту информацию, располагая в соответствии со строением аминокислоты в синтезирующейся молекуле белка.

Таким образом, наследственная информация (все признаки и свойства организма) сохраняется в молекулярной структуре ДНК, и реализуется в процессе биосинтеза белка.

Вопрос 2. Наследственная изменчивость, ее виды. Виды мутаций, их причины. Роль мутаций в эволюции органического мира и селекции

Живые организмы развиваются в тесной взаимосвязи с окружающей средой, которая вызывает в них ответную реакцию, проявляющуюся в изменении их внешних и внутренних признаков. Изменчивость организмов выражается в двух видах: генотипической (наследственной) и модификационной.

Генотипическая изменчивость с изменением генотипа организма делится на мутационную и комбинативную.

Комбинативная изменчивость характеризуется появлением новообразований в результате сочетания и взаимодействия генов родительских форм. Мутационная изменчивость вызывает структурные изменения генов и хромосом, ведущие к появлению новых наследственных признаков и свойств организма. Мутационная изменчивость является материалом для естественного и искусственного отборов. Скачкообразное изменение наследственности какого-либо признака получило в генетике название мутации. Мутации происходят в хромосомах под влиянием внешних и внутренних факторов.

Мутации обладают следующими свойствами:

1) возникают внезапно;

2) наследуются;

3) ненаправленны – мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков;

4) одни и те же мутации могут возникать повторно;

5) по своему проявлению могут быть как полезными, так и вредными;

По характеру изменений генотипа различают несколько типов мутаций: генные, хромосомные, геномные. Генные мутации связаны с изменением структуры ДНК в пределах одного гена, но без нарушения структуры хромосомы. В результате мутации меняется очередность нуклеотидов в ДНК дочерних клеток по сравнению с материнской. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов, так как приводит к синтезу другого белка.

Кроме генных мутаций могут происходить и хромосомные мутации. Они связаны с изменением количества или структуры хромосом.

Геномные мутации возникают вследствие кратного изменения наборов или геномов хромосом.

Наибольшее практическое значение имеет полиплоидия – кратное увеличение всего набора хромосом. Полиплоидия распространена главным образом среди растений. Полиплоидные растения могут выгодно отличаться от диплоидных. Как правило, это более мощные растения.

Мутации возникают под влиянием различных воздействий, называемых мутагенными факторами. Применяемые для искусственного получения мутаций мутагены делятся на физические и химические. К физическим мутагенам относятся: радиация, высокая и низкая температуры, механические воздействия, ультразвук. В качестве химических мутагенов используют различные органические и неорганические соединения.

К настоящему времени в мире создано более 300 мутантных сортов сельскохозяйственных растений. Большую ценность представляют мутации, обладающие устойчивостью к заболеваниям. Создание иммунных сортов – одна из главных задач селекции, и в ее успешном решении большую роль должны сыграть методы мутагенеза.

Некоторые из них имеют существенные преимущества по сравнению с исходными сортами. Районированы мутантные сорта яровой пшеницы «Новосибирская 67», ячменя «Минский», сои «Универсал». На основе использования радиационного и химического мутагенеза в нашей стране и ряде других стран создано крупное современное промышленное производство продуцентов антибиотиков, аминокислот и витаминов.

Вопрос 3. Рассмотреть обитателей аквариума и составить схему круговорота углерода в нем. Объяснить, почему необходимо систематически подкармливать рыб

В круговороте углерода принимают участие все обитатели аквариума: продуценты – зеленые растения, консументы – животные различных систематических групп (рыбы, моллюски, земноводные, пресмыкающиеся) и редуценты – микроорганизмы и простейшие.

Углекислый газ поглощается растениями-продуцентами и в процессе фотосинтеза преобразуется в углеводы. Органические вещества растений с пищей используют животные-консументы. Одновременно с этим все живые организмы дышат, выделяя углекислый газ, который поступает в окружающую среду. Мертвые растительные и животные остатки и экскременты животных разлагаются (минерализуются) микроорганизмами-рецудентами. Конечный продукт минерализации – углекислый газ – выделяется из аквариума в окружающую среду. Наибольшая часть углерода в аквариуме содержится в виде карбоната кальция, так как водопроводная вода, заливаемая в аквариум, содержит ионы кальция, придающие ей жесткость.

Не все виды рыб и других животных в аквариуме используют непосредственно органические вещества, произведенные продуцентами в результате фотосинтеза, поэтому для поддержания биологического равновесия в экосистеме необходимо систематически подкармливать рыб.

Билет № 10

Вопрос 1. Особенности пластического обмена у растений. Фотосинтез. Строение хлоропластов и их роль в этом процессе

Фотосинтез представляет собой процесс преобразования световой энергии в энергию химических связей органических веществ и сопровождающийся выделением кислорода.

По всей видимости, фотосинтез впервые возник у прокариот, что привело к очень крупным изменениям в биосфере Земли. В настоящее время фотосинтез осуществляют эукариоты – высшие и низшие растения, а также прокариоты – цианобактери, зеленые и пурпурные бактерии.

У прокариот фотосинтез протекает на складках плазматической мембраны. У эукариотических организмов процессы фотосинтеза протекают в специализированных органеллах – хлоропластах, количество которых особенно велико в клетках ассимиляционной ткани, расположенной главным образом в листьях.

Хлоропласты двухмембранны. Внутренняя мембрана хлоропластов образует ламеллы – плоские длинные выросты, и тилакоиды – уплощенные мешочки, сложенные в стопки, называемые гранами. Ламеллы связывают между собой граны. В мембранах тилакоидов располагается пигмент хлорофилл, участвующий в световой фазе фотосинтеза, и ферменты. Пространство между тилакоидами и ламеллами заполнено стромой, в которой располагаются ДНК, рибосомы и ферменты синтеза углеводов. В хлоропластах идет процесс поглощения и преобразования световой энергии в энергию химических связей, т. е. идет процесс фотосинтеза. Фотосинтез состоит из двух фаз: световой и темновой. Световая реакция идет на мембранах, а темновая – в строме.

Первая состоит в получении водорода при фотолизе (при расщеплении воды под действием энергии, которую дает свет). Под действием кванта света хлорофилл теряет электрон, который передается по цепи переносчиков на обращенную к матриксу поверхность мембраны. При этом внутри тилакоидов идет фотолиз.

Ионы гидроксила отдают свои электроны (они идут на восстановление хлорофилла), а затем объединяются с образованием воды и кислорода. Протоны водорода накапливаются в тилакоидах. Создается разность потенциалов на мембране. По достижении критического уровня протоны начинают проталкиваться через каналы АТФ-синтетазы; энергия этого процесса используется для синтеза АТФ. Протоны водорода с наружной стороны мембраны соединяются с электронами и образуют атомы водорода, которые связываются с НАДФ+ (никотинамидадениндинуклеотидфосфатом). Кислород, образующийся при фотолизе диффундирует в атмосферу. Процессам темновой фазы свет не нужен, протекают они в матриксе хлоропласта и осуществляются за счет энергии АТФ и НАДФ*Н2. Акцептором CO2 служит пятиуглеродный сахар – рибулозодифосфат. Результатом присоединения CO2 является молекула фосфоглицериновой кислоты (содержит три атома углерода). Этот продукт вступает на разные пути метаболизма и образует различные конечные продукты. Это моносахариды, превращающиеся затем в крахмал и запасающиеся растением; глицерол и жирные кислоты; аминокислоты.

Итоговое уравнение фотосинтеза:

Фотосинтез – единственный процесс, в результате которого на нашей планете энергия солнечного луча преобразуется в химическую энергию углеводов. Благодаря фотосинтезу атмосфера обогащается свободным кислородом, который необходим для дыхания, и очищается от избыточных количеств CO. Таким образом, фотосинтез представляет собой не только первичный синтез органических веществ, но и процесс, вследствие которого на Земле создаются условия, необходимые для существования всех других организмов.

Вопрос 2. Эволюция человека. Доказательства происхождения человека от млекопитающихживотных

В начале кайнозоя, более 40 млн лет назад, появились первые приматы. От них обособилось несколько ветвей эволюции, приведших к современным человекообразным обезьянам, другим приматам и человеку. Современные человекообразные обезьяны происходят от общих с человеком предков – дриопитеков. Они обитали в тропических лесах. Некоторые их популяции и положили начало эволюции человека, его предшественникам – австралопитекам.

Австралопитеки (от лат. «аустралис» – южный и греч. «питек» – обезьяна) – вымершая группа гоминид (прямоходящих приматов). Их скелетные остатки найдены в Южной Африке. Они имели много черт, сближающих их с человеком (форму зубов, строение черепной коробки, форму таза). Если судить по отпечаткам ног, австралопитеки были первыми прямоходящими существами, однако у них еще не выработалась привычка держаться все время на ногах. Австралопитеки охотились, изготавливали орудия труда, жили в поросшей деревьями саванне или селились по берегам озер или рек. Более поздние из австралопитеков явились, видимо, непосредственными предками людей. Они получили название Homo habilis («человек умелый»). По своему внешнему виду и строению «человек умелый» не отличался от человекообразных обезьян, но уже умел изготавливать примитивные режущие и рубящие орудия из гальки. Следующим этапом эволюции было появление древнейших людей (вид «человек прямоходящий» – Homo erectus), к которым относятся питекантроп, синантроп и гейдельбергский человек. У Homo erectus был более развитый череп. Его объем колебался от 900 до 1200 см. С появлением рубила и топорика человек прямоходящий получил более совершенные орудия труда. Homo erectus первым стал пользоваться огнем. По всей вероятности, он прямой предок человека разумного – Homo sapiens. Вид Homo sapiens («человек разумный») образуют неандертальцы, кроманьонцы и современные люди; этот вид сформировался не позднее 100-40 тыс. лет тому назад.

В эволюции начинают играть роль социальные факторы: трудовая деятельность в группах, которыми они жили; совместная борьба за жизнь и развитие интеллекта. Появляются древние люди. К ним относятся неандертальцы. Неандертальцы жили в ледниковую эпоху, 200-35 тыс. лет назад, в пещерах. Орудия труда неандертальцев имеют некоторую специализацию: ножи, скребла, ударные орудия. Несмотря на покатый лоб и недостаточно выпрямленную фигуру, две черты резко подчеркивали их принадлежность к людям: объем их мозга достиг 1400 см, а форма нижней челюсти свидетельствовала о членораздельной речи. Неандертальцы жили группами по 50-100 человек. Возникновение людей современного физического типа произошло относительно недавно, около 50 тыс. лет назад. В гроте Кроманьон (Франция) было обнаружено сразу несколько скелетов ископаемых людей современного типа, которых и назвали кроманьонцами. Они обладали всем комплексом физических особенностей, который характерен для ныне живущих людей: увеличившийся объем мозга (1600 см); хорошо развитая членораздельная речь, на что указывал развитый подбородочный выступ; строительство жилищ; первые зачатки искусства.

Общность плана строения, сходство зародышевого развития, рудименты, атавизмы – бесспорные доказательства животного происхождения человека и свидетельство того, что человек, как и животные, – результат длительного исторического развития органического мира.

Вопрос 3. Рассмотреть обитателей аквариума и составить схему круговорота кислорода в нем. Объяснить, почему необходимо переодически накачивать в аквариум воздух

Все живые организмы дышат, поглощая кислород и выделяя углекислый газ. В процессе фотосинтеза продуценты (водные растения, одноклеточные и многоклеточные зеленые водоросли) выделяют в окружающую среду кислород, являющийся побочным продуктом фотосинтеза. Образовавшийся кислород поглощается всеми обитателями аквариума, включая и сами растения. Кислород расходуется на биологическое окисление органических веществ клетки, в результате чего образуется энергия, необходимая для жизнедеятельности организмов.

Аквариум является лишь моделью экосистемы, в которой нет равновесия между производством и потреблением кислорода, поэтому необходимо периодически накачивать в аквариум воздух с помощью компрессора.

Билет № 11

Вопрос 1. Деление клеток – основа размножения и роста организмов. Роль ядра и хромосом в деление клеток. Митоз и его значение

Увеличение числа клеток происходит в результате их деления. Различают три способа деления клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз.

Жизнь клетки от одного деления до другого, включая само деление, составляет митотический, или клеточный, цикл. После окончания деления клетка вступает в интерфазу, которая длится до начала следующего деления и включает три периода.

Пресинтетический период. В этом периоде через синтез белков реализуется наследственная информация. Количество и состав белков определяются хромосомной ДНК. Белки-ферменты направляют все процессы в клетке.

Синтетический период. В ядре идет синтез ДНК. Число молекул ДНК в каждой хромосоме удваивается, при этом число хромосом в ядре не изменяется. Удваиваются центриоли клеточного центра.

Постсинтетический период. Продолжается синтез белков и накопление энергии. Заканчивается подготовка к делению, которым и завершается интерфаза митотического цикла.

В подавляющем большинстве клеток деление в дальнейшем протекает по типу митоза. За исключением некоторых деталей, он однотипен как в животных, так и в растительных клетках.

Митоз (от греч. «mitos» – нить), или непрямое деление клетки, представляет собой непрерывный процесс, в результате которого происходит точное равномерное распределение наследственного материала, содержащегося в хромосомах, между двумя вновь возникающими клетками. В этом состоит биологическое значение митоза. Митоз состоит из следующих фаз: профазы, метафазы, анафазы и телофазы.

Профаза– самая длительная фаза митоза. Хромосомы спирализуются и утолщаются.

К концу профазы хорошо заметно, что каждая хромосома состоит из двух тесно соприкасающихся друг с другом хроматид. Обе хроматиды соединяются одним общим участком – центромерой, начинают постепенно передвигаться к клеточному экватору. В середине или конце профазы исчезают ядерная оболочка и ядрышки.

Во время метафазы хромосомы становятся двуплечими. Своей центромерой они прикрепляются к нити веретена. Все хромосомы располагаются в экваториальной плоскости ядра, свободные их концы направлены к центру ядра. Наступает период анафазы. Вслед за делением центромер начинается расхождение хроматид, ставших теперь отдельными дочерними или сестринскими хромосомами, к противоположным полюсам. Так как из каждой хромосомы возникли две совершенно одинаковые хроматиды, то в обеих образовавшихся дочерних клетках будет одинаковое число хромосом, равное диплоидному числу исходной материнской клетки. Анафаза заканчивается сближением хромосом у полюсов. В конце анафазы начинается раскручивание (деспирализация) хромонемных нитей, и хромосомы, отошедшие к полюсам, в это время менее четко видимы. Телофаза – последняя фаза митоза. В этой фазе продолжается деспирализация хромосомных нитей, и хромосомы постепенно становятся более тонкими и длинными, приближаясь к тому состоянию, в котором они были в профазе. Образуется ядерная оболочка, формируется ядрышко. В это время завершается деление цитоплазмы и возникает клеточная оболочка. Обе новые дочерние клетки вступают в период интерфазы. Весь процесс митоза протекает обычно в течение 1–2 ч. Продолжительность его зависит от вида и возраста клеток, а также от внешних условий, в которых они находятся (температурный и световой режим, влажность воздуха и т. д.).

Вопрос 2. Движущие силы эволюции человека. Основные стадии эволюции человека. Биологические и социальные факторы эволюции

Историческое развитие человека происходило под влиянием тех же факторов биологической эволюции, что и остальных видов живой природы. Однако для антропогенеза недостаточно действия одних биологических факторов – он сопровождался еще и социальными факторами. К биологическим факторам относятся: мутации, популяционные волны, дрейф генов, изоляция, борьба за существование, естественный отбор. Социальными факторами являются: трудовая деятельность, общественный образ жизни, речь, мышление, культура. На ранних этапах эволюции человека преобладали биологические движущие силы. Решающее значение имел отбор на лучшую приспособляемость к меняющимся условиям среды, отбор особей, способных к изготовлению примитивных орудий труда, позволяющих им добывать пищу и защищаться от врагов.

Основным, имеющим палеонтологическое подтверждение, признаком перехода от дочеловеческой фазы к человеческой фазе развития считают формирование способности к планомерной трудовой деятельности, заключающейся в переходе от случайного использования естественных предметов как орудий труда к изготовлению специализированных орудий, предназначенных для разных целей. Существенными преадаптациями были прямохождение, хватательная рука и хорошо развитая высшая нервная деятельность. К ним добавились высокоразвитая забота о потомстве и сохранение старшего поколения, любопытство к окружающей среде, коллективная деятельность, социальные структуры и все более усложняющаяся система общения – язык.

Рассмотрим основные этапы эволюции человека.

Древнейшие люди (архантропы). Перспективным направлением эволюции было возникновение и дальнейшее развитие способности к изготовлению орудий труда, освоение огня, что явилось дополнительным источником тепловой энергии, способствовало защите от диких животных.

Древние люди (палеоантропы). На данном этапе антропогенеза наряду с биологическими факторами эволюции начинают действовать и социальные факторы: объединение усилий особей в процессе труда, охоты и защиты, передача накопленного опыта и традиций следующим поколениям, развитие интеллекта и др.

Современные люди (неоантропы). На этом этапе эволюция вышла из-под ведущего контроля биологических факторов, и в развитии «Человека разумного» социальные отношения играют все возрастающую роль.

На первых этапах эволюции решающее значение имел отбор на лучшую приспособляемость к меняющимся условиям окружающей среды. Однако в дальнейшем развитие трудовой деятельности выдвинуло проблему передачи индивидуального опыта в пределах коллектива. Реализация генетической информации в онтогенезе в условиях определенной среды формирует биологическую конституцию человека – создает материальные предпосылки для развития интеллекта, мышления, культуры. Социальная информация передается с помощью слова при обучении и определяет духовный облик индивидуума.

В современном обществе действие биологических факторов эволюции претерпело значительные изменения – естественный отбор выполняет лишь стабилизирующую функцию. В настоящее время численность человечества не подвержена значительным колебаниям, и, в связи с этим, действие популяционных волн может сказываться только в отдельных малонаселенных регионах. Сохранил свое значение в человеческом обществе мутационный процесс, ведущий к снижению жизнеспособности особей. Эти обстоятельства следует учитывать в разных областях человеческой деятельности, прежде всего в охране окружающей среды от загрязнения.

Вопрос 3. Сравнить колосья двух сортов пшеницы или ржи (или два комнатных растения одного вида) и выявить у них различия по фенотипу

Сравнивая между собой колосья двух сортов пшеницы, следует обратить внимание на размеры колосьев, их окраску, наличие или отсутствие остей (выростов колосковых чешуй), подсчитать число простых колосков в сложном колосе (их может быть от 14 до 20). Отличия колосьев двух сортов пшеницы по данным признакам будут являться различиями по фенотипу.

Билет № 12

Вопрос 1. Мейоз, его значение, отличие от митоза. Набор хромосом в гаметах и соматических клетках

Все организмы, размножающиеся половым путем, образуют половые клетки, или гаметы. Этому предшествует особый вид деления клеточного ядра – мейоз (от греч. «meiosis» – уменьшение, редукция). Мейотическое деление впервые было открыто в 1884 г. Оно существенно отличается от митоза.

До начала мейоза в интерфазе удваивается количество ДНК, и каждая хромосома становится двухроматидной.

Мейоз состоит из двух быстро следующих друг за другом делений клетки. Одно из них называется редукционным, или первым мейотическим делением, при котором число хромосом уменьшается в 2 раза; второе – эквационным, или вторым мейотическим делением, протекающим, так же, как и митоз. Каждое из этих делений, как и обычный митоз, состоит из четырех фаз: профазы, метафазы, анафазы и телофазы.

Наиболее сложно протекает профаза первого деления. Она делится на пять последовательных стадий: лептонему, зигонему, пахинему, диплонему и диакинез.

В лептонеме размер ядра увеличивается, хромосомы имеют вид длинных тонких деспирализованных нитей, каждая из которых состоит из двух хроматид. В стадии зигонемы наблюдается так называемая конъюгация хромосом, состоящая в том, что парные (гомологичные) хромосомы сближаются и по своей длине всеми участками соприкасаются друг с другом. В стадии пахинемы конъюгирующие хромосомы образуют сдвоенные пары – биваленты. Каждый бивалент состоит из четырех хроматид. Во время диплонемы хроматиды в спаренных гомологичных хромосомах начинают расходиться. Они состоят из четырех хроматид и называются поэтому тетрадамой. В это время хорошо наблюдается перекрест парных хромосом, во время которого происходит обмен их гомологичными участками (явление кроссинговера). В заключительной стадии профазы первого деления – диакинезе хромосомы благодаря спирализации утолщаются и укорачиваются, разрушается оболочка ядра и наступает вторая стадия первого деления – метафаза, когда биваленты располагаются в плоскости экватора веретена деления. В анафазе биваленты расходятся. К каждому полюсу отходит одна из хромосом каждой пары, следовательно, в каждую из вновь образовавшихся дочерних клеток попадает по одной хромосоме, т. е. происходит редукция (уменьшение) числа хромосом.

Распределение хромосом по дочерним клеткам при редукционном делении случайное: из каждой пары гомологичных хромосом любая может попасть либо в одну, либо в другую клетку.

Сразу же после первого деления и короткой телофазы наступает интерфаза (промежуток времени между концом первого и началом второго деления), которая длится недолго. В нее хромосомы входят уже удвоенными. Удвоение (редупликация) произошло, как указывалось выше, еще перед первым делением. Вслед за этим начинается второе деление мейоза. Оно проходит по типу митоза, повторяя все его фазы.

В результате из двух гаплоидных клеток возникают четыре тоже гаплоидные клетки.

Генетическое значение мейотического деления сводится к трем основным моментам.

1. Мейоз является механизмом, поддерживающим видовое постоянство числа хромосом.

2. Мейоз обеспечивает генетическую разнородность гамет благодаря случайной перекомбинации материнских и отцовских хромосом.

3. Мейоз вызывает образование хромосом нового генетического состава благодаря обмену участками гомологичных (парных) материнских и отцовских хромосом (явлению кроссинговера).

Вопрос 2. Популяция – структурная единица вида. Причины колебания численности популяций

Все виды организмов состоят из популяций. Вид – это основная систематическая единица, занимающая определенный ареал и представляющая совокупность родственных по происхождению особей, отличных от других видов и не скрещивающихся с ними. Популяцию можно определить как совокупность особей одного вида, заселяющих определенную территорию, свободно скрещивающихся друг с другом и, в той или иной степени, изолированных от других совокупностей особей данного вида. Популяция – это главный структурный элемент вида, форма его существования в данных условиях. В популяциях идут микроэволюционные процессы, завершающиеся видообразованием, изучение которых имеет для теории селекции и эволюционного учения первостепенное значение. Любую популяцию можно охарактеризовать половой, возрастной, пространственной, генетической и экологической структурами.

Экологическая структура популяции характеризует популяцию как группу особей, находящихся в специфических связях с факторами среды. Экологическая структура популяций должна определяться различными по экологическим свойствам (возрастно-половым, пространственным, генетическим и др.) группами особей. Например особи разных возрастно-половых групп по-разному ведут себя при избегании хищников и при многих других взаимодействиях с факторами среды. Половая структура популяции – это численное соотношение самцов и самок в разных половых группах. Каждая особь входит не только в пространственную группировку, но и всегда оказывается членом временной группировки – поколения, приплода, возрастной группы. Поэтому неизбежно, что каждая популяция должна обладать какой-то возрастной структурой.

Возрастная структура популяции отражает такие важные процессы, как интенсивность воспроизведения, уровень смертности, скорость смены поколений. Возрастной состав любой популяции зависит от ряда факторов: времени достижения половой зрелости, общей продолжительности жизни, длительности периода размножения, продолжительности поколения, частоты приплодов. Генетическая структура популяции обычно характеризуется частотами аллелей (сочетанием количественных соотношений аллелей одного локуса) и частотами генотипов (количественными соотношениями генотипов, контролируемыми аллелями одного гена).

Генетическая уникальность особей определяет генетическую гетерогенность и уникальность популяций. Генетическая гетерогенность популяций первично возникает за счет непрерывно текущего мутационного процесса, поддерживается и усиливается за счет процессов комбинации уже существующего в каждой природной популяции генетического материала. Это происходит под действием различных эволюционных сил.

Генетическое разнообразие, плотность популяции, а так же действие природных факторов оказывают влияние на численность популяции.

Важнейший фактор, регулирующий численность, – наличие кормовых ресурсов.

Популяция, хотя и обладает потенциальной возможностью неограниченного увеличения численности, обычно насчитывает столько особей, сколько их может прокормиться на занимаемой территории. Кроме того, динамика численности будет зависеть от возрастной и половой структур популяции.

Важной характеристикой популяции является панмиксия – свободное и равновероятное скрещивание между особями, входящими в данную популяцию. При этом резко возрастает генетическая разнородность организмов, и повышаются их адаптивные возможности. Генетическое разнообразие обеспечивает устойчивость данной группы особей в меняющихся условиях окружающей среды.

Вопрос 3. Составить вариационный ряд изменчивости семян фасоли или листьев какого-либо растения одного возраста. Выявить закономерности изменчивости выбранного признака

Рассмотрите несколько семян или листьев одного возраста у растений одного вида, сравните их размеры. Данные запишите.

Полученные данные занесите в таблицу, в которой по горизонтали сверху расположите ряд чисел, отображающих последовательное изменение признака (размер семян или длина листьевой пластинки), начиная с наименьшего значения, заканчивая наибольшим. Под первым рядом чисел расположите второй, в котором отобразите частоту встречаимости признака, например:

Определите, какие признаки встречаются часто, какие – редко.

Отобразите на графике зависимость между изменением признака и частотой его встречаемости, откладывая на горизонтальной оси размер семян или длину листовой пластинки, а на вертикальной оси – количество растений, имеющих такое выражение признака. Точки соедините. Полученная кривая является графическим отображением вариационного ряда.

Таким образом, развитие фенотипа организма определяется взаимодействием его наследственной основы (генотипа) с условиями внешней среды. При одном и том же генотипе, но при разных условиях существования признаки организма могут существенно различаться, чем однообразнее условия развития, тем меньше выражена модификационная изменчивость и, наоборот, чем разнообразнее условия среды, тем шире модификационная изменчивость.

Билет № 13

Вопрос 1. Половое размножение организмов. Оплодотворение, его значение

Половое размножение очень широко распространено в природе как среди растений, так и среди животных. В этом случае двумя организмами – материнским и отцовским – вырабатываются специализированные половые клетки. Объединяясь затем в одну клетку, половые клетки дают начало новому организму. Женские половые клетки называются яйцеклетками, мужские – спермиями или сперматозоидами.

Половые клетки вырабатываются в специальных органах полового размножения. Яйцеклетка состоит из ядра, большого количества цитоплазмы с запасом питательных веществ и оболочки, которая иногда имеет очень сложное строение. Яйцеклетка лишена способности к активному движению. Сперматозоид также имеет ядро. Цитоплазмы в нем очень мало, оболочка тонкая, но плотная. Сперматозоиды животных снабжены жгутиками, позволяющими им активно передвигаться.

Начало половым клеткам животных дают дифференцированные клетки, которые претерпевают при этом ряд последовательных изменений. Формирование женских половых клеток называется овогенезом, мужских – сперматогенезом.

Цитологически оба процесса однотипны и приводят к тому, что в ядрах половых клеток остается вдвое меньше хромосом, чем в исходных клетках данного организма. Происходит это следующим образом. Начинается процесс с усиленного размножения исходных клеток путем обычного митоза (зона размножения). Число клеток резко увеличивается. Затем они перестают делиться, но усиленно растут (зона роста). В это время в их цитоплазме накапливаются запасные питательные вещества. Наконец, наступает созревание половых клеток (зона созревания), при котором число хромосом в половых клетках уменьшается. Во время созревания каждая из клеток делится дважды, образуя четыре клетки. При сперматогенезе эти четыре клетки превращаются в четыре сперматозоида. При овогенезе только одна из клеток становится яйцеклеткой, а три другие превращаются в так называемые направительные тельца и в дальнейшем погибают.

Деление в зоне созревания, приводящее к образованию или четырех сперматозоидов, или одной яйцеклетки и трех направительных телец, называется мейозом. В результате из одной диплоидной клетки возникают четыре гаплоидные клетки. На этом созревание половых клеток заканчивается. Зрелые клетки готовы к оплодотворению.

Оплодотворением называется процесс слияния яйцеклетки и сперматозоида в одну клетку – зиготу. При этом сперматозоид проникает внутрь яйцеклетки. Их цитоплазма смешивается, а ядра сливаются в одно ядро зиготы. Тем самым в зиготе восстанавливается диплоидный набор хромосом. В этом наборе одна гомологичная хромосома каждой пары привнесена в зиготу яйцеклеткой, а другая – сперматозоидом. Поэтому дочерний организм, который разовьется из такой зиготы, в одинаковой мере снабжен наследственной информацией как от материнского, так и от отцовского организма. С этим обстоятельством и связано то огромное значение, которое имеет половое размножение как среди растений, так и среди животных. Путем полового размножения могут возникать организмы, соединяющие в себе полезные признаки отца и матери. Такие организмы более жизнеспособны.

Вопрос 2. Наследственность, ее материальные основы. Гибридологический метод изучения наследственности

От одного поколения другому всегда передаются общие, характерные для данного вида признаки и свойства. Процесс воспроизведения организмами в ряду последовательных поколений сходных признаков и свойств называется наследственностью. Однако абсолютного сходства между ними никогда не бывает. Наследственность – это не простое воспроизведение, копирование каких-либо неизменных свойств и признаков организмов. Она всегда сопровождается их изменчивостью. При размножении организмов наряду с сохранением одних признаков изменяются другие. Не только воспроизводится подобное, но и возникает новое.

В явлениях наследственности ведущая роль принадлежит ДНК. Почти вся ДНК находится в хромосомах – структурах клеточного ядра, являющихся материальными носителями наследственности организмов. В различных организмах содержится разное количество ДНК. Но у одного и того же организма в различных клетках (их ядрах) ее количество одинаково, хотя сами клетки значительно отличаются друг от друга по химическому составу. В соматических клетках с диплоидным набором хромосом две гомологичные хромосомы и, соответственно, два гена, расположенные в одних и тех же локусах, определяют развитие одного какого-то признака. Такие гены называются аллельными

Основными методами генетических исследований являются: 1) гибридологический анализ; 2) цитогенетический метод; 3) онтогенетический метод; 4) близнецовый метод; 5) изогенный анализ. Гибридологический анализ – это изучение наследования признаков у гибридного потомства, полученного при внутривидовом скрещивании. Гибридологический анализ был разработан Г. Менделем в 1865 году. Удачный выбор растительных объектов для гибридизации, тщательное планирование экспериментов, точная регистрация полученных данных, их математическая обработка, а также гениальность ученого и научное везение позволили Менделю сформулировать ряд гипотез, правил и законов, полностью подтвержденных последующими цитогенетическими исследованиями.

Гибридологический анализ предполагает скрещивание особей, различающихся по одной, двум или нескольким парам альтернативных признаков. Такие скрещивания соответственно называются моногибридными, дигибридными, полигибридными.

Наиболее простой тип скрещивания при гибридологическом анализе – моногибридное скрещивание, когда исследуется наследование лишь одной пары альтернативных (взаимоисключающих) признаков, которыми обладают родительские формы. Примером моногибридного скрещивания может служить скрещивание между желтозерным и зеленозерным сортами гороха, проведенные Менделем.

Гибридологический анализ требует соблюдения следующих условий.

1. Родительские формы должны принадлежать к одному виду и размножаться половым способом.

2. Родительские формы должны быть гомозиготными по изучаемым генам (признакам).

3. Родительские формы должны различаться по изучаемым генам (признакам).

4. Родительские формы скрещиваются один раз, затем гибриды первого поколения (F1) самоопыляют или скрещивают между собой для получения гибридов второго поколения (F2).

5. В первом и втором поколениях гибридов проводят строгий количественный учет особей, имеющих изучаемый признак.

Гибридологический анализ позволяет:

· установить количество генов, контролирующих изучаемые признаки;

· определить наличие и тип неаллельного взаимодействия генов;

· установить сцепление генов;

· определить расстояние между сцепленными генами;

· установить сцепленное с полом или ограниченное полом наследование;

· определить генотипы изучаемых родительских форм.

Вопрос 3. Рассмотреть готовый микропрепарат растительной клетки, назвать ее основные части и их функции

Основными частями растительной клетки являются клеточная оболочка, цитоплазма с органоидами и ядро. Рассмотрим их некоторые особенности строения и функционирования.

Клеточная оболочка растительной клетки толстая. Она состоит из двух слоев: наружного, целлюлозной клеточной стенки, и внутреннего, белково-жировой цитоплазматической мембраны. Клеточная оболочка выполняет защитную функцию, обеспечивает контакт между соседними клетками, служит опорой для жидкого содержимого, принимает участие в транспортировке и обмене веществ.

Под оболочкой клетки находится вязкая цитоплазма с органоидами и ядром. В цитоплазме протекают основные процессы обмена веществ, она объединяет все компоненты клетки между собой, обеспечивая деятельность клетки как целостной живой системы.

В световой микроскоп хорошо видна лишь часть органоидов цитоплазмы растительной клетки, например, вакуоли и пластиды.

Вакуоли представляют собой полости, заполненные клеточным соком – жидким содержимым в виде раствора сахаров, органических кислот, минеральных солей. Вакуоли придают клетке упругость, а также служат для запаса веществ и накопления продуктов жизнедеятельности.

Пластиды в растительных клетках могут быть трех основных видов: зеленые хлоропласты, окрашенные в красные, оранжевые или желтые цвета хромопласты и белые или бесцветные лейкопласты.

Хлоропласты необходимы растению для фотосинтеза. Хромопласты придают окраску различным частям растения. В лейкопластах синтезируются и откладываются в запас углеводы.

В центре молодых клеток расположено ядро. В старых растительных клетках ядро занимает пристеночное положение.

В центре ядра находится, как правило, одно ядрышко. Ядро управляет всей жизнедеятельностью клетки, хранит и передает наследственную информацию, принимает участие в синтезе нуклеиновых кислот.

Билет № 14

Вопрос 1. Индивидуальное развитие организмов. Эмбриональное развитие животных (на примере ланцетника)

Онтогенезом, или индивидуальным развитием, называют весь период жизни особи с момента слияния сперматозоидов с яйцом и образования зиготы до гибели организма. Онтогенез делится на два периода: 1) эмбриональный – от образования зиготы до рождения или же выхода из яйцевых оболочек; 2) постэмбриональный – от выхода из яйцевых оболочек или рождения до смерти организма.

У большинства многоклеточных животных стадии эмбрионального развития, которые проходит зародыш, едины. В эмбриональном периоде выделяют три основных этапа: дробление, гаструляцию и первичный органогенез.

Развитие организма начинается с одноклеточной стадии. В результате многократных делений одноклеточный организм превращается в многоклеточный. Образующиеся клетки называются бластомерами. При делении бластомеров размеры их не увеличиваются, поэтому процесс деления носит название дробления. В период дробления накапливается клеточный материал для дальнейшего развития.

По мере увеличения числа клеток деление их становится неодновременным. Бластомеры все дальше и дальше отходят от центра зародыша, образуя полость – бластоцель. Завершается дробление образование однослойного многоклеточного зародыша – бластулы.

Особенностью дробления является чрезвычайно короткий митотический цикл бластомеров по сравнению с клетками взрослого организма. Во время очень короткой интерфазы происходит только удвоение ДНК.

Бластула, как правило, состоящая из большого числа бластомеров (у ланцетника – из 3000 клеток), в процессе развития переходит в новую стадию, которая называется гаструлой. Зародыш на этой стадии состоит из разделенных пластов клеток, так называемых зародышевых листков: наружного, или эктодермы, и внутреннего, или энтодермы. Совокупность процессов, приводящих к образованию гаструлы, называется гаструляцией. У ланцетника гаструляция осуществляется путем впячивания части стенки бластулы в первичную полость тела.

После завершения гаструляции у зародыша образуется комплекс осевых органов: нервная трубка, хорда, кишечная трубка. Эктодерма прогибается, превращаясь в желобок, а энтодерма, расположенная справа и слева от него, начинает нарастать на его края. Желобок погружается под энтодерму, и края его смыкаются. Образуется нервная трубка. Вся остальная эктодерма – зачаток кожного эпителия. На этой стадии зародыш носит название нейрулы.

Спинная часть энтодермы, располагающаяся непосредственно под нервным зачатком, обособляется от остальной энтодермы и сворачивается в плотный тяж – хорду. Из оставшейся части энтодермы развивается мезодерма и эпителий кишечника. Дальнейшая дифференцировка клеток зародыша приводит к возникновению многочисленных производных зародышевых листков – органов и тканей.

Из эктодермы развивается нервная система, эпидермис кожи и его производные, эпителий, выстилающий внутренние органы. Из энтодермы развиваются эпителиальные ткани, выстилающие пищевод, желудок, кишечник, дыхательные пути, печень, поджелудочную железу, эпителий желчного и мочевого пузыря, мочеиспускательного канала, щитовидную и околощитовидную железы.

Производными мезодермы являются: дерма, вся собственно соединительная ткань, кости скелета, хрящи, кровеносная и лимфатическая системы, дентин зубов, почки, половые железы, мускулатура.

Зародыш животных развивается как единый организм, в котором все клетки, ткани и органы находятся в тесном взаимодействии. При этом один зачаток оказывает влияние на другой, в значительной мере определяя путь его развития. Кроме того, на темпы роста и развития зародыша оказывают влияние внешние и внутренние условия.

Вопрос 2. Правило единообразия гибридов первого поколения. Наследование доминантных и рецессивных признаков

Любой организм обладает многими наследственными признаками. Основные закономерности наследования впервые были выявлены Грегором Менделем. Наследование каждого признака Г. Мендель предложил изучать независимо от того, как наследуются другие. В качестве основного объекта для своих опытов он выбрал горох. Метод, с помощью которого Мендель изучал наследственность у гороха, был назван гибридологическим…

Сорта гороха, выбранные для скрещивания, различались между собой хорошо заметными признаками. Скрещивались сорта, отличающиеся по одной или небольшому числу контрастных признаков, например, желтая и зеленая окраска семян, гладкая и морщинистая их форма, низкий и высокий рост и др. При размножении эти признаки стойко наследовались. В каждом скрещивании производился анализ потомства в последовательном ряду поколений.

Успешное применение гибридологического метода генетического анализа позволило Менделю сформулировать ряд важнейших закономерностей и правил, которым подчиняется наследование признаков и свойств всех организмов при внутривидовой гибридизации. Г. Мендель сформулировал гипотезу чистоты гамет и три правила, известные как три закона Менделя.

Единообразие гибридов первого поколения наблюдалось Г. Менделем во всех скрещиваниях, которые он проводил. Это дало ему основание сформулировать одну из основных закономерностей наследования – правило единообразия гибридов первого поколения.

В примере, взятом из опытов Г. Менделя по скрещиванию растений гороха с разноокрашенными цветками, признаки красной и белой окраски, составляющие одну пару, проявились у потомства по-разному. Красная окраска цветков у гибридов неизменно сохранялась, белая подавлялась и не обнаруживалась. Признак, проявляющийся у гибридов первого поколения, Мендель назвал доминантным, а не проявляющийся, в данном опыте белая окраска цветков, – рецессивным. Подавление у гибридных организмов одних признаков другими получило в генетике название доминирования.

Для объяснения сущности явления единообразия гибридов первого поколения и расщепления признаков у гибридов второго поколения Г. Мендель предложил гипотезу чистоты гамет. При образовании гамет любая из них может получить или доминантный ген А, или рецессивный ген а. Соединение гамет с генами А и а в гибридном организме не вызвает их смешения или слияния. Гены А и а в гаметах, образуемых гибридными организмами первого поколения, остаются такими же отдельностями, какими они были у исходных родительских форм. В этом и заключается чистота гамет в отношении одной пары аллельных генов.

Рассмотрим явление доминирования, правило единообразия гибридов первого поколения и расщепления их во втором поколении на примере моногибридного скрещивания красноцветкового гороха с белоцветковым.

Гибриды F1 в соответствии с правилом единообразия все красноцветковые, но они образуют и яйцеклетки, и спермии двух типов А и а. При оплодотворении на основе равновероятного сочетания двух типов гамет получается три типа зигот: АА, Аа и аа. Красная окраска цветков доминирует над белой, поэтому в F2 происходит расщепление в отношении: 3 красноцветковых: 1 белоцветковое. Белоцветковые растения F2 при дальнейшем размножении будут давать только белоцветковое потомство. Все они оказываются одинаковыми и по внешнему виду (фенотипу) и по своей наследственной структуре (генотипу).

Вопрос 3. С помощью опыта выясните наличие ферментов в клубнях картофеля

Для выяснения наличия ферментов в клубнях картофеля проведем опыт с перекисью водорода. Известно, что под действием фермента – пероксидазы, содержащегося в живых клетках, пероксид водорода расщепляется до молекул воды и кислорода:

Прильем в две чистые пробирки по 1 мл перекиси водорода. В одну пробирку добавим небольшой кусочек сырого клубня картофеля, другую пробирку оставим для контроля. В чистой пробирке без картофеля никаких изменений не наблюдалось, а в пробирке с сырым картофелем начали выделяться пузырьки газа, следовательно, перекись водорода начала расщепляться под действием ферментов, содержащихся в клетках картофеля.

Билет № 15

Вопрос 1. Послезародышевое развитие: прямое и непрямое

В момент рождения или выхода организма из яйцевых оболочек заканчивается эмбриональный и начинается постэмбриональный период развития. Постэмбриональное развитие может быть прямым или сопровождаться превращением (метаморфозом). При прямом развитии из яйцевых оболочек или из тела матери выходит организм небольших размеров, но в нем заложены все основные органы, свойственные взрослому животному (пресмыкающемуся, птице, млекопитающему). Постэмбриональное развитие у этих животных сводится в основном к росту и половому созреванию.

Прямое развитие характерно для рыб, пресмыкающихся и птиц, а также беспозвоночных, яйца которых богаты желтком, т. е. питательным материалом, достаточным для завершения онтогенеза. Прямое развитие осуществляется у высших млекопитающих (внутриутробный путь развития) и происходит не за счет питательных веществ яйцеклетки, а благодаря поступлению их из материнского организма. В связи с этим из тканей матери и зародыша образуются провизорные органы, в первую очередь плацента.

При развитии с метаморфозом из яйца выходит личинка, обычно устроенная проще взрослого животного, со специальными личиночными органами, отсутствующими во взрослом состоянии. Личинка питается, растет, и со временем личиночные органы заменяются органами, свойственными взрослым животным. Следовательно, при метаморфозе разрушаются личиночные органы и возникают органы, присущие взрослым животным.

У насекомых после стадии личинки следует стадия куколки. Куколка, как правило, неподвижна, она не питается. Из нее развивается полностью сформировавшееся взрослое насекомое. В этом случае говорят о полномпревращении (бабочки, мухи, комары, стрекозы). У насекомых снеполнымпревращением происходит постепенное изменение личинки, сходной со взрослым организмом. Этот процесс сопровождается линьками и увеличением размеров, стадия куколки отсутствует (кузнечики, клопы, вши, стрекозы).

Личиночная форма амфибий – головастик, для которого характерны жаберные щели, боковая линия, двухкамерное сердце, один круг кровообращения. В процессе метаморфоза, происходящего под влиянием гормона щитовидной железы, рассасывается хвост, появляются конечности, исчезает боковая линия, развиваются легкие и второй круг кровообращения. Обращает внимание сходство ряда черт строения головастиков и рыб (боковая линия, строение сердца и кровеносной системы, жаберные щели).

Примером метаморфоза может служить также развитие насекомых. Гусеницы бабочек или личинки стрекоз резко отличаются по строению, образу жизни и среде обитания от взрослых животных. Таким образом, метаморфоз связан с переменой образа жизни и среды обитания.

Значение метаморфоза заключается в том, что личинки могут самостоятельно питаться и растут, накапливая клеточный материал для формирования постоянных органов, свойственных взрослым животным. Кроме того, свободноживущие личинки прикрепленных или паразитических животных играют важную роль в расселении вида, в расширении ареала их обитания. Смена образа жизни или среды обитания в процессе индивидуального развития в результате того, что личиночные формы некоторых животных живут в иных условиях и имеют другие источники питания, чем взрослые особи, снижает интенсивность борьбы за существование внутри вида.

Вопрос 2. Закон расщепления признаков во втором поколении

Из гибридных семян гороха Г. Мендель вырастил растения, которые подверг самоопылению, и образовавшиеся семена высеял вновь. В результате было получено второе поколение гибридов – F2. Среди них обнаружилось расщепление по каждой паре альтернативных признаков в соотношении примерно 3:1, т. е. три четверти растений имели доминантные признаки (желтая окраска семян, круглая форма семени, пурпурная окраска цветков и т. д.). Одна четвертая часть потомства имела рецессивные признаки (зеленая окраска семян, морщинистая форма, белая окраска цветков). Следовательно, рецессивный признак гибридов первого поколения не исчез, а был только подавлен и вновь проявился у гибридов второго поколения. Это обобщение позднее было названо вторым законом Менделя, или законом расщепления. Смысл этого закона заключается в следующем: если потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определенном числовом соотношении: ѕ особей будут иметь доминантный признак, ј – рецессивный.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть – рецессивный, называется расщеплением.

Следовательно, расщепление – это распределение доминантных и рецессивных признаков среди потомства в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Таким образом, второй закон Менделя можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.

25 % гомозиготных доминантных; 50 % гетерозиготных; 25 % гомозиготных рецессивных.

При неполном доминировании в потомстве гибридов (F2) расщепление по генотипу и фенотипу совпадает (1:2:1).

Чтобы выяснить, как будет осуществляться наследование признаков в третьем, четвертом и последующих поколениях, Г. Мендель путем самоопыления вырастил гибриды этих поколений и проанализировал полученное потомство. Он выяснил, что растения, обладающие рецессивными признаками (например, морщинистая форма семян), в следующих поколениях воспроизводят потомство только с рецессивными признаками (морщинистые семена). Иначе вели себя гибриды F2, обладающие доминантными признаками. Среди них Мендель обнаружил две группы растений: первая, составляющая 1/3 от общего числа, далее не расщеплялась. Оставшиеся 2/3 доминантных растений в последующих поколениях расщеплялись на три четверти доминантных и одну четверть рецессивных потомков.

Вопрос 3. Решите задачу на построение иРНК на основе известной последовательности ДНК

Задача.

Молекула ДНК состоит из двух цепей – основной (О), на которой синтезируется иРНК, и комплементарной (К). Запишите порядок нуклеотидов в синтезируемой иРНК, если на участке комплементарной цепи ДНК нуклеотиды расположены в следующем порядке АЦГ-АТТ-ТАТ-АЦЦ-ЦТТ-АГГ-ТТТ.

Решение.

1. Используя принцип комплементарности, построим основную цепь молекулы ДНК. Известно, что в молекулах ДНК А комплементарен Т, а Г комплементарен Ц.

Между А и Т две водородные связи (А=Т), а между Г и Ц три (Г=-Ц)

2. С помощью того же принципа комплементарности по фрагменту основной цепи построим иРНК, учитывая, что в молекулах РНК А комплементарен У (нет Т), а Г комплементарен Ц.

иРНК АЦГ-АУУ-УАУ-АЦЦ-ЦУУ-АГГ-УУУ

Ответ: последовательность нуклеотидов в иРНК АЦГ-АУУ-УАУ-АЦЦ-ЦУУ-АГГ-УУУ.

Билет № 16

Вопрос 1. Гены и хромосомы как материальные основы наследственности. Их строение и функционирование

Изучение структуры и функций гена – основная проблема генетики. Г. Мендель в 1865 г. доказал, что наследственность дискретна. Он сделал вывод о существовании в половых клетках наследственных задатков, определяющих развитие признаков взрослого организма, и назвал их факторами. В 1909 г. В. Иоганнсен предложил наследственный фактор называть геном.

В 1902 – 1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены находятся в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 году американским генетиком Т. Морганом, который в последующие годы обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Гены локализованы в хромосомах. Различные хромосомы содержат неодинаковое количество генов, при этом набор генов каждой из негомологичных хромосом уникален. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

Ген – участок большой самовоспроизводящейся молекулы ДНК, отвечающий за один признак, т. е. за структуру определенной молекулы белка, определяющий возможность развития отдельного элементарного признака. Он является дискретной единицей наследственной информации, это участок хромосомы, оказывающий специфическое влияние на развитие организма.

Ген – сложная, делимая, молекулярно-биологическая структура. Он состоит из нуклеотидов. Их число и взаиморасположение определяют специфичность каждого отдельного гена.

Выделение одного гена из генома – очень трудная задача. Впервые ее удалось решить в 1969 г. ученым Гарвардской медицинской школы в США под руководством Дж. Беквитса.

Хромосомы – основной морфологический компонент ядра. По химическому составу они представляют собой на 90 % дезоксирибонуклеопротеиды и на 10 % рибонуклеопротеиды. Хромосомы присутствуют в ядре всегда, но в рабочем ядре они обычно не видны, так как находятся в «разрыхленном» состоянии. Хромосомы хорошо видимы в световой микроскоп во время митоза. Хромосома делящегося ядра имеет вид двойной палочки. Она состоит из двух половин, разделенных узкой щелью вдоль оси хромосомы, называемых хроматидами.

Каждая хромосома имеет перетяжку, которая представляет собой неспирализованный участок хромосомы, где расположена центромера. Перетяжка выглядит как утонченная часть хромосомы. Первичная перетяжка делит хромосому на два плеча. В зависимости от местоположения перетяжки выделяют три типа хромосом: 1) палочкообразные, с одним очень длинным и другим очень коротким плечом; 2) неравноплечие, с плечами неравной длины; 3) равноплечие, с плечами равной длины.

Внутреннее строение хромосомы, число в ней нитей ДНК меняются в жизненном цикле клетки. Функции хромосом состоят в синтезе специфических для данного организма нуклеиновых кислот: ДНК – хранящих и передающих наследственную информацию в клеточных поколениях, и РНК – управляющих синтезом белков в клетке.

Для клеток каждого вида характерно определенное число хромосом определенной величины и формы. Все организмы одного вида имеют одинаковое число хромосом. Так, у мягкой пшеницы их 42, у кукурузы – 20, у коровы – 60, у курицы – 78, а у плодовой мушки дрозофилы – 8.

Вопрос 2. Биогеоценоз как экологическая система, его звенья, связи между ними

Живые организмы находятся в постоянном взаимодействии друг с другом и с факторами неживой природы. Видовой состав данной местности определяется историческими и климатическими условиями.

Основные взаимоотношения между организмами – пищевые. По типу питания все живые существа объединяют в две группы: автотрофы, использующие в качестве пищи неорганические соединения, и гетеротрофы, нуждающиеся в пище органического происхождения. Автотрофы – это зеленые растения и некоторые виды бактерий, гетеротрофы – большинство бактерий, грибы и все животные.

Биогеоценоз – это устойчивое сообщество растений, животных и микроорганизмов, находящихся в постоянном взаимодействии с компонентами атмосферы, гидросферы и литосферы. В это сообщество поступают энергия Солнца, минеральные вещества почвы и газы атмосферы, вода, а выделяются из него теплота, кислород, диоксид углерода, продукты жизнедеятельности организмов. Основные функции биогеоценоза – аккумуляция, перераспределение энергии и круговорот веществ. Биогеоценоз – целостная саморегулирующаяся и самоподдерживающаяся система. Он включает следующие обязательные компоненты: неорганические и органические вещества; автотрофные организмы – продуценты органических веществ; гетеротрофные организмы – потребители готовых органических веществ – консументы растительного (потребители первого порядка) и животного (потребители второго и следующих порядков) происхождения. К гетеротрофным организмам относятся разрушители-редуценты, или деструкторы, которые разлагают остатки мертвых растений и животных, превращая их в простые минеральные соединения.

Говоря о биоценозах, рассматривают только взаимосвязанные живые организмы, обитающие в данной местности. Биоценозы характеризуются видовым разнообразием, т. е. числом видов живых организмов, образующих его; плотностью популяций, т. е. числом особей данного вида, отнесенного к единице площади или к единице объема (для водных и почвенных организмов); биомассой – общим количеством живого органического вещества, выраженного в единицах массы.

Биомасса образуется в результате связывания солнечной энергии. Суммарную продукцию фотосинтеза называют первичной продукцией. Растительная биомасса используется потребителями первого порядка – растительноядными животными – в качестве источника энергии и материала для создания биомассы, причем используется чрезвычайно избирательно, что понижает интенсивность межвидовой борьбы за существование и способствует сохранению природных ресурсов. Растительноядные животные в свою очередь служат источником энергии и материала для потребителей второго порядка – хищников и т. д. Наибольшее количество биомассы образуется в тропиках и в умеренной зоне, очень мало – в тундре и океане, так как организмы испытывают влияние неживой природы – абиотических факторов.

Биогеоценоз характеризуется видовой, пространственной и экологической, трофической структурами. Видовая структура определяет разнообразие видов живых организмов и соотношение численности или биомассы всех входящих в него популяций. Пространственная структура зависит прежде всего от сложения фитоценоза, в котором различают ярусы и микрогруппировки. Ярусность или вертикальная структура биогеоценоза вызывается количеством света, обуславливающего температурный режим, влажность на разных уровнях над поверхностью почвы. Экологическая структура слагается из определенных экологических групп организмов, населяющих данную территорию. Трофическую структуру составляют цепи питания.

Вопрос 3. Решить задачу на сцепленное с полом наследование

Задача.

Черная окраска кошек определяется геном B, рыжая – геном b. Эти гены расположены в Х-хромосоме. Какое потомство по фенотипу следует ожидать при скрещивании рыжего кота с черной кошкой?

Решение.

1. Генотип черной кошки XBXB, так как обе Х-хромосомы несут аллель B черной окраски шерсти.

2. Генотип рыжего кота XbУ, так как только одна Х-хромосома несет аллель b рыжей окраски шерсти.

3. Запись скрещивания:

Ошибка: источник перекрестной ссылки не найден

Ответ: BF1 при скрещивании рыжего кота с черной кошкой по фенотипу все самки будут иметь черепаховую окраску, а самцы – черную.

Билет № 17

Вопрос 1. Закон независимого наследования признаков. Причина расщепления признаков у гетерозигот

Скрещивание, при котором одновременно прослеживается наследование двух пар альтернативных признаков, называется дигибридным.

Проводя дигибридное скрещивание гороха, Г. Мендель установил закономерность наследования, получившую название независимого комбинирования генов. Он скрещивал горох, имеющий желтые круглые семена, с горохом, у которого семена были зелеными и морщинистыми. Все гибридные растения первого поколения сохраняли единообразие: они имели желтые и круглые семена. Во втором поколении расщепление носило более сложный характер, чем при моногибридном скрещивании: из общего количества (556) полученных семян 315 были желтые круглые, 101 – желтые морщинистые, 108 – зеленые круглые и 32 – зеленые морщинистые. Эти цифры почти точно соответствуют краткому отношению 9:3:3:1.

Сущность явлений при дигибридном скрещивании заключается в следующем.

В зиготу, из которой развивается гибридное растение F, вносится четыре гена: желтой окраски (А) и округлой формы семян (В) от одной родительской формы и зеленой окраски (а) и морщинистой формы семян (в) от другой. Такое растение будет дигетерозиготным. Все возможные сочетания указанных генов дадут у него четыре типа яйцеклеток и спермиев: АВ, Ав, аВ и ав.

При случайном соединении гамет дигетерозиготных организмов во время оплодотворения образуется девять типов генетически различных зигот. Только два из них воспроизведут исходные родительские генотипы, остальные же семь будут иметь различные сочетания хромосом с доминантными и рецессивными генами.

Числовые отношения распределения классов по фенотипу и генотипу при скрещивании организмов, различающихся по двум аллелям, являются результатом произведения числовых отношений по каждой из аллельных пар. Так, (3:1)*(3:1) = 9:3:3:1 и (1:2:1)*(1:2:1) = 1:2:1:2:4:2:1:2:1. Это положение верно для любого числа аллелей.

Правильность своих выводов о независимом комбинировании генов при дигибридном скрещивании Г. Мендель проверил путем анализирующего скрещивания гибридных растений F, имевших генотип АаВв с отцовским растением – гомозиготной рецессивной формой по обеим парам генов (аавв). В результате получилось четыре типа форм с одинаковым числом особей: АаВв (желтые круглые), Аавв (желтые морщинистые), ааВв (зеленые круглые) и аавв (зеленые морщинистые).

Так как во всех четырех скрещиваниях от отцовского сорта передавались одинаковые гаметы – ав, то равное число особей во всех четырех группах анализирующего скрещивания являются результатом того, что гибриды F (АаВв) образовали яйцеклетки Ав, Ав, аВ и ав в равных количествах, а это возможно только на основе независимого комбинирования генов.

Из всего сказанного о поведении хромосом и находящихся в них генов вытекают следующие положения:

1. Хромосомы и находящиеся в них гены наследуются как отдельные независимые единицы.

2. Все хромосомы и гены, входящие в генотип особи, присутствуют в ее клетках всегда попарно (гомологичные хромосомы и аллельные гены). При этом один член пары хромосом и генов привносится в зиготу одной родительской формой, а второй – другой формой.

Во время мейоза различные пары хромосом распределяются между собой гаметами независимо друг от друга и совершенно случайно. В результате гибридизации возникают формы с новым сочетанием нужных признаков.

Вопрос 2. Биогеоценоз дубравы

Биогеоценоз – это однородный участок земной поверхности с определенным составом живых организмов и определенными условиями обитания, которые объединены обменом веществ и энергии в единый природный комплекс.

В каждом биогеоценозе существуют виды, преобладающие по численности или занимающие большую площадь. Их называют видами – доминантами. Однако не все доминантные виды одинаково влияют на биогеоценоз. Те, которые определяют состав, структуру и свойства экосистемы путем создания среды для всего сообщества, называют эдификаторами. А теперь рассмотрим биогеоценоз дубравы.

Среди наземных биогеоценозов одним из наиболее сложных является широколиственный лес, например, дубрава. Дубрава – совершенная и устойчивая экологическая система, способная при неизменных внешних условиях существовать веками. Биогеоценоз дубравы составляют более сотни видов растений и несколько тысяч видов животных.

Растения дубравы. В наземных биогеоценозах основную биологическую продукцию создают высшие растения. В лесу это преимущественно многолетние древесные породы.

Между растениями происходит усиленная конкуренция за основные жизненные условия: пространство, свет, воду с растворенными в ней минеральными веществами. В результате длительного естественного отбора у растений дубравы выработались приспособления, позволяющие разным видам существовать совместно. Это ярко проявляется в характерной для дубравы ярусности.

Верхний ярус образуют наиболее светолюбивые древесные породы: дуб, ясень, липа. Ниже располагаются сопутствующие им менее светолюбивые деревья: клен, яблоня, груша и др. Еще ниже расположен ярус подлеска, образованный различными кустарниками: лещиной, крушиной, калиной и т. п. Наконец, на почве произрастает ярус травянистых растений. Чем ниже ярус, тем более теневыносливы образующие его растения.

Вследствие сложной многоярусности общая площадь листьев растений, произрастающих на каждом гектаре, достигает 4–6 га. Чистая продукция в виде прироста органического вещества составляет почти 10 т/га в год.

Цепи питания в дубравах. Богатство и разнообразие растений становится причиной развития в дубравах потребителей из мира животных, от простейших до высших позвоночных – птиц и млекопитающих.

Среди млекопитающих пищевую цепь, например, составляют растительноядные мышевидные грызуны и зайцы, а также копытные, за счет которых существуют хищники: ласка, горностай, куница, лиса, волк. Все виды позвоночных служат средой обитания и источником питания для различных наружных паразитов, преимущественно насекомых и клещей, а также внутренних паразитов: плоских и круглых червей, простейших, бактерий.

Пищевые цепи в лесу переплетены в очень сложную пищевую сеть, поэтому выпадение какого-нибудь одного вида животных обычно не нарушает существенно всю систему. Исчезновение, например, в большинстве наших дубрав всех крупных растительноядных копытных: зубров, оленей, косуль, лосей слабо отразилось бы на общей экосистеме, так как их биомасса никогда не была большой и не играла существенной роли в общем круговороте веществ. Но если бы исчезли растительноядные насекомые, то последствия были бы очень серьезными, так как насекомые выполняют важную в биогеоценозе функцию опылителей, участвуют в разрушении опада и служат основой существования многих последующих звеньев пищевых цепей.

Вопрос 3. Рассмотреть под микроскопом микропрепарат митоза в клетках корешка лука, найти клетку в состоянии интерфазы, зарисовать ее и назвать признаки интерфазы

Интерфаза (интеркинез) – промежуток между двумя делениями клетки, фаза покоящегося ядра, длящаяся 10–20 часов. В клетке происходит удвоение ДНК хромосом, синтез АТФ и белка, увеличение числа органоидов цитоплазмы. Ядро клетки заполнено сетью тонких и длинных нитей – хромонем.

Билет № 18

Вопрос 1. Закон сцепленного наследования, его материальные основы. Значение кроссинговера

Опыты показали, что гены, локализованные в одной хромосоме, оказываются сцепленными, т. е. передаются в поколениях, преимущественно не обнаруживая независимого наследования.

Закономерности сцепленного наследования генов были изучены Т. Х. Морганом и его учениками в начале 20-х годов XX в. Объектом для исследований являлась плодовая мушка дрозофила. Срок жизни ее невелик, и за год можно получить несколько десятков поколений. Кариотип составляют всего четыре пары хромосом, в том числе пара хорошо отличимых друг от друга половых. При скрещивании гомозиготных линий мух с черным цветом тела и укороченными крыльями (ввvv) с мухами, имеющими серый цвет тела и длинные крылья (BBVV), все гибриды F1 имеют серое тело и длинные крылья.

Следовательно, признаки – серое тело и длинные крылья – доминируют и соблюдается закон единообразия гибридов первого поколения. Далее сцепление изучали посредством анализирующего скрещивания, т. е. скрещивания полученных гибридов F1 с линией мух, гомозиготных по рецессивным генам. При анализирующем скрещивании фенотип потомства прямо отражает типы гамет, формируемых гетерозиготным родителем. Если гены не сцеплены, то у дигетерозиготного организма образуется четыре вида гамет по 25 % каждого сорта и, следовательно, четыре вида потомков, как это показано для анализирующего скрещивания в случае независимого комбинирования признаков. Однако в опытах Моргана такого теоретически ожидаемого расщепления не наблюдалось. При скрещивании самки, обладающей черным телом и укороченными крыльями, с гибридным самцом из F1 образуется всего два фенотипических класса потомков: 50 % мух с серым телом и длинными крыльями (BвVv) и 50 % – с черным телом и укороченными крыльями (ввvv) в отношении 1:1.

У самцов дрозофилы кроссинговер практически не происходит, поэтому гены у дигетерозиготных самцов, расположенные в одной хромосоме, обнаруживают полное сцепление, т. е. наследуются совместно.

Если в анализирующем скрещивании поменять местами родительские формы, т. е. скрестить дигибридную самку с гомозиготным рецессивным самцом, то в F1 образуется четыре категории потомков: 41,5 % серых с длинными крыльями, 41,5 % черных с укороченными крыльями, 8,5 % серых с укороченными крыльями и 8,5 % черных с длинными крыльями.

Это те четыре типа, которые следует ожидать, если анализируемые гены расходятся независимо, но мух рекомбинантных типов значительно меньше (17 %), чем мух, имеющих родительские фенотипы (83 %). Такое отклонение от ожидаемого при независимом расщеплении свидетельствует о наличии сцепления. Однако в отличие от скрещивания, где гетерозиготным был самец, у гетерозиготных самок в мейозе возможен обмен (кроссинговер) между локусами гомологичных хромосом, где находятся гены В и b. Рекомбинантные типы потомства при таком скрещивании возникают из кроссоверных гамет, которые несут рекомбинантные хромосомы, образующиеся у самки в процессе кроссинговера при мейозе.

Кроссинговер – процесс, приводящий к возникновению новых комбинаций генов.

Вопрос 2. Биогеоценоз хвойного леса. Цепи питания

Типичной характеристикой биоценоза хвойного леса является относительно малое количество видов, представленых большим числом особей. В лесу, состоящем из десятков видов растений, только один или два из них дают до 90 % древесины. Эти виды называются доминирующими или доминантными. Они занимают ведущее, господствующее положение в биоценозе. В биоценозе есть и виды, создающие условия для жизни других видов данного биоценоза (эдификаторы). Рассмотрим эдификаторную роль ели и сосны.

Ель в таежной зоне образует густые, сильно затемненные леса. Под пологом ее могут обитать только растения, приспособленные к условиям сильного затенения, повышенной влажности воздуха, кислых оподзоленных почв. Соответственно этим факторам в еловых лесах формируется и специфичное животное население. Следовательно, ель в данном случае обусловливает определенный биоценоз.

В сосновых лесах эдификатором является сосна. Но, по сравнению с елью, она – более слабый эдификатор, поскольку сосновый лес относительно светлый и редкоствольный. Его видовой состав растений и животных гораздо богаче и разнообразнее, чем в ельнике. В борах встречаются даже такие растения, которые могут жить вне леса.

Однако роль эдификаторов не абсолютна. Так, при изреживании елового леса ель может утратить функции мощного эдификатора, поскольку при этом происходит осветление леса, и в него внедряются другие породы, снижающие эдификаторное значение ели. В сосняке на сфагновых болотах сосна также теряет свое эдификаторное значение. Его приобретают сфагновые мхи.

Все виды, слагающие биоценоз, в определенной степени связаны с доминирующими видами и эдификаторами. Внутри биоценоза формируются более или менее тесные группировки, комплексы популяций, зависящие либо от растений-эдификаторов, либо от других элементов биоценоза.

Растения каждого яруса и обусловленный ими микроклимат создают определенную среду для специфичных животных. В конечном итоге возникают группировки растений и животных – популяции тесно связанных между собой организмов. В почвенном ярусе леса, заполненном корнями растений, обитают бактерии, грибы, насекомые, клещи, черви. В лесной подстилке среди разлагающихся растительных остатков, мхов, лишайников и грибов живут насекомые, клещи, пауки, множество микроорганизмов. Более высокие ярусы – травостой, подлесок – занимают растительноядные насекомые, птицы, млекопитающие и другие животные. Следовательно, ярусы в биоценозе различаются не только высотой, но и составом организмов, их экологией и той ролью, которую они играют в жизни всего сообщества.

Организмы в биогеоценозе связаны общностью энергии и питательных веществ, необходимых для поддержания жизни. Растения елового леса (продуценты) на основе фотосинтеза создают органические вещества, которые используют в пищу растительноядные животные (консументы 1 порядка). Ими в свою очередь питаются хищные животные (консументы 2 порядка). С течением времени тела растений и животных становятся пищей для бактерий, грибов, микроорганизмов (редуцентов), которые переводят сложные органические соединения в простые вещества, доступные для корневого питания растений. По пищевым цепям и сетям в еловом лесу движутся потоки веществ и энергии.

Вопрос 3. Рассмотреть под микроскопом микропрепарат митоза в клетках корешка лука, найти клетку в состоянии профазы, зарисовать ее и назвать признаки профазы

Профаза (греч. «pro» – до) характеризуется разбуханием ядра клетки, спирализацией хромосом, их укорочением, поэтому хромосомы хорошо заметны под микроскопом.

Профаза включает в себя четыре последовательные подфазы, или стадии.

Профаза I – начало спирализации нитей ДНК, за счет чего они укорачиваются во много раз. Хромосомы утолщаются и становятся хорошо видными в микроскоп.

Профаза II – хромосомы состоят из двух хроматид, т. е. из двух дочерних нитей.

Профаза III – дальнейшая спирализация нитей хроматид, которые становятся более короткими и толстыми.

Профаза IV – кариолемма (оболочка ядра) растворяется, ядрышко исчезает.

Каждая хромосома хорошо видна и состоит из двух хроматид. Формируются нити веретена деления и полюса клетки.

Билет № 19

Вопрос 1. Половые хромосомы и аутосомы. Сцепленное с полом наследование

Пол у животных определяется в момент оплодотворения. В этом случае важнейшая роль в генетическом определении пола принадлежит хромосомному набору зиготы.

В наборе хромосом зиготы содержатся гомологичные хромосомы, одинаковые по форме, размерам. В женском кариотипе все хромосомы парные. В мужском кариотипе всегда имеется одна крупная равноплечая непарная хромосома, не имеющая гомолога, и маленькая палочковидная хромосома, встречающаяся только в кариотипе мужчин. Хромосомы, одинаковые у обоих полов, называют аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называют половыми или гетерохромосомами. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин имеется одна Х-хромосома и одна Y-хромосома. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. При этом все яйцеклетки имеют по одной Х-хромосоме. Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным и обозначается XX. При сперматогенезе получаются гаметы двух сортов: половина несет Х-хромосому, половина – Y-хромосому. Пол, который формируют гаметы, неодинаковые по половой хромосоме, называют гетерогаметным и обозначают как ХY.

У человека, дрозофилы и ряда других организмов гомогаметен женский пол; у бабочек, пресмыкающихся, птиц – мужской. Кариотип петуха обозначают как XX, а кариотип курицы – ХY.

У человека решающую роль в определении пола играет Y-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим Х-хромосому, развивается женский организм. Если яйцеклетка оплодотворяется сперматозоидом, несущим Y-хромосому, развивается мужской организм. Мужчина (ХY) получает Х-хромосому только от матери. Этим обусловлена особенность наследования генов, расположенных в половых хромосомах. Наследование признаков, гены которых находятся в Х– или Y-хромосомах, называют наследованием, сцепленным с полом. Таким образом, сцеплением генов с полом называют локализацию генов в половой хромосоме. Распределение этих генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при оплодотворении. Рассмотрим наследование генов, расположенных в Х-хромосоме. Следует иметь в виду, что в половых хромосомах могут находиться и гены, не участвующие в развитии половых признаков. Х-хромосома человека содержит ген, определяющий свертываемость крови (Н). Его рецессивная аллель (h) вызывает тяжелое заболевание – гемофилию. В этой же хромосоме находятся гены, обусловливающие слепоту к красному и зеленому цвету (дальтонизм), форму и размер зубов, синтез ряда ферментов и т. д.

В отличие от генов, локализованных в аутосомах, при сцеплении с полом может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит в тех случаях, когда рецессивный ген, сцепленный с Х-хромосомой, попадает в гетерогаметный организм. При кариотипе ХY рецессивный ген в Х-хромосоме проявляется фенотипически, поскольку Y-хромосома негомологична Х-хромосоме и не содержит доминантной аллели.

Вопрос 2. Биогеоценоз водоема. Цепи питания

Биогеоценоз – это однородный участок земной поверхности с определенным составом живых организмов и определенными условиями обитания, которые объединены обменом веществ и энергии в единый природный комплекс. Составными частями любого биогеоценоза, в том числе и биогеоценоза водоема являются: 1) фитоценоз – устойчивое сообщество растений (в водоеме это водные и полуводные виды водорослей, мхов, покрытосеменных или цветковых растений; 2) зооценоз – совокупность взаимосвязанных видов животных (в водоеме обитают представители простейших, кишечнополостных, черви, членистоногие, хордовые животные); 3) микоценоз – сообщество грибов (их видовой состав в водоеме не очень разнообразен); 4) микробоценоз – сообщество микроорганизмов (в водоеме его основу составляет зоо– и фитопланктон).

В неглубоких водоемах, прудах, мелких озерах солнечный свет проникает до дна, создавая условия для развития водорослей и высших водных растений. В толще воды и на ее поверхности обитают многочисленные одноклеточные, нитевидные, многоклеточные водоросли. На дне некоторые мхи образуют обширные темно-зеленые скопления. Вблизи берегов растет водяной хвощ, на поверхности воды можно встретить водяной папоротник – сальвинию. Обильно представлены цветковые растения: камыш, тростник, рогоз, обитающие у берегов. На поверхности воды плавают листья и цветки белой кувшинки или желтой кубышки. Нередко вся поверхность прудов покрыта мелкими пластинками ряски. Часто можно встретить и многие другие водные растения, например, пузырчатку, роголистник.

Животный мир пресноводного водоема еще более богат и разнообразен. В воде и иле, покрывающем дно, обитают бактерии, многочисленные простейшие (амебы, жгутиковые, инфузории), мелкие рачки, личинки насекомых, плоские черви (планарии). В грунте водоемов распространены свободноживущие круглые черви, в огромных количествах встречается кольчатый червь трубочник, весьма обычны пиявки. На листьях водных растений сидят пресноводные гидры, очень многочисленны разнообразные моллюски. Наконец, в пресноводных водоемах обычно обитают растительноядные и хищные рыбы, амфибии и их личинки – головастики. Этот, далеко не полный, перечень обитателей водоема дает все же представление о его видовом разнообразии. В состав биоценоза всегда входит очень много (до нескольких тысяч) видов самого разного уровня организации – от бактерий до позвоночных. Их взаимоотношения в среде обитания в первую очередь определяются пищевыми потребностями. В приведенном примере одноклеточные водоросли служат пищей простейшим, низшим ракообразным – циклопам и дафниям, личинкам насекомых, фильтрующим двустворчатым моллюскам. Высшие растения поедаются растительноядными рыбами, скоблящими брюхоногими моллюсками, личинками некоторых насекомых. В свою очередь мелкие рачки, черви, личинки насекомых служат пищей рыбам и амфибиям. Хищные рыбы охотятся на растительноядных. В воде кормятся некоторые млекопитающие, например, выхухоль, питающаяся моллюсками, насекомыми и их личинками, иногда рыбой. Мертвые органические остатки падают на дно. На них развиваются бактерии, которые в свою очередь потребляются простейшими, фильтрующими моллюсками и т. д.

Таким образом, пищевые отношения служат регуляторами численности видов, входящих в биоценоз.

Вопрос 3. Рассмотреть под микроскопом микропрепарат митоза в клетках корешка лука, найти клетку в состоянии метафазы, зарисовать ее и назвать признаки метафазы

Метафаза (греч. «мета» – после) характеризуется обособлением хромосом и образованием метафазной пластинки. Все хромосомы собираются в одной плоскости – на «экваторе» клетки.

У хромосом хорошо видна центромера (перетяжка), которая делит хромосому на два плеча. К центромерам прикрепляются нити веретена деления.

Билет № 20

Вопрос 1. Взаимодействие и множественное действие генов как основа целостности генотипа

Гены представляют собой структурные и функциональные единицы наследственности. Каждый из них определяет развитие одного какого-то признака, независимого от других. Отдельная клетка и организм являются целостными системами, где все биохимические и физиологические процессы строго согласованы и взаимосвязаны прежде всего потому, что генотип – это система взаимодействующих генов.

Взаимодействуют друг с другом как аллельные, так и неаллельные гены, расположенные в различных локусах одних и тех же, и разных хромосом.

Аллельные гены вступают в отношения типа доминантности-рецессивности, различают полное и неполное доминирование. Встречаются также и иные формы взаимоотношений аллельных генов между собой. Одна из них допускает проявление сразу двух аллельных генов (кодоминирование) и наблюдается при наследовании групп крови у человека в системе АВО. Другая – сверхдоминирование: большая степень выраженности признака у гетерозиготных организмов служит основой гетерозиса – явления гибридной силы.

Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена. Пример взаимодействия двух пар генов – наследование формы гребня у кур некоторых пород. В результате различных комбинаций этих генов возникают четыре варианта формы гребня.

У душистого горошка есть ген А, обусловливающий синтез бесцветного предшественника пигмента – пропигмента. Ген В определяет синтез фермента, под действием которого из пропигмента образуется пигмент. Цветки душистого горошка с генотипом ааВВ и ААbb имеют белый цвет: в первом случае есть фермент, но нет пропигмента, во втором – есть пропигмент, но нет фермента, переводящего пропигмент в пигмент. При скрещивании двух растений с упомянутыми генотипами получим дигетерозиготное растение с генотипом AaBb.

У дигетерозиготных растений есть и пропигмент А, и фермент В, участвующие в образовании пурпурного пигмента. Продукты неаллельных генов взаимно дополняют друг друга. Такая форма взаимодействия генов разных аллельных пар носит название комплиментарности – взаимодополнения.

Пример другой формы взаимодействия генов – эпистаза – развитие окраски плодов у тыквы. Окрашенными плоды тыквы будут только в том случае, если в генотипе растений отсутствует доминантный ген В из другой аллельной пары. Этот ген подавляет развитие окраски у плодов тыквы, а его рецессивная аллель b не мешает окраске развиваться.

У пшеницы красный цвет зерен определяется двумя генами: А1, А2. Неаллельные гены обозначены здесь одной буквой А(а), потому что определяют развитие одного признака. При генотипе А1А1А2А2 окраска зерен наиболее интенсивная, при генотипе а1а1а2а2 они имеют белый цвет. В зависимости от числа доминантных генов в генотипе можно получить все переходы между интенсивно красной и белой окраской.

Таким образом, многие признаки развиваются при взаимодействии нескольких пар генов – полимерных, действующих в одном направлении.

Часто встречаются и ситуации, когда один ген определяет развитие нескольких признаков и свойств организмов. Такое явление получило название плейотропии. Так, например, у человека известен ген, определяющий одновременно развитие дефекта ногтей и коленной чашечки.

Вопрос 2. Соотношение организмов-продуцентов, консументов, редуцентов в экосистеме

Любое природное сообщество состоит из совокупности организмов, которые по типу питания можно разделить на функциональные группы.

Первой функциональной группой биоценоза являются автотрофы-производители (продуценты) органических веществ, способные аккумулировать солнечную энергию в процессе фотосинтеза и образовывать органические вещества. Чаще всего в роли продуцентов выступают зеленые растения.

Ко второй функциональной группе относятся гетеротрофные организмы, которым для питания необходимы уже готовые органические вещества. Различают две группы гетеротрофов: консументы, или потребители, и редуценты, то есть разрушители. К консументам относятся животные. Травоядные животные употребляют растительную пищу, а плотоядные – животную.

К редуцентам относятся микроорганизмы – бактерии и грибы. Редуценты разлагают выделения животных, остатки мертвых растений, животных и микроорганизмов, другие органические вещества. Разрушители питаются органическими соединениями, образующимися при разложении. В процессе питания редуценты минерализуют органические отходы до воды, углекислого газа и минеральных элементов. Продукты минерализации вновь используются продуцентами.

Графическое изображение соотношения между продуцентами, консументами и редуцентами в экосистеме называется экологической пирамидой.

В наземных экосистемах количественные показатели продуцентов выше, чем консументов; консументов первого порядка больше, чем консументов второго порядка; консументов второго порядка больше, чем консументов третьего порядка и т. д.

При переходе с одного трофического уровня на другой численность особей уменьшается, а их размер увеличивается. В некоторых водных экосистемах, отличающихся исключительно высокой биологической прордуктивностью продуцентов, экологическая пирамида может оказаться обращенной, «перевернутотй», т. е. количественные показатели консументов могут быть выше, чем продуцентов и редуцентов. В некоторых глубоководных и подземных экосистемах практически нет звена продуцентов, их продукция приходит извне, от поверхностных экосистем.

Передача энергии с одного пищевого уровня на другой происходит с очень малым КПД. С уровня на уровень переходит около 10 % энергии, что объясняет уменьшение числа и суммарной массы организмов на каждом последующем уровне и ограниченность количества звеньев в пищевой цепи.

Вопрос 3. С помощью опыта доказать, что фермент в клетках клубня картофеля, расщепляющий перекись водорода, имеет белковую природу. Какова химическая природа всех ферментов?

Доказать, что фермент в клубнях картофеля, расщепляющий перекись водорода, имеет белковую природу можно, поставив следующий опыт.

В две пробирки нальем по 1 мл перекиси водорода. В одну пробирку поместим небольшой кусочек вареного клубня картофеля, а в другой – сырого.

В пробирке с сырым картофелем наблюдается бурное выделение пузырьков газа (кислорода), образовавшегося в результате расщепления перекиси водорода ферментом – пероксидазой, содержащийся в живых клетках картофеля.

В пробирке с вареным картофелем пузырьки газа не выделяются. Реакция расщепления не идет, так как фермент разрушается при варке картофеля. Только белки под действием высоких температур денатурируют, т. е. теряют свою структуру, а, следовательно, и свойства, значит фермет-пероксидаза имеет белковую природу.

Все ферменты являются белками по своей природе, но не все белки выполняют в клетках ферментивную функцию.

Билет № 21

Вопрос 1. Генетика человека. Методы изучения наследственности человека, наследственные заболевания, их профилактика

Человек как генетический объект сложен для изучения. Ясно, что экспериментировать с ним, как с животным или растением, недопустимо. Смена одного поколения у человека происходит за 25 лет. Все это затрудняет изучение наследственных свойств у человека и их передачи в поколениях.

Существуют следующие методы изучения наследственности человека.

1. Гибридологический метод. Можно установить генотип организма, доминантность или рецессивность исследуемого признака, сцепление генов с полом и др.

2. Цитологический метод заключается в изучении количества, формы и размеров хромосом.

3. Генеалогический метод заключается в изучении наследования какого-либо признака в ряду поколений у возможно большего числа родственников.

4. Близнецовый метод основан на изучении однояйцевых близнецов с одинаковым генотипом. Все различия между близнецами обусловлены исключительно влиянием внешней среды. Этот метод позволяет оценить роль внешней среды в реализации действия генов.

Изучение генетики человека, несмотря на всю сложность, важно не только с точки зрения науки.

Велика роль генетики человека в решении проблем наследственных болезней. Человеком наследуются многие болезни, такие, как несвертываемость крови, цветовая слепота, ряд психических заболеваний.

ДНК – носитель генетической информации – подвергается изменениям. Эти изменения могут происходить в соматических клетках. Тогда возникает заболевание, не передающееся потомкам. Примером служит злокачественный рост клеток. Когда поражение затрагивает ДНК в зародышевых клетках человека, могут появляться дети с врожденными дефектами. Наследственные дефекты возникают по трем причинам.

Первая – генные мутации, при которых азотистое основание в гене заменяется на другое, теряется, меняет место и так далее. Примером может служить болезнь, получившая название серповидно-клеточной анемии. Гемоглобин теряет способность к транспорту кислорода, и дети при рождении погибают от злокачественной анемии.

Второй источник мутаций – нарушение числа хромосом. Потеря любой из 46 хромосом или добавление лишней ведет к тяжелым расстройствам развития. Пример – дети с синдромом Дауна. Причина болезни состоит в появлении лишней хромосомы в 21-й паре.

Третий источник наследственных отклонений – это разнообразное нарушение структуры хромосом в зародышевых клетках родителей. Из-за потери участка пятой хромосомы

рождаются дети с синдромом болезни, называемой «кошачий крик». У них поражена нервная система, нарушена анатомия гортани.

Среда, окружающая людей, постепенно накапливает мутагенные агенты, способные проникать в зародышевые клетки людей и поражать в них молекулы ДНК. К ним относятся мутагены: двуокись серы, окись азота, азотистая кислота, ароматические углеводороды, нитриты, пероксиды, озон, пестициды, формальдегиды и многие другие соединения.

Перед генетикой и медициной встала задача огромного значения. Наука должна разобраться в причинах явления, и, если оно реально и угрожает человечеству, надо найти способы защиты.

Для выявления и оценки уровня частоты мутаций используются чувствительные к мутагенам тест-системы, сконструированные на линиях бактерий, по доминантным леталям у мышей (мутации, убивающие эмбрионы мышей на разных стадиях развития).

Вопрос 2. Саморегуляция в биогеоценозе. Многообразие видов, их приспособленность к совместному обитанию

В природе виды растений и животных образуют определенные, сравнительно постоянные комплексы – природные сообщества. Такие комплексы взаимосвязанных популяций разных видов, обитающих на определенной территории с более или менее однородными условиями существования, образуют биогеоценоз.

Биогеоценоз неразрывно связан с факторами неживой природы (почвой, влажностью, температурой и др.), образуя вместе с ними устойчивую систему, между компонентами которой протекает круговорот веществ. Саморегуляция проявляется в том, что численность особей каждого вида поддерживается на определенном, относительно постоянном уровне. В биогеоценозе в результате жизнедеятельности организмов непрерывно осуществляется поток атомов из неживой природы в живую и обратно, замыкаясь в круговорот. Источником энергии служит Солнце.

Круговорот веществ в биогеоценозе – необходимое условие существования жизни. Он возник в процессе становления жизни и усложнялся в ходе эволюции живой природы. С другой стороны, чтобы в биогеоценозе был возможен круговорот веществ, необходимо наличие в экосистеме организмов, создающих органические вещества из неорганических и преобразующие энергию излучения Солнца, а также организмов, которые используют эти органические вещества и снова превращают их в неорганические соединения.

Основу подавляющего большинства биогеоценозов составляют зеленые растения – производители органического вещества (продуценты). В биогеоценозе обязательно присутствуют растительноядные и плотоядные животные – потребители живого органического вещества (консументы) и, наконец, разрушители органических остатков – преимущественно микроорганизмы, которые доводят распад органических веществ до простых минеральных соединений (редуценты). В биогеоценозе каждая из этих трех главных групп образована многими видами.

Процесс саморегуляции проявляется в том, что все население существует совместно, не уничтожая полностью друг друга, а лишь ограничивая численность особей каждого вида определенным уровнем. Например в дубраве листьями дуба питается несколько сотен видов насекомых, но в нормальных условиях каждый вид представлен столь малым количеством особей, что их общая деятельность не наносит существенного вреда дереву и лесу. Между тем, все насекомые обладают большой плодовитостью. Многие виды способны давать 2–3 поколения за лето. Следовательно, при отсутствии ограничивающих факторов численность любого вида насекомых возросла бы очень быстро и привела бы к разрушению экологической системы.

Наблюдения показывают, что некоторая часть потомства погибает под влиянием различных неблагоприятных условий погоды. Но основную массу уничтожают другие члены биогеоценоза: хищные и паразитические насекомые, птицы, болезнетворные микроорганизмы.

Животные остатки очень быстро уничтожаются жуками-мертвоедами, кожеедами, личинками падальных мух и другими насекомыми, а также гнилостными бактериями. Труднее разлагается клетчатка и другие прочные вещества, составляющие значительную часть растительного опада. Но и они служат пищей для ряда организмов, например, грибков и бактерий, имеющих специальные ферменты, которые расщепляют клетчатку и другие вещества до легкоусвояемых сахаров.

Вопрос 3. Рассмотреть в аквариуме рыб, найти разные виды и объяснить, почему особи разных видов не скрещиваются между собой

Чаще всего в аквариумах встречаются наиболее неприхотливые виды рыб: живородящие – гуппи, меченосцы, пецилии; лабиринтовые – трихогастры, макроподы, бойцовые рыбки; карповые – данио, барбусы; цихловые – скалярии, цихлазомы, а также донные виды рыб – локарии и др.

Несмотря на ограниченность жизненного пространства, особи разных видов рыб не скрещиваются между собой из-за действия различных механизмов биологической, или репродуктивной, изоляции.

Во-первых, экологические механизмы, связанные со снижением вероятности встречи партнеров в период размножения из-за различий в образе жизни и сроках спаривания, которые во многом зависят от температуры окружающей водной среды.

Во-вторых, этологические (поведенческие) механизмы. Половой диморфизм самок и самцов рыб разных видов наиболее проявляется в брачный период. Каждому виду рыб характерна своя окраска, форма плавников и другие ориентиры, по которым партнеры отыскивают особей своего вида.

Кроме того, разным видам рыб свойственно свое инстинктивное поведение в период нереста, «ритуал ухаживания» за самкой, особенно у живородящих видов.

В-третьих, морфофизиологические механизмы, связанные с различиями в строении полового аппарата и процессов размножения.

В-четвертых, генетические механизмы, обусловленные различным хромосомным набором. При скрещивании форм с различными хромосомными наборами появляются гибриды либо стерильные (бесплодные), либо с пониженной жизнеспособностью.

Билет № 22

Вопрос 1. Роль генотипа и среды в повышении продуктивности сельскохозяйственных растений и животных

Успех селекционной работы в определенной степени зависит от генетического разнообразия исходной группы организмов. В основе селекции лежит закон гомологических рядов Н. И. Вавилова, согласно которому близкие по эволюционному происхождению роды и виды имеют сходные ряды наследственной изменчивости. Так, черная окраска семян встречается у многих злаковых; у животных также наблюдаются сходные мутации: у млекопитающих – альбинизм, отсутствие волосяного покрова, гемофилия и т. п. Это позволяет при знании ряда вариантов признаков в пределах одного вида предвидеть наличие аналогичных вариантов у представителей родственных видов и родов.

Большой вклад в селекцию плодовых растений внес ученый-селекционер И. В. Мичурин. Важное место в селекционной работе Мичурина занимало управление доминированием. В конкретных условиях среды у гибридов преимущественно доминируют те признаки, которые получают наиболее благоприятные условия для своего развития. Если один из родительских сортов был морозостойким, а другой обладал хорошими вкусовыми качествами плодов, то развития этих качеств в гибриде И. В. Мичурин достигал специальными приемами выращивания такого гибрида. К их числу относится метод ментора. Воспитание в гибриде желательных качеств достигается путем специальных прививок между гибридом и одним из родительских сортов. Дальнейшее развитие гибрида идет под влиянием растения-воспитателя (ментора).

Для преодоления нескрещиваемости при отдаленной гибридизации Мичурин применял метод предварительного вегетативного сближения – черенок одного вида (рябины) прививали в крону растения другого вида (груши), после 5-6-летнего питания за счет веществ подвоя происходило сближение физиологических и биохимических свойств привоя и подвоя. Затем, во время цветения рябины, ее цветки опыляли пыльцой груши, при этом осуществлялось скрещивание.

Для животных характерно в основном половое размножение. В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определенное значение также учет экстерьера, т. е. совокупности внешних признаков животного. Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков.

В селекции животных широко применяют два вида скрещивания: родственное (инбридинг) и неродственное (аутбридинг). Инбридинг ведет к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к средовым факторам, снижением плодовитости и т. п. Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. Скрещивание внутри породы или между породами сопровождается строгим отбором, что позволяет поддерживать полезные качества и усиливать их в последующих поколениях.

Важнейшим направлением в селекции животных является применение гетерозиса, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие.

Вопрос 2. Изменения в биогеоценозах. Причины смены биогеоценозов. Охрана биогеоценозов

Хотя биогеоценоз является саморегулирующейся системой, стремящейся к устойчивому состоянию, однако последнее никогда не достигается полностью. Этому препятствует непостоянство внешних условий, например, климатических, а также изменения, возникающие в результате жизнедеятельности организмов, из которых состоит биогеоценоз.

Поэтому ни один биогеоценоз не существует вечно, рано или поздно он сменяется другим. Способность к сменам – одно из важнейших свойств биогеоценозов. Длительное существование популяций на одном месте изменяет биотоп так, что он становится малопригодным для одних видов, но подходящим для жизни других видов. В результате на этом месте развивается другой, более приспособленный к новым условиям биоценоз. Такая последовательная, необратимая, направленная смена одного биогеоценозадругим называется сукцессией. В зависимости от состояния и свойств среды различают первичные и вторичные сукцессии. Первичные сукцессии начинаются на лишенных жизни местах – на скалах, песчаных дюнах, наносах рек. Вторичные сукцессии развиваются на месте сформировавшихся экосистем после их нарушения в результате эрозии почв, вулканических извержений, пожаров, засухи. В таких местах обычно сохраняются богатые жизненные ресурсы, что влечет за собой довольно быструю сукцессию восстановительного типа.

Любой биогеоценоз развивается и эволюционирует. Ведущее значение в процессе смены наземных биогеоценозов принадлежит растениям, но их деятельность неотделима от деятельности остальных компонентов системы, и биогеоценоз всегда живет и изменяется как единое целое. Велика также роль деятельности человека.

Смена идет в определенных направлениях, а длительность существования различных биогеоценозов очень различна. Примером изменения недостаточно сбалансированной системы может служить зарастание водоема. Вследствие недостатка кислорода в придонных слоях воды часть органического вещества остается неокисленной и не используется в дальнейшем круговороте. В глубоких местах остатки планктона откладываются на дне, образуя мелкозернистый ил. В прибрежной зоне накапливаются остатки водной растительности, образующие торфянистые отложения. Водоем мелеет, чему способствуют также отложения глины и песка, поступающие с водосборной площади. Прибрежная водная растительность распространяется к центру водоема, образуются торфяные отложения. Озеро постепенно превращается в болото. Исчезают рыбы и планктон открытых участков. Многие растения и животные замещаются другими видами, более приспособленными к условиям болот. Окружающая наземная растительность постепенно надвигается на место бывшего водоема. В зависимости от местных условий здесь может возникнуть осоковый луг, лес или иной тип биогеоценоза.

Некоторые устойчивые биогеоценозы после нарушения способны к самовосстановлению, которое осуществляется через ряд этапов. Примером может служить закономерная смена биогеоценозов при восстановлении елового леса. На открытых местах всходы ели повреждаются весенними заморозками, страдают от солнечного нагрева и не могут конкурировать со светолюбивыми растениями. В первые два года на вырубках и гарях буйно развиваются травянистые растения. Вскоре появляются многочисленные всходы березы, осины, сосны, которые вытесняют травянистую растительность и постепенно образуют мелколиственный или сосновый лес. Только теперь возникают условия, благоприятные для возобновления ели. Теневыносливые всходы ели успешно конкурируют с подростом светолюбивых лиственных пород. Когда ель достигает верхнего яруса, она полностью вытесняет лиственные деревья. Так, через ряд временных биогеоценозов восстанавливается исходный биогеоценоз елового леса.

Вопрос 3. Рассмотреть на влажном препарате клубеньки на корнях бобовых. Описать характер взаимоотношений клубеньковых бактерий и бобовых растений. Сравнить цепь питания с включением в нее данных организмов.

Бактериальные клубеньки на корнях бобовых растений представляют собой видоизмененные боковые корни, приспособленные к симбиозу с бактериями из рода «Ризобиум». Эти бактерии проникают через корневые волоски внутрь молодых корней и вызывают образование на них клубеньков.

Бактерии находятся в цитоплазме клеток в бактероидной ткани. Снаружи клубенек покрыт покровной тканью, между ней и бактероидной тканью находятся проводящие ручки, связанные с проводящей системой материнского корня. На кончике клубенька сохраняется образовательная ткань, благодаря которой он способен нарастать в длину. Между клетками корня и бактериями существует тесное биохимическое взаимодействие. Благодаря этому происходит синтез органических веществ с использованием молекулярного азота, недоступного в такой форме для высших зеленых растений. Часть веществ, синтезированных в клубеньках, усваивают бобовые растения, бактерии же используют различные вещества, находящиеся в корнях. Таким образом, бобовые растения и клубеньковые бактерии находятся в состоянии симбиоза.

Пример пищевой цепи:

Билет № 23

Вопрос 1. Разнообразие сортов растений и пород животных – результат селекционной работы ученых. Закон Н. И. Вавилова о гомологических радах в наследственной изменчивости

Одна из главных проблем человечества – обеспечение пищей и сельскохозяйственным сырьем жителей Земли. Успехи современной генетики позволяют увеличивать урожайность сельскохозяйственных растений и повышать продуктивность животноводства. Соединив воедино генетику и селекцию, использовав удобрения, защитив растения от болезней и вредителей, можно обеспечить нужный для человечества рост пищевых и технических ресурсов.

Одним из первых ученых, отчетливо осознавших необходимость сбора и хранения генетического капитала, накопленного природой и тысячелетней практикой земледельцев и скотоводов, был Н. И. Вавилов. Одна из его главных заслуг – создание теоретической базы генетики и селекции – закона гомологических рядов.

Н. И. Вавилову удалось установить, что систематически близкие виды растений имеют сходные и параллельные ряды наследственных форм, и чем ближе друг к другу стоят виды по происхождению, тем резче проявляется сходство между рядами морфологических и физиологических признаков. Например у различных родов злаков (риса, пшеницы, ячменя и др.) были обнаружены сходные ряды наследственных изменений по остистости колоса, окраске, форме и консистенции зерна, скороспелости, холодостойкости, отзывчивости на удобрение и т. д.

На основе обобщения огромного количества наблюдений Н. И. Вавилов сформулировал закон гомологических рядов наследственной изменчивости: виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

В основе гомологической изменчивости лежат две причины:

1) единство генетической структуры ближайших видов и родов, общность их происхождения;

2) определенное действие отбора в относительно сходных условиях внешней среды.

Использование закона гомологических рядов в селекции позволяет находить нужные, но отсутствующие в данное время у того или иного вида формы, если они имеются у родственного вида, или создавать их искусственно. У твердой пшеницы до 20-х гг. прошлого столетия были известны только остистые разновидности. Но наличие безостых разновидностей у мягкой пшеницы указывало на возможность нахождения или создания путем гибридизации безостых форм твердой пшеницы. Такие формы действительно были обнаружены Н. И. Вавиловым в Эфиопии, а А. П. Шехурдин вывел безостые сорта твердой яровой пшеницы.

На основании закона гомологических рядов были созданы безъязычковые формы ячменя, обнаружены и выведены формы и сорта чечевицы с зелеными семядолями, найдены формы сои с неопушенными бобами и т. д.

Гомологические ряды изменчивости имеются и у животных. Например, цветные расы (альбиносы, черные, голубые, горностаевые) известны у морских свинок, кроликов и некоторых других грызунов. У различных видов микроорганизмов обнаружены сходные биохимические наследственные изменения.

В настоящее время выращивается около 3000 полевых культур хорошо приспособленных к местным почвенно-климатическим условиям различных зон, высокоурожайных и ценных по качеству продукции. Большинство из них – результат работы генетиков. Причем можно смело сказать, что в будущем ожидаются еще большие достижения.

Вопрос 2. Агроценоз (агроэкосистема), его отличие от биогеоценоза. Пути повышения продуктивности агроценоза

Под влиянием сельскохозяйственного производства возникают искусственные экологические системы – агроценозы (поля, сенокосы, пастбища, сады, парки, лесные посадки). В промышленности также создаются искусственные экосистемы, например, для биологической очистки сточных вод, биотехнологического получения некоторых веществ, поддержания жизнедеятельности человека в космосе и др. В отличие от природных биогеоценозов, характеризующихся саморегуляцией, искусственные экологические системы для нормального функционирования нуждаются в том, чтобы человек сам поддерживал их гомеостаз, т. е. управлял ими.

В земледелии и лесном хозяйстве используют высокую продуктивность ранней фазы в сукцессиях естественных экосистем. Человек путем корчевания, выжигания, мелиорации, орошения свел многообразие продуцентов естественных биоценозов к начальным фазам развития экосистем с немногими (предпочтительно одним) продуцентами (монокультурой). По мере развития сельского хозяйства он сделал эти фазы постоянными, поддерживая монокультуры и снимая почти весь урожай. Это привело к неустойчивости искусственных сообществ по отношению к внешним факторам и к конкурирующим продуцентам (сорнякам) и консументам (вредителям).

В природных экосистемах за счет взаимодействия многообразия абиотических и биотических факторов (сопротивление среды) между всеми видами, входящими в биоценоз, устанавливается равновесие, в какой-то мере колеблющееся около средних значений плотности популяций. Эта относительная стабильность поддерживается притоком энергии Солнца и поглощением минеральных элементов, которые со временем вновь возвращаются в окружающую среду.

Но если система искусственно упрощена и при этом неуклонно повышается продукция постоянно изымаемой биомассы одного или нескольких видов культурных растений или домашних животных, то появляется необходимость постоянно возмещать расходуемые вещества с помощью удобрений и вносить добавочную энергию для поддержания почв, борьбы с сорняками и вредителями. В этом случае необходимо детальное знание биологии и экологии всех компонентов системы с целью рационального использования природных ресурсов в условиях научно-технического прогресса.

Вопрос 3. Описать фенотип своего организма и высказать предположение о его генотипе по ряду признаков, например, по цвету волос и глаз, росту

Я имею темные волосы, голубые глаза, нормальный рост тела.

Изучив фенотип моих родителей, могу предположить, что я являюсь гетерозиготой по пигментации волос, так как у моего отца волосы темные, а у матери – светлые.

У моих родителей голубые глаза так же, как и у меня, следовательно, по пигментации глаз я являюсь гомозиготой по рецессиву, так как голубые глаза – рецессивный признак.

Оба моих родителя имеют нормальный рост. Этот признак они передали мне, значит, по данному признаку я являюсь гомозиготой по доминанте, так как нормальный рост тела – доминантный признак.

Билет № 24

Вопрос 1. Основные методы селекции растений и животных: гибридизация и искусственный отбор

Основными методами селекции являются отбор и гибридизация. В растениеводстве по отношению к перекрестно опыляющимся растениям нередко применяется массовый отбор. При таком отборе в посеве сохраняют растения только с желательными качествами. При повторном посеве снова отбирают растения с определенными признаками. Сорт, получаемый этим способом, не является генетически однородным, и отбор, время от времени, приходится повторять.

Индивидуальный отбор сводится к выделению отдельных особей и получению от них потомства. Индивидуальный отбор приводит к выделению чистой линии – группы генетически однородных (гомозиготных) организмов.

Для внесения в генофонд создаваемого сорта растений или породы животных ценных генов и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. Так, сорт пшеницы может иметь прочный стебель и быть устойчивым к полеганию, но в то же время легко поражается ржавчиной. Другой же сорт, с тонкой и слабой соломиной, устойчив к ржавчине. При скрещивании этих двух пшениц у части растений в потомстве сочетаются признаки устойчивости к полеганию и к ржавчине. В животноводстве трудно получить массовый материал для отбора из-за малого числа потомков, поэтому широко используется индивидуальный отбор с тщательным учетом хозяйственно полезных признаков и гибридизации. У сельскохозяйственных животных проводят или близкородственное скрещивание с целью перевода большинства генов породы в гомозиготное состояние или неродственное скрещивание между породами или видами. Неродственное скрещивание имеет целью комбинацию нескольких полезных признаков. Такое скрещивание при последующем строгом отборе приводит к улучшению свойств породы.

При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении гибридов повышается жизнеспособность и наблюдается мощное развитие. Это явление получило название гибридной силы, или гетерозиса. Оно объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов. При последующих скрещиваниях гибридов между собой гетерозис затухает вследствие выщепления гомозигот.

Одно из выдающихся достижений современной селекции – разработка способов преодоления бесплодия межвидовых гибридов. Впервые это удалось осуществить в начале 20-х годов советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки.

Академику Н. В. Цицину удалось создать гибрид пшеницы с пыреем. На основе этого гибрида был выведен новый сорт зерно-кормовой пшеницы, который дает за три укоса в сезон до 300–450 ц/га зеленой массы. Методами отдаленной гибридизации получена новая зерновая и кормовая культура – гибрид пшеницы с рожью. Этот гибрид, названный тритикале, удачно сочетает ценные признаки пшеницы и ржи, давая высокие урожаи зерна и зеленой массы с высокими питательными качествами. Н. В. Цицину удалось получить этим способом и ряд кормовых культур.

Вопрос 2. Круговорот веществ в экосистеме. Основной источник энергии, обеспечивающий круговорот веществ

Существование биомассы связано с поступлением энергии и веществ из окружающей неорганической среды. Большинство веществ земной коры проходит через живые организмы и вовлечено в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза.

Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (CO2 и Н2О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей. Образованные в процессе фотосинтеза органические вещества могут служить источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим: от растений к растительноядным животным, от них – к плотоядным и т. д. Высвобождение заключенной в органических соединениях энергии происходит в процессе дыхания или брожения. В конечном итоге вся поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения. Поэтому биосфере необходим приток энергии извне.

Различают круговороты газового типа с резервуарами неорганических соединений в атмосфере или океанах (N2, О2, СО2, Н2О), и круговороты осадочного типа с менее обширными резервуарами в земной коре (Р, Са, Fе).

Круговорот азота связан с его превращением в нитраты за счет деятельности азотфиксирующих и нитрифицирующих бактерий. Нитраты усваиваются растениями из почвы или воды. В конце концов редуценты вновь переводят азот в газообразную форму и возвращают его в атмосферу.

Углерод, содержащийся в атмосфере в виде СО2, является одним из исходных компонентов для фотосинтеза, а затем вместе с органическим веществом потребляется консументами. При дыхании растений и животных, а также за счет редуцентов углерод в виде СО2 возвращается в атмосферу.

В отличие от азота и углерода резервуар фосфора находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами. Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.

От того, насколько регулярно осуществляется круговорот того или иного биогенного элемента, зависит продуктивность биогеоценоза, что имеет большое значение для сельскохозяйственного производства и лесного хозяйства. Сбалансированность биологического круговорота, т. е. его уравновешенность, а, следовательно, и устойчивость экосистемы определяются максимально возможным числом связей между видами в пищевой сети.

Вопрос 3. Решить задачу на определение аминокислот в молекуле белка с использованием таблицы генетического кода

Задача.

Фрагмент левой цепи ДНК имеет следующую структуру:

ТГТ-ТАТ-ЦАЦ-ЦГА-АГГ-ЦТТ-АЦА.

Какова первичная структура фрагмента белка, если он синтезируется согласно генетической информации на фрагменте правой цепи ДНК.

Решение.

1. Построим по принципу комплементарности правую цепь ДНК:

2. Используя принцип комплементарности, построим иРНК, кодирующую биосинтез данного фрагмента белка, по правой цепи ДНК:

УГУ-УАУ-ЦАЦ-ЦГА-АГГ-ЦУУ-АЦА иРНК

3. С помощью таблицы генетического кода определим последовательность включения аминокислот в белковую цепь:

вал-изолей-тре-арг-гли-фен-цис.

Ответ: первичная структура фрагмента молекулы белка, синтезированной согласно генетической информации на правой цепи ДНК, вал-изолей-тре-арг-гли-фен-цис.

Билет № 25

Вопрос 1. Гетерозис, полиплоидия, мутагенез, их использование в селекции

Основными методами селекции являются отбор и гибридизация. Однако методом отбора нельзя получить организмы с новыми признаками и свойствами. Для создания новых форм и получения оптимальных сочетаний признаков в селекции используют гибридизацию и сопутствующее ей явление – гетерозис. Было замечено, что гибриды первого поколения обладают повышенной жизнеспособностью и продуктивностью по сравнению с обеими родительскими формами. Кроме того, при создании новых сортов растений широко используются полиплоидия (умножение числа наборов хромосом) и индуцированный мутагенез. Применение этих методов в селекции растений и микроорганизмов дает больше положительных результатов, чем в селекции животных. Рассмотрим их использование в селекции.

Несмотря на некоторые недостатки самоопыления, его часто применяют в селекции у перекрестноопыляемых растений. В первую очередь выводят гомозиготные линии с устойчивыми желательными признаками. Затем проводят перекрестное опыление между разными самоопыляющимися линиями. При этом в ряде случаев появляются высокоурожайные гибриды. Этот прием называется межлинейной гибридизацией, при использовании которого проявляется эффект гетерозиса, или гибридной силы. В этом случае первое гибридное поколение обладает высокой урожайностью и жизнеспособностью. Во втором поколении эффект гетерозиса, как правило, снижается. Генетические основы гетерозиса еще недостаточно изучены, но, нет сомнений, что положительный эффект обусловлен высокой гетерозиготностью гибридов, связанной с проявлением повышенной физиологической активности. Гетерозис так же успешно применяется в животноводстве и птицеводстве.

Наследственные изменения (мутации) свойственны всем организмам. Происходят они в хромосомах под влиянием внешней или внутренней среды. Мутации затрагивают строение и функции организма. Известны как резкие наследственные отклонения, так и небольшие мутационные изменения, встречающиеся гораздо чаще. Они не являются полезными для организма приспособительными изменениями, а, напротив, вредны и часто приводят к его гибели. Существует несколько типов мутаций по характеру изменения генотипа. Наиболее распространенными являются генные мутации, представляющие собой качественные изменения отдельных генов, ведущие к появлению новых свойств организма. Мутации, связанные с видимыми в микроскоп изменениями хромосом, называют хромосомными. К ним относятся: перемещение одной части хромосомы на другую, поворот участка хромосомы на 180°, а так же изменение числа хромосом.

Особым типом наследственных изменений является полиплоидия, выражающаяся в кратном увеличении числа хромосом. Большинство культурных растений, по сравнению с родственными дикими видами, полиплоидны. Полиплоидные растения отличаются более мощным ростом, размером семян и плодов. К ним относятся пшеница, картофель, некоторые сорта сахарной свеклы, садовая земляника и др.

В настоящее время в селекции разработаны и широко используются методы экспериментального получения полиплоидов.

Мутации, связанные с изменениями строения или числа хромосом, называются геномными. Если они происходят в половых клетках, то проявляются в поколении, развивающемся из этих клеток. Изменения, происходящие в соматических клетках, носят название соматических мутаций. У животных такие мутации не передаются по наследству, тогда как у растений при помощи отводков и прививок возможно сохранение возникшего изменения.

Вопрос 2. Изменение биогеоценозов под влиянием деятельности человека, их последствия. Меры охраны биогеоценозов (на примере либо водоема, либо леса, либо болота)

Известно, что в природе распределение растений и животных происходит под влиянием множества факторов, продиктованных, в первую очередь, средой обитания, формируя сравнительно устойчивые комплексы – природные сообщества.

Такие комплексы различных взаимосвязанных видов, обитающих на определенной территории с более или менее однородными условиями существования, называются биогеоценозом. Таким образом, характеристика окружающей среды (состав почвы, влажность воздуха, температура) является определяющей в образовании природной системы, между составляющими которой происходит круговорот веществ. Система эта является устойчивой и саморегулирующейся, т. е. численность особей каждого вида поддерживается на определенном уровне.

Тем не менее, устойчивость биогеоценозов не является неизменной. Часто под влиянием внешних условий все же происходит либо изменение численности отдельных видов, либо изменение самих биогеоценозов.

Мощным фактором изменения экосистем является хозяйственная деятельность человека. Воздействие человека на природные экосистемы началось с момента становления человеческой цивилизации. Оно все время усиливалось вместе с увеличением численности населения планеты. В последнем столетии в связи с быстрым развитием промышленности, сельского хозяйства, ростом городов влияние человека приобрело решающее значение.

Большие изменения происходят в «зеленых зонах» городов, используемых для отдыха горожан. Растительность такой территории постоянно вытаптывается людьми, почва уплотняется, травмируются наземные органы растений, нарушается влагообмен почвы и организмов. В результате изменяется видовой состав растений и животных, нарушается экологическое равновесие и устойчивость природных экосистем. Очень сильно влияет на луговые, степные и пустынные экосистемы выпас скота. Снижается обилие ценных кормовых злаков, уменьшается количество видов растений, состав сообществ упрощается.

К примеру неконтролируемая охота порой приводит к практически полному уничтожению ценных промысловых зверей и птиц. В свою очередь это зачастую ведет к усиленному размножению видов, ранее подавляемых этими животными. Длительность существования биогеоценозов различна, а их смена происходит в различных направлениях. Примером изменения биогеоценоза может служить зарастание водоема. Из-за недостатка кислорода в придонных слоях водоема часть органического вещества остается неокисленной и не участвует в круговороте. В глубоких местах на дне откладываются остатки планктона, образуя мелкозернистый ил. У берега происходит накопление остатков водной растительности, образуя торфянистые отложения. Отложения глины и песка, поступающие с водосборной площади, еще более ускоряют процесс обмеления. Постепенно прибрежная водная растительность распространяется к центру водоема, превращая его в болото.

Растения и животные замещаются другими видами, более приспособленными к данной среде обитания – болоту. Со временем окружающая растительность вытеснит бывший водоем, и, в зависимости от местных характеристик, здесь возникнет луг, лес или другой тип биогеоценоза.

На примере водоема видно, что биогеоценоз постоянно развивается и эволюционирует. Изучая последовательность и закономерность этого процесса, человек учится управлять им. Необходимо проводить меры по сохранению естественных биогеоценозов, следить за соотношением численности населяющих его видов. Для этого нужно учитывать биологические особенности каждого из них, взаимодействие с другими видами, а так же влияние экологических факторов.

Вопрос 3. Рассмотреть микропрепарат покровной ткани листа, выявить особенности ее строения, обеспечивающие поступление углекислого газа в лист и испарение воды

Покровные ткани растений имеют пограничное расположение с внешней средой, поэтому служат главным барьером, защищая от высыхания, механических повреждений и микробов. Эти ткани также принимают участие в процессах газообмена и транспирации (испарении воды).

К числу покровных тканей растений относится эпидерма листа – сложная ткань, в состав которой входят основные клетки эпидермы, устьичные клетки и трихомы (выросты и волоски).

Эпидерма покрывает листовую пластинку, образуя верхнюю и нижнюю кожицу.

Поступление углекислого газа в лист и испарение воды осуществляется благодаря работе устьиц. На 1 мм2 поверхности листа содержится от 100 до 700 устьиц.

Устьица вместе с побочными примыкающими клетками образуют устьичный аппарат. Каждое устьице состоит из двух замыкающих клеток бобовидной формы, между которыми находится устьичная щель. Механизм движения замыкающих клеток, в результате которого устьичная щель открывается или закрывается, основан на том, что оболочки замыкающих клеток неравномерно утолщены и неравномерно растягиваются при изменении объема клеток. Изменение объема клеток происходит вследствие изменения величины осмотического давления. Движение устьиц имеет очень сложный характер и зависит от экологических факторов окружающей среды.

Билет № 26

Вопрос 1. Естественный и искусственный отборы, их сходство и отличия, роль в возникновении многообразия органического мира

Естественным отбором называется процесс, при котором выживают и оставляют после себя потомство преимущественно особи, наделенные наследственными изменениями, полезными в данных условиях. Наследственные изменения у особей одной популяции происходят в различных направлениях и часто бывают разными в одинаковых условиях среды. В борьбе за существование выживают и дают многочисленное потомство особи, наделенные признаками, полезными в данной среде. Если условия среды остаются неизменными, то и популяции в них обладают постоянными признаками. При изменении условий среды выживать будут особи с мутациями, полезными в новых условиях. Особи с вредными наследственными изменениями дают малочисленное потомство, мало приспособленное к выживанию в данной среде. Таким образом, естественный отбор ведет к накоплению полезных наследственных изменений, создавая новые, более приспособленные для выживания, особи. Он является главной движущей силой эволюции.

Искусственный отбор основан на изоляции природных популяций и избирательном скрещивании организмов, обладающих желательными для человека признаками. В природе невозможно объединить все признаки организма для максимального экономического эффекта в любых условиях, поэтому программы селекции разрабатывают таким образом, чтобы улучшить качественно и количественно главный ценный признак породы. Иногда новые свойства у животных или растений появляются случайно, и человек может при желании закрепить эти признаки в породе, сорте.

Сохраняя и используя на размножение только те организмы, которые изменились в нужную (при данном направлении селекции) сторону, и отбраковывая все прочие, человек постоянно меняет наследственные особенности породы или сорта, приспосабливая их к своим разнообразным потребностям. Например, когда человек начал селекцию сахарной свеклы, в ее корнеплодах содержалось всего 5 % сахара, а сейчас – до 22 %. Дикие курицы несли в год 5-10 яиц, а куры лучших современных пород – 300 и более яиц в год.

В результате селекции идет изменение частот аллелей и генотипов в популяции. Это эволюционный механизм, приводящий к созданию новых пород, линий, сортов, штаммов.

Наследственная изменчивость является основой как искусственного, так и естественного отборов. В результате искусственного отбора появляются новые породы и сорта, естественный отбор приводит к формированию новых видов. Между этими процессами есть существенные различия. Выводя новые породы и сорта, человек руководствуется лишь желанием придать им определенные признаки. Выведенные особи могут быть наделены вредными для организма признаками, напрямую влияющими на жизнеспособность организма (многие культурные породы свиней почти не способны передвигаться вследствие накопления значительной массы). Поэтому без помощи человека такие существа выжить не способны.

При естественном же отборе происходит накопление жизненно важных признаков применительно к данной среде.

Таким образом, при естественном отборе признаки организмов зависят и определяются природными условиями, а при искусственном отборе признаки определяются условиями, соответствующими желаниям и интересам человека.

Вопрос 2. Биосфера, ее границы. Причины бедности жизни в морских глубинах, в литосфере, в верхних слоях атмосферы

Земная оболочка, населенная в процессе эволюции живыми организмами, получила название биосферы (греч. «биос» – жизнь, «сфера» – шар). Впервые это название было дано Ж. Б. Ламарком, учение же о биосфере было создано академиком В. И. Вернадским. Биосфера объединяет все живые организмы и места их обитания. Биосфера охватывает поверхность Земли, верхнюю часть литосферы(до 1,5-10 км), всю гидросферу и нижнюю часть атмосферы – тропосферу.

Литосфера – это внешняя твердая оболочка земного шара, состоящая из двух слоев. Верхний слой состоит из осадочных пород и гранита, нижний – из базальта. Толщина слоев неравномерная. Живое вещество в литосфере в основном сосредоточено в ее верхних нескольких десятках метров. Однако неактивные формы жизни (споры, цисты и нефтебактерии) зарегистрированы и на глубинах до 3 – 4 км. Распространение жизни в более глубокие области литосферы ограничено высокими температурами земных недр.

Гидросферу составляют все моря и океаны, озера и реки. Гидросфера – это прерывистая водная оболочка, 97 % которой составляют соленые океанические воды. 2,2 % – воды ледников, остальная часть приходится на поверхностные и грунтовые, пресные воды. Наибольшая плотность живого вещества приходится на поверхностные прогреваемые и освещаемые солнцем воды и прибрежные зоны. Однако формы жизни присутствуют во всей гидросфере. Над поверхностью литосферы и гидросферы высотой до 100 км простирается атмосфера, состоящая из нижнего слоя – тропосферы (15 км) и верхнего – стратосферы.

Жизнь присутствует только в нижнем слое – тропосфере, над которой располагается озоновый экран. Слой озона поглощает губительное для живых организмов коротковолновое ультрафиолетовое излучение Солнца.

Границы биосферы определяются наличием условий, необходимых для жизни различных организмов.

Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей, а нижний – высокой температурой земных недр. В этих слоях обитают лишь низшие организмы – бактерии. Основная же масса живых существ концентрируется у поверхности суши и океана, так как здесь такие природные характеристики, как температура, влажность, химический состав воздуха и земли являются наиболее благоприятными для жизни. Здесь есть природные образования, настолько насыщенные живыми организмами, что доля минеральной, неживой части составляет немногим более половины всего объема. Это почвы, илы. Их называют биокосными телами. В сущности, вся биосфера тоже биокосное тело, крайне неравномерно насыщенное жизнью: на ледниках ее почти нет, в тропических лесах, почвах, илах она процветает.

В верхних слоях атмосферы, в морских глубинах и недрах литосферы концентрация живых существ намного беднее из-за неблагоприятных для жизни условий (сильной солнечной радиации, отсутствия солнечного света, недостатка кислорода, высокой температуры и др.). Однако жизнь не ограничена исключительно пределами биосферы. Микробы, споры, пыльца растений обнаружены высоко в стратосфере. Не исключено, что они могут покидать Землю и уноситься в космическое пространство. Но это не означает расширения биосферы. Вне ее могут существовать только неактивные формы жизни, находящиеся в состоянии скрытой жизнедеятельности. А в биосфере жизнь не только существует, но и выполняет геологическую работу, участвует в круговороте веществ и энергии.

Вопрос 3. Рассмотреть микропрепарат поперечного среза листа, найти основную ткань, выявить особенности ее строения и черты приспособленности к фотосинтезу

Непосредственно под эпидермой (кожицей листа) находится основная ткань – хлорофиллоносная паренхима (хлоренхима). Различают палисадную (столбчатую) и губчатую паренхиму мякоти листа.

Палисадная паренхима содержит до 80 % всего хлорофилла, поэтому ее основная функция – фотосинтез. Для этого в листе столбчатая ткань всегда располагается в условиях наилучшего освещения. Чаще всего она образует под верхней кожицей 1–2 слоя, плотно примыкающих друг к другу овальных клеток с тонкими оболочками и большим количеством хлоропластов.

Губчатая паренхима образована округлыми зелеными клетками и большими межклетниками, благодаря которым образуется громадная внутренняя поверхность листа, во много раз превышающая наружную. Губчатая паренхима расположена на нижней стороне листа. Она выполняет две основные функции – фотосинтеза и газообмена.

Толщина столбчатой и губчатой паренхимы зависит от условий обитания растений. У светолюбивых растений хорошо развита столбчатая паренхима. Она располагается в несколько слоев. У тенелюбивых растений столбчатая ткань образует один слой клеток, а губчатая – один-два слоя.

Билет № 27

Вопрос 1. Сорта растений и породы животных как искусственные популяции, их сходство и отличия с естественными популяциями. Причины многообразия сортов, пород и естественных популяций

Возникновение селекции как науки связано с необходимостью решения продовольственной проблемы населения. Основной задачей всей селекционной работы является выведение новых и совершенствование уже существующих сортов растений, пород животных, штаммов микроорганизмов. Сортом, породой или штаммом называют устойчивую группу (популяцию) живых организмов, искусственно созданную человеком и имеющую определенные наследственные особенности. Все особи внутри этой группы имеют идентичные наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на действие факторов внешней среды.

Ч. Дарвин был уверен, что все многообразие сортов растений и пород животных – заслуга человека. В начале он приступил к изучению пород и сортов, и только затем – видов в их естественном состоянии. Он опровергнул теорию сторонников учения о постоянстве и неизменяемости видов, состоящую в том, что каждая порода и каждый сорт произошли от отдельного дикого вида, и доказал, что люди сами изменяли в разных направлениях родоначальные дикие виды. Причем новые породы и сорта появлялись постоянно, а их признаки были более совершенны по сравнению с предыдущими. В большинстве случаев человек при помощи отбора достигал новых свойств, но иногда они появлялись случайно. Часто для получения в потомстве новых комбинаций генов проводили скрещивание и только затем применяли искусственный отбор. Искусственный отбор необходим для совершенствования признаков растений или животных в соответствии с потребностями и интересами человека. Часто выведенные породы или сорта совсем не похожи друг на друга и на дикие виды, от которых произошли. Разница между естественными и искусственными популяциями состоит в том, что при естественном отборе происходит сохранение признаков, наиболее полезных для организма в условиях среды. Поэтому такие особи хорошо приспособлены для выживания, тогда как особи в искусственных популяциях не смогли бы выжить без помощи человека.

Признаки, которые выбирались у организмов человеком, не всегда были полезными для них самих, нередко снижали их конкурентоспособность по сравнению с организмами других искусственных групп или их дикими сородичами. Во многих случаях при искусственном отборе с определенной направленностью возрастала гомозиготность генотипов, при этом ряд отрицательных признаков сразу проявлялся в фенотипе особей. Для поддержания нормальной жизнедеятельности таких групп организмов человек должен прилагать постоянные усилия, тогда как их дикие родственные формы успешно функционируют в природе сами. Таким образом, индивидуальный и массовый отбор организмов позволил получить огромное разнообразие сортов растений и пород животных, отвечающих потребностям человеческого общества, но зависимых в природе от человека.

Действие естественного отбора обусловлено изменением условий окружающей среды. Тогда внутри вида начинается процесс расхождения признаков, или дивергенция. Из одного вида происходит образование нескольких новых форм. Те из них, что имеют наибольшие расхождения по признакам с исходными формами, не конкурируют с ними и поэтому имеют больше шансов выжить и оставить после себя потомство. Процесс образования внутривидовых группировок – подвидов – носит название микроэволюции.

Вопрос 2. Биомасса или живое вещество биосферы. Закономерности распространения биомассы в биосфере, тенденция ее изменения под влиянием деятельности человека

Совокупность всех живых организмов, населяющих Землю, составляет живое вещество, или биомассу, планеты. Наибольшей концентрации в биосфере биомасса достигает у поверхности суши и океана, так как в этих местах природные условия, такие как температура и влажность воздуха, наличие кислорода и других химических элементов, являются в высшей степени пригодными для жизни.

В верхних слоях атмосферы с высокой концентрацией ультрафиолетовых лучей, в глубинах океана, куда не проникает дневной свет, и в недрах литосферы, где температура достигает более 100 °С, концентрация жизни сравнительно мала. Крайних пределов биосферы достигают лишь низшие организмы – бактерии. Накопление биомассы так же находится в прямой зависимости от наличия зеленой растительности, выделения кислорода и поглощения углекислого газа при фотосинтезе. В биосфере растительная масса намного превосходит животную. Биомасса составляет около 0,01 % массы всей биосферы, но ее значение на Земле огромно.

От полюсов по направлению к экватору количество как растительности, так и биомассы соответственно возрастает. Наибольшим же разнообразием видов (свыше 8000) отличаются влажные тропические леса. Вместе с растительностью к экватору возрастает число животных видов. Наивысшей плотности биомасса достигает при большом разнообразии строения организмов, т. е. при различной приспособленности видов к условиям совместного существования. Такая картина наблюдается в биогеоценозах, где виды связаны между собой цепями питания. Цепи питания образуют сложную сеть передачи химических элементов и энергии от одного звена к другому.

На биомассу суши большое влияние оказывает человек. Его действия направлены на увеличение земли для собственной жизнедеятельности за счет сокращения площадей, производящих биомассу. Часто хозяйственная и промышленная деятельность его приводит к массовой гибели почвенных организмов, играющих важную роль в биосфере.

Более 2/3 поверхности планеты занимает Мировой океан. Поверхность океана глубиной до 100 м занимают микроскопические одноклеточные водоросли, образующие микропланктон. Он является основной пищей животных, населяющих океан. Кроме этого дно океана заселено множеством организмов, которые носят название бентоса. В океане происходит около 1/3 всего фотосинтеза планеты. Однако количество биомассы в Мировом океане в 1000 раз меньше, чем на суше.

Деятельность человека, в частности добыча нефти в морях и ее транспортировка в танкерах, приводит к загрязнению вод Мирового океана. Это крайне губительно сказывается на жителях морских глубин. Для сохранения биомассы Мирового океана необходимо соблюдение мер по защите и охране вод от загрязнения. Несмотря на то, что человечество представляет собой сравнительно небольшую биомассу в биосфере, масштабы его деятельности столь велики, что часто наносят непоправимый ущерб природной среде. Используя природные ресурсы, человек в течение года перемещает более 4 трлн т вещества, создает множество химических соединений, часть которых не включается в круговорот веществ, а накапливается и загрязняют биосферу. Промышленные выбросы загрязняют окружающую среду и вызывают снижение уровня солнечной радиации.

Вопрос 3. Из предложенных гербарных материалов, коллекций, муляжей, чучел составить цепь питания, определить направление движения вещества и энергии в ней. Объяснить, почему в данной цепи начальное звено составляют растения

Рассмотрим пищевую цепь на примере биогеоценозов суши. На суше пищевые цепи обычно состоят из 3–5 звеньев, например: степные злаки → кузнечики → ящерицы → змеи → степной орел. В данной цепи начальное звено составляют зеленые растения, непосредственно преобразующие энергию солнечного света в энергию органических веществ, необходимых для жизнедеятельности всех остальных живых организмов, входящих в пищевую цепь.

Количество растительного вещества, служащего основой цепи питания, в несколько раз больше, чем общая масса растительноядных животных, а масса хищников меньше, чем масса растительноядных. Эта закономерность называется правилом экологической пирамиды.

При переходе на следующий трофический уровень поток энергии уменьшается в направлении от продуцентов (зеленых растений) к консументам (животным), так как большая часть энергии тратится организмами на обмен веществ с окружающей средой и рассеивается в виде тепла.

Билет № 28

Вопрос 1. Многообразие видов в природе, его причины. Влияние деятельности человека на многообразие видов. Биологический прогресс и регресс

Дарвин доказал, что образование новых видов в природе происходит под действием движущих сил эволюции. Если происходит изменение условий существования, внутри вида начинается процесс расхождения признаков, или дивергенция. Из одного вида происходит образование нескольких новых форм. В 30-х гг. XX в. ученые обратили свое внимание на популяцию, как форму существования вида. Многочисленные исследования привели к пониманию начальных этапов эволюционного процесса, или микроэволюции, приводящей к образованию новых внутривидовых группировок – популяций и подвидов. Микроэволюция легко поддается изучению и наблюдению, так как ее развитие происходит в сравнительно небольшом промежутке времени.

Различают два способа видообразования: географический и экологический. Экологическое видообразование действует, когда популяции одного вида остаются в пределах своего ареала, однако условия обитания у них различны.

Географическое видообразование – это процесс расширения ареала исходного вида или его разделение на изолированные части физическими преградами, такими как горы, реки и т. д. В этом случае популяции встречаются с новыми почвенно-климатическими условиями, сообществами растений и животных. Постоянно действующий естественный отбор приводит к изменению генного состава популяции – к микроэволюции. Следовательно, эволюция популяции способна привести к постепенному образованию нового вида.

В процессе борьбы за существование и под действием естественного отбора способностью к выживанию обладают лишь особи с полезными, применительно к данной среде обитания, наследственными изменениями. На протяжении длительного времени различия между популяциями становятся более явственными, постепенно возникает биологическая изоляция – неспособность к скрещиванию особей разных популяций одного вида. На разных этапах микроэволюции экологическое и географическое видообразование могут действовать либо совместно, дополняя друг друга, либо попеременно. Поэтому трудно установить границы каждого из способов видообразования.

Деятельность человека несомненно оказывает мощное влияние на видообразование. К примеру, образование некоторых подвидов растений и животных напрямую связаны со сроками проведения сельскохозяйственных работ.

Известно, что начался процесс распада на две группы вида черных дроздов. Одна группа обитает исключительно в глухих лесах, другая же селится возле жилья человека.

В процессе эволюции развитие живой природы происходило от низших форм к высшим, т. е. носило прогрессивный характер, способами достижения которого являются ароморфозы, идиоадаптация и дегенерация. Ароморфоз представляет собой такие эволюционные изменения, которые способствуют общему подъему организации, влияют на повышение жизнедеятельности. Идиоадаптация – это небольшие эволюционные изменения, помогающие особям приспособиться к определенным условиям среды обитания. Дегенерация – это такие эволюционные изменения, которые ведут к упрощению организации. В природе существует и биологический регресс, характеризующийся чертами, противоположными биологическому прогрессу: уменьшением числа особей, сужением ареала, уменьшением числа видов и популяций. Биологический регресс часто приводит к вымиранию видов.

Вопрос 2. Живое вещество и его роль в круговороте веществ и превращении энергии в биосфере

Совокупность всех живых организмов составляет живое вещество, или биомассу, планеты. Жизнедеятельность биомассы напрямую связана с биологическим круговоротом веществ, оказывает мощное влияние на устойчивость биосферы.

Деятельность живых организмов в биосфере сопровождается извлечением из окружающей среды больших количеств минеральных веществ. После смерти организмов, составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, осуществляемый живыми существами между литосферой, атмосферой и гидросферой. Под круговоротом веществ понимают повторяющийся процесс превращения и перемещения веществ в природе, имеющий более или менее выраженный циклический характер.

Биомасса Земли задействована во всех химических процессах биосферы, где одновременно происходят поступление и потеря энергии. 42 % поступающего на Землю потока энергии Солнца отражается Землей в мировое пространство, а 58 % поглощается атмосферой и почвой. Из них более 20 % излучается, а 10 % используется на испарение воды с поверхности Мирового океана. Солнечная энергия аккумулируется зелеными растениями и используется ими в процессе образования органических веществ и выделения кислорода. Вместе с растениями эта энергия поступает в другие организмы.

Зеленые растения, используя энергию Солнца, превращают неорганические вещества в органические. Органические вещества являются первичной продукцией для животных, грибов и бактерий. Животные перерабатывают ее во вторичную животную продукцию. Грибы и бактерии разлагают обе эти продукции до минеральных веществ.

В каждом биогеоценозе растения и животные, связанные между собой сложными цепями питания и обменом веществ с неживой природой, являются составной частью всех круговоротов воды и химических элементов, происходящих в биосфере.

Процесс образования органических веществ называется эндотермическим, процесс их окисления – экзотермическим. Окисление органических веществ происходит в процессе дыхания, брожения и гниения с выделением теплоты, воды и углекислого газа.

В круговороте веществ биомасса выполняет биогеохимические функции: газовую, концентрационную, окислительно-восстановительную и биохимическую.

Газовая функция выполняется зелеными растениями, в процессе фотосинтеза выделяющими кислород; растениями и животными, выделяющими углекислый газ, а так же бактериями, восстанавливающими сероводород, азот и др.

Благодаря газовой функции сформировался современный состав атмосферы, значительно отличающийся от такового в добиосферный период.

Концентрационная функция представляет собой потребление и накопление биомассой различных химических элементов: кислорода, марганца, азота, кальция, калия и др.

Окислительно-восстановительная функция заключается в окислении и восстановлении веществ организмами, населяющими почву и гидросферу. При этом происходит образование солей, оксидов и других соединений.

Биохимическая функция связана с питанием, дыханием, размножением, разрушением и гниением организмов, т. е. с биогенной миграцией атомов. Функция человеческой деятельности и созданный ею промышленный круговорот химических элементов является отдельным подразделением, так или иначе влияющим на прочие процессы.

Вопрос 3. Рассмотреть под микроскопом лист элодеи, найти хлоропласты в клетках и объяснить их роль в фотосинтезе

Хлоропласты – двухмембранные органоиды клетки линзовидной формы, содержащие пигмент хлорофилл, придающий растениям зеленый цвет, а также принимающий непосредственное участие в процессе фотосинтеза.

Энергия света поглощается хлорофиллом и переводит его в возбужденное состояние. Электрон в составе хлорофилла поглощает квант света определенной длины волны и перемещается на более высокий энергетический уровень этой молекулы, запуская механизмы световой фазы фотосинтеза. Под действием солнечного света в хлоропластах происходит расщепление молекул воды – фотолиз, при этом образуются электроны, которые возмещают потери их хлорофиллом, и кислород, как побочный продукт реакции.

В составе хлоропластов имеется фермент рибулезо-1,5-дифосфаткарбоксилаза, катализирующий соединение молекулы углекислого газа с производным рибозы (1,5-рибулезодифосфатом). Этот фермент обеспечивает реакции темновой фазы фотосинтеза, которые сопровождаются превращением неорганического соединения (углекислого газа) в органические (углеводы), в химических связях которых запасается солнечная энергия.

Билет № 29

Вопрос 1. Приспособленность организмов к среде обитания, ее причины. Относительный характер приспособленности организмов. Приспособленность растений к использованию света в биогеоценозе

Главным результатом эволюции является совершенствование приспособленности организмов к условиям обитания, что влечет за собой совершенствование их организации. В результате действия естественного отбора сохраняются особи с полезными для их процветания признаками и совершенствуются самые разные формы приспособленности.

Наиболее типичной формой приспособленности является покровительственнаяокраска, которая делает организм незаметным на фоне окраски предметов в местах его обитания. Сходство некоторых животных с предметами окружающей среды не только по окраске, но и по форме тела называется маскировкой. При мимикрии у особи развивается окраска и форма тела, которые делают ее похожей на организмы, обладающие активными средствами защиты. У ряда ядовитых существ приспособленность проявляется в форме предупредительнойокраски – наличия яркой запоминающейся окраски тела в комплексе с другими средствами защиты (яд, секрет пахучих желез, острые зубы, резкие звуки и т. д.).

Приспособленность организма к среде обитания характеризуется внешним и внутренним строением животных, их поведением и инстинктами. Обитая в одной и той же среде, животные по-разному приспосабливаются к ней. Крот роет землю конечностями, слепыш – головой; для плавания тюлень использует ласты, а дельфин – плавники. Одним из важных приспособлений для сохранения вида является интенсивность размножения. Виды, чье потомство подвержено массовому уничтожению, наиболее плодовиты, тогда как виды с развитым инстинктом заботы имеют малочисленное потомство.

Каждое из приспособлений образовалось в результате наследственной изменчивости под действием естественного отбора и борьбы за существование.

Судить о целесообразности особенностей строения и функциях организма возможно лишь по отношению к каким-либо конкретным условиям окружающей среды. Всякая приспособленность является полезной лишь в тех условиях, под влиянием которых происходило ее формирование. Но даже в этих условиях она относительна. Заяц-беляк, незаметный на снегу, отлично виден на фоне стволов деревьев. Ночная бабочка, влекомая к огню инстинктом, погибает. Часто причиной гибели животного становится узкая специализация какого-либо органа. Так стриж, имеющий очень длинные крылья и короткие ноги, способен взлетать лишь оттолкнувшись от края чего-либо. Приспособления растений, защищающие их от поедания животными, так же относительны. Верблюжья колючка является излюбленной пищей коз и верблюдов. Относительной является и польза симбиоза – сожительства организмов разных видов. К примеру в лишайнике грибные нити иногда разрушают соседствующие с ними водоросли. Все эти факты доказывают относительный характер приспособленности к окружающей среде живых организмов.

Приспособленность растений к использованию света в биогеоценозах можно рассмотреть на примере леса. В результате длительного естественного отбора растения в лесу образовали несколько ярусов. Наиболее светолюбивые породы – дуб, ясень, липа – составляют верхний ярус. Ниже располагаются сопутствующие им яблоня, клен и др. За ними находится ярус подлеска, состоящий из кустарников: лещины, крушины, калины и т. д. Самый нижний ярус – травянистые растения. Итак, чем ниже ярус, тем более теневыносливые растения его занимают.

Вопрос 2. Изменения в биосфере под влиянием деятельности человека. Сохранение равновесия в биосфере как основа ее целостности

С появлением первого современного человека в эволюции биосферы стал действовать новый фактор – антропогенный. В результате хозяйственной деятельности происходит быстрое истощение природных ресурсов, вымирание многих видов живых организмов, загрязнение и отравление среды, разрушение естественных экосистем. Причина конфликта человека с природной средой заключается в том, что человек является одновременно и биологическим, и социальным существом. Его социальные потребности значительно выше биологических. Практическая деятельность человека не всегда опирается на полное понимание им законов природы.

Человечество является сравнительно небольшой биомассой, однако масштабы его деятельности столь велики, что оказывают мощное воздействие на многие процессы, происходящие в биосфере. Развитие промышленности, науки и техники за сравнительно небольшой промежуток времени привело к значительному ускорению биогенной миграции элементов в биосфере. Человек постоянно создает новые сорта растений и породы животных, своей деятельностью влияет на ускорение эволюции видов в природе, меняет органический мир и природную среду. Численность людей постоянно растет, а значит увеличивается территория, занимаемая ими. Происходит это неминуемо за счет уменьшения площадей, производящих биомассу. Хозяйственная деятельность человека происходит с использованием сырьевых ресурсов планеты, а это означает вырубку лесов, добычу полезных ископаемых, эксплуатацию водоемов и почвы. Человек разрушает естественные биогеоценозы, взамен создавая искусственные агроценозы. К ним относятся искусственно создаваемые лесопосадки, поля, луга, пастбища. При их создании человек использует различные агроприемы, такие как посев высокопродуктивных культур, мелиорацию, внесение удобрений. Но иногда хозяйственная деятельность человека приводит к печальным последствиям. К примеру химизация сельского хозяйства вызывает массовую гибель не только насекомых-вредителей, но и различных почвенных организмов, играющих важную роль в биосфере. Отходы промышленности загрязняют атмосферу и гидросферу химическими соединениями, не включенными в круговорот веществ. В результате этого над крупными географическими регионами происходит снижение солнечной активности, а в водоемах исчезают рыбы и растения. Мировой океан так же является объектом хозяйственной деятельности человека. Люди научились строить плотины, менять русла рек, добывать полезные ископаемые со дна океана. Тонкая пленка нефти от водного транспорта покрывает поверхность океана, нарушая естественный газообмен с атмосферой. Радиоактивные отходы, испытания ядерного оружия приводят к повышенной радиоактивности воздуха, водоемов и почвы. Радиоактивность передается по цепям питания, вызывая онкологические заболевания у людей.

В данный момент перед человечеством стоит задача не только разумного, рационального использования природных богатств; создания промышленности, не нарушающей экологические системы, но и необходимость проведения мер по защите и улучшению окружающей среды.

Для реализации этой цели разработана система природоохранных мероприятий, важнейшими среди которых являются:

– разработка системы мониторинга (длительного наблюдения за окружающей средой);

– создание охраняемых территорий;

– принятие законов, обеспечивающих правовую основу природоохранных мероприятий;

– разработка методов разведения редких и исчезающих видов организмов в их природной среде;

– просветительская работа с населением.

Вопрос 3. Решить задачу на промежуточный характер наследования

Задача.

При скрещивании между собой растений красноплодной земляники всегда получаются растения с красными ягодами, а белоплодной – с белыми. В результате скрещивания обоих сортов получаются розовые ягоды. Какое потомство получится при опылении красноплодной земляники пыльцой растения с розовыми ягодами?

Решение.

1. Растения с красными и белыми плодами при скрещивании между собой не давали в потомстве расщепления, следовательно, они гомозиготны.

Генотип красноплодной клубники АА, а белоплодной – аа.

2. Скрещивание гомозиготных растений, отличающихся по фенотипу друг от друга, приводит к образованию гетерозиготного растения с розовыми плодами, что указывает на неполное доминирование, или промежуточный характер наследования.

Генотип гетерозиготных растений – Аа.

3. Запись скрещивания:

Ответ: 50 % растений будут иметь красные, а 50 % – розовые плоды.

Билет № 30

Вопрос 1. Экологическое и географическое видообразования, их сходство и различие

У организмов, размножающихся половым путем, вид представляет совокупность связанных между собой популяций. Пока особи разных популяций хоть изредка скрещиваются между собой и обмениваются генетическим материалом, вид остается целостной системой. При возникновении между популяциями каких-либо препятствий, затрудняющих обмен генами (изоляции) может произойти расчленение вида. Из-за отсутствия потока генов генофонд такой популяции становится самостоятельным. Постепенно в генофонде каждой изолированной группы будут накапливаться новые мутации, способствующие накоплению существенных различий между организмами этих групп. Изолированные группы популяций могут эволюционировать самостоятельно, что в итоге приводит к возникновению новых видов.

Видообразование – это процесс возникновения одного или нескольких новых видов на основе существовавшего ранее. Известно несколько способов видообразования.

Географическое видообразование – это видообразование, происходящее при расширении ареала исходного вида, либо при разделении ареала на части, изолированные физическими преградами. Существенную роль играет пространственное разобщение. Такое разобщение создается географическими барьерами (например горными хребтами, морями, реками) или различиями в предпочитаемых местообитаниях. Так, при расширении ареала вида популяции сталкиваются с иными почвенно-климатическими условиями и сообществами животных, растений, микроорганизмов. Внутри популяции постоянно происходят наследственные изменения, борьба за существование, естественный отбор.

Существующие барьеры препятствуют потоку генов, организмы или их гаметы теряют возможность встретиться. В результате длительного разобщения популяций происходит изменение генного состава популяции – микроэволюция, ведущая к образованию нового вида. Этот процесс можно проследить на примере лиственницы сибирской. Ее популяции заселили огромные, с разными условиями существования, территории от Урала до Байкала. Мутации, постоянные скрещивания, при которых появлялись новые комбинации генов, делали популяцию неоднородной. В борьбе за существование и в результате естественного отбора способностью к выживанию обладали лишь особи, наделенные полезными в данных условиях изменениями. Постепенно различия между популяциями становились более резкими, что повлекло за собой возникновение биологической изоляции – нескрещиваемости особей разных популяций одного вида. Так возник новый вид – лиственница даурская.

Экологическое видообразование не связано с территориальным разобщением популяций в период создания генетической изоляции и происходит в тех случаях, когда популяции одного вида остаются в пределах своего ареала, но условия обитания у них различны. Под влиянием эволюционных процессов генный состав популяций меняется вплоть до возникновения биологической изоляции, характерной для разных видов. К примеру, известно пять видов синицы, образовавшихся в связи с пищевой специализацией. Это синица большая, питающаяся крупными насекомыми в садах и парках; лазоревка, добывающая мелких насекомых в коре и почках деревьев; хохлатая синица, употребляющая в пищу семена хвойных деревьев, а так же гаичка и московка, питающиеся насекомыми в лесах разных типов.

В процессе микроэволюции один способ видообразования сменяет другой, либо они действуют одновременно, поэтому часто практически невозможно точно установить границы действия каждого способа в отдельности.

Вопрос 2. Учение В. И. Вернадского о биосфере. Ведущая роль живого вещества в преобразовании биосферы

Представление о том, что живые организмы планеты взаимодействуют с окружающей средой и изменяют ее, возникло давно. Еще Ж. Б. Ламарк в своих трудах говорил об особом пространстве, заселенном организмами и преобразуемом ими. Термин биосфера был предложен в 1875 г. австрийским геологом Э. Зюссом. Однако точное определение этого понятия дал русский геохимик В. И. Вернадский. Творчески развив идеи своих предшественников, он создал учение о биосфере – живой оболочке нашей планеты.

Центральным понятием в учении Вернадского о биосфере является живое вещество, которое ученый определяет как совокупность живых организмов. Помимо растений и животных к живому веществу относится и человечество, влияние которого на геохимические процессы Земли отличается от влияния на эти процессы прочих живых существ. Человек постоянно создает новые сорта растений и породы животных, которые не способны существовать в природе без его помощи. Вернадский рассматривает «геохимическую работу живого вещества в неразрывной связи животного, растительного царств и культурного человечества как работу единого целого». Живое вещество является компонентом биосферы и может существовать и развиваться только в ее рамках. По словам Вернадского, живые организмы являются основой биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей.

Общая масса живого вещества (биомасса) составляет около 2000 млрд тонн сухого веса. Величина огромная, однако в сравнении с массой земной коры (3 Ч 1017т) очень небольшая. Живое вещество обладает способностью обновляться. В течение года воспроизводится около 250 млрд тонн биомассы. Подобный показатель называется продуктивностью. Условия жизни на планете сдерживают рост биомассы. За время существования живого вещества (около 3 млрд лет) общая биомасса в сотни раз превысила массу земной коры. Такая активность делает биосферу могучим геологическим и географическим фактором на планете. Биосфера участвует в круговороте веществ и энергии. Наиболее активно вовлекаются в круговорот кислород, углерод, азот, фосфор, сера и вода. Биогеохимические круговороты действуют очень активно. Живое вещество пропускает через себя всю воду земли за 2 млн лет, весь кислород атмосферы – за 2 тыс. лет, а атмосферную углекислоту – за 300 лет. Геохимическую активность биосферы изучает наука биогеохимия.

Основой существования биосферы и происходящих в ней процессов является астрономическое положение Земли, расстояние до Солнца и наклон земной оси к плоскости земной орбиты. Эти факторы влияют на климат Земли и жизненные циклы всех существующих на ней организмов. Солнце является основным источником энергии планеты и регулятором всех ее биологических, геологических и химических процессов. В зависимости от изменений окружающей среды происходит изменение живых организмов. Согласно теории Дарвина, накопление данных изменений является источником эволюции. Вернадский предположил, что «живое вещество имеет свой процесс эволюции, проявляющийся в изменении с ходом геологического времени вне зависимости от изменения среды». При этом он ссылается на непрерывное усложнение центральной нервной системы животных и увеличение ее значения в биосфере. Процесс эволюции видов оказывает влияние на всю биосферу, в том числе на почву и водоемы. Указывает на это тот факт, что почва и реки девона совсем другие, чем в третичной и, тем более, нашей эпохе. Таким образом происходит взаимодействие между живой и неживой природой.

Вопрос 3. Решить задачу на моногибридное скрещивание

Задача.

Ген черной масти у крупного рогатого скота доминирует над геном красной масти. Какое потомство F1 получится от скрещивания чистопородного черного быка с красными коровами? Какое потомство F2 получится от скрещивания между собой гибридов?

Решение.

А – ген черной масти;

а – ген красной масти.

1. Красные коровы несут рецессивный признак, следовательно, они гомозиготны по рецессивному гену и их генотип – аа.

2. Бык несет доминантный признак черной масти и является чистопородным, т. е. гомозиготным, его генотип – АА.

3. Гомозиготные организмы дают только один сорт гамет, поэтому сперматозоиды быка несут только доминантный ген А, а яйцеклетки коров несут только рецессивный ген а.

4. При слиянии гамет в F1 потомство будет единообразным с генотипом Аа.

5. Гетерозиготы (Аа) с равной вероятностью формируют гаметы, содержащие гены А и а. Их слияние носит случайный характер, поэтому в F2 будут встречаться животные с генотипами АА (25 %), Аа (50 %) и аа (25 %), т. е. особи с доминантным признаком будут составлять примерно 75 %.

Запись скрещивания:

Ответ: при скрещивании чистопородного черного быка с красными коровами все потомство будет черного цвета. При скрещивании между собой гибридов F1 в их потомстве (F2) наблюдается расщепление: 3/4 особей – черного цвета, а 1/4 – красного.