Глава 30
ВНУТРЕННЯЯ ГЕОМЕТРИЯ КРИСТАЛЛОВ
§ 1. Внутренняя геометрия кристаллов
§ 2. Химические связи в кристаллах
§ 3. Рост кристаллов
§ 4. Кристаллические решетки
§ 5. Симметрии в двух измерениях
§ 6. Симметрии в трех измерениях
§ 7. Прочность металлов
§ 8. Дислокации и рост кристаллов
§ 9. Модель кристалла по Брэггу и Наю
§ 1. Внутренняя геометрия кристаллов
Мы закончили изучение основных законов электричества и магнетизма и теперь можем заняться электромагнитными свойствами вещества. Начнем с изучения твердых тел, точнее кристаллов. Если атомы в веществе движутся не слишком активно, они сцепляются и располагаются в конфигурации с наименьшей возможной энергией. Если атомы где-то разместились так, что их расположения отвечают самой низкой энергии, то в другом месте атомы создадут такое же расположение. Поэтому в твердом веществе расположение атомов повторяется.
Иными словами, условия в кристалле таковы, что каждый атом окружен определенно расположенными другими атомами, и если посмотреть на атом такого же сорта в другом месте, где-нибудь подальше, то обнаружится, что окружение его и в новом месте точно такое же. Если вы выберете атом еще дальше, то еще раз найдете точно такие же условия. Порядок повторяется снова и снова и, конечно, во всех трех измерениях.
Представьте, что вам нужно создать рисунок на обоях или ткани или некий геометрический чертеж для плоской поверхности, в котором (как вы предполагаете) имеется элемент, повторяющийся непрерывно снова и снова, так что можно сделать эту поверхность настолько большой, насколько вам захочется. Это двумерный аналог задачи, которая решается в кристалле в трех измерениях. На фиг. 30.1,а показан общий характер рисунка обоев. Один элемент повторяется регулярно, и это может продолжаться бесконечно.
Фиг. 30.1. Повторяющийся рисунок обоев в двух намерениях.
Геометрические характеристики этого рисунка обоев, учитывающие только его свойства повторяемости и не касающиеся геометрии самого цветка или его художественных достоинств, показаны на фиг. 30.1,б. Если вы возьмете за отправную какую-то точку, то сможете найти соответствующую точку, сдвигаясь на расстояние а в направлении, указанном стрелкой 1. Вы можете попасть в соответствующую точку, также сдвинувшись на расстояние b в направлении, указанном другой стрелкой. Конечно, имеется еще много других направлений. Так, вы можете из точки a отправиться в точку b и достигнуть соответствующего положения, но такой шаг можно рассматривать как комбинацию шага в направлении 1 вслед за шагом в направлении 2. Одно из основных свойств ячейки состоит в том, что ее можно описывать двумя кратчайшими шагами к соседним эквивалентным расположениям. Под «эквивалентными» расположениями мы подразумеваем такие, что в каком бы из них вы ни находились, поглядев вокруг себя, вы увидите точно то же самое, что и в любом другом положении. Это фундаментальное свойство кристаллов. Единственное различие в том, что кристалл имеет трехмерное, а не двумерное расположение и, естественно, каждый элемент решетки представляет не цветы, а какие-то образования из атомов, например шести атомов водорода и двух атомов углерода, регулярно повторяющихся. Порядок расположения атомов в кристалле можно исследовать экспериментально с помощью дифракции рентгеновских лучей. Мы кратко упоминали об этом методе раньше и не будем добавлять здесь к сказанному чего-либо, а отметим лишь, что точное расположение атомов в пространстве установлено для большинства простых кристаллов, а также для многих довольно сложных кристаллов.
Внутреннее устройство кристалла проявляется по-разному. Во-первых, связующая сила атомов в определенных направлениях сильнее, чем в других направлениях. Это означает, что имеются определенные плоскости, по которым кристалл разбить легче, чем в других направлениях. Они называются плоскостями спайности. Если кристалл расколоть лезвием ножа, то скорее всего он расщепится именно вдоль такой плоскости. Во-вторых, внутренняя структура часто проявляется в форме кристалла.
Представьте себе, что кристалл образуется из раствора. В растворе плавают атомы, которые в конце концов пристраиваются, когда находят положение, отвечающее наименьшей энергии. (Все происходит так, как если бы обои были созданы из цветов, плавающих в разных направлениях до тех пор, пока случайно один из цветков не зацепился бы накрепко за определенную точку, за ним другой и т. д., пока постепенно не образовался узор.) Вы, вероятно, догадываетесь, что в одних направлениях кристалл будет расти быстрее, чем в других, создавая по мере роста некоторую геометрическую форму. Именно поэтому внешняя поверхность многих кристаллов носит на себе отпечаток внутреннего расположения атомов.
В качестве примера на фиг. 30.2,a показана типичная форма кристалла кварца, ячейка которого гексагональна. Если вы внимательно посмотрите на этот кристалл, то обнаружите, что его внешние грани образуют не слишком хороший шестиугольник, потому что не все стороны имеют одинаковую длину, а часто бывают даже совсем разными.
Фиг. 30.2. Природный кристалл кварца (а), крупинки соли (б) и слюды (в).
Но в одном отношении этот шестиугольник вполне правильный: углы между гранями составляют в точности 120°. Ясное дело, размер той или иной грани случайно складывается в процессе роста, но в углах проявляется геометрия внутреннего устройства. Поэтому все кристаллы кварца имеют разную форму, но в то же время углы между соответствующими гранями всегда одни и те же.
Внутреннее геометрическое устройство кристалла хлористого натрия также легко понять из его внешней формы.
На фиг. 30.2, б показана типичная форма крупинки соли. Это опять не совершенный куб, но грани действительно перпендикулярны друг другу. Более сложный кристалл — это слюда, он имеет форму, изображенную на фиг 30.2, в. Этот кристалл в высшей степени анизотропен — он очень прочен в одном направлении (на рисунке — горизонтальном) и его трудно расколоть, а в другом направлении он легко расщепляется (в вертикальном). Обычно он используется для получения очень прочных, тонких листов. Слюда и кварц — примеры природных минералов, содержащих кремний. Третий минерал, содержащий кремний,— это асбест, обладающий тем интересным свойством, что его легко растянуть в двух направлениях, а в третьем он не поддается растягиванию. Создается впечатление, что он сделан из очень прочных нитей.
§ 2. Химические связи в кристаллах
Механические свойства кристаллов несомненно зависят от рода химических связей между атомами. Поражающая неодинаковая прочность слюды по разным направлениям зависит от характера межатомной связи в этих направлениях. Вам наверняка уже рассказывали на лекциях по химии о разных типах химических связей. Прежде всего бывают ионные связи, мы уже говорили о них, когда толковали о хлористом натрии. Грубо говоря, атомы натрия теряют по одному электрону и становятся положительными ионами; атомы хлора приобретают электрон и становятся отрицательными ионами. Положительные и отрицательные ионы располагаются в трехмерном шахматном порядке и удерживаются вместе электрическими силами.
Ковалентная связь (когда электроны принадлежат одновременно двум атомам) встречается чаще и обычно более прочна. Так, в алмазе атомы углерода связаны ковалентными связями с ближайшими соседями в четырех направлениях, поэтому-то кристалл такой твердый. Ковалентная связь имеется и в кристалле кварца между кремнием и кислородом, но там связь на самом деле только частично ковалентная. Поскольку там электроны распределяются неравномерно между двумя атомами, атомы частично заряжены и кристалл до некоторой степени ионный. Природа не так проста, как мы пытаемся ее представить: существуют всевозможные градации между ковалентной и ионной связями.
Кристалл сахара обладает другим типом связи. Он состоит из больших молекул, атомы которых сильно связаны ковалентной связью, так что молекула образует прочную структуру. Но так как сильные связи вполне насыщены, то между отдельными молекулами имеется относительно слабое притяжение. В таких молекулярных кристаллах молекулы сохраняют, так сказать, свою индивидуальность, и внутреннее устройство можно изобразить так, как на фиг. 30.3.
Фиг. 30.3. Решетка молекулярного кристалла.
Поскольку молекулы не очень крепко держатся друг за друга, то кристалл легко можно расколоть. Такого рода кристаллы резко отличаются от кристаллов типа алмаза, который есть не что иное, как одна гигантская молекула, не поддающаяся разлому без того, чтобы не нарушить сильные ковалентные связи.
Другим примером молекулярного кристалла может служить парафин.
Предельным случаем молекулярного кристалла являются вещества типа твердого аргона. Там притяжение между атомами незначительно — каждый атом представляет собой вполне насыщенную одноатомную «молекулу». Но при очень низких температурах тепловое движение настолько слабо, что крошечные межатомные силы могут заставить атомы расположиться в правильном порядке, подобно картофелинам, тесно набитым в кастрюле.
Металлы образуют совсем особый класс веществ. Там связь имеет совершенно другой характер. В металле связь возникает не между соседними атомами, а является свойством всего кристалла. Валентные электроны принадлежат не одному-двум атомам, а всему кристаллу в целом. Каждый атом вкладывает свой электрон в общий запас электронов, и положительные атомные ионы как бы плавают в океане отрицательных электронов. Электронный океан, подобно клею, удерживает ионы вместе.
Поскольку в металлах нет особых связей в каком-то определенном направлении, то там связь слабо зависит от направления. Однако металлы — это еще кристаллические тела, потому что полная энергия принимает наименьшее значение, когда ионы образуют упорядоченную систему, хотя энергия наиболее выгодного расположения обычно ненамного ниже других возможных расположений. В первом приближении атомы многих металлов подобны маленьким шарикам, упакованным с максимальной плотностью.
§ 3. Рост кристаллов
Попробуйте представить себе образование кристаллов на Земле в естественных условиях. В поверхностном слое Земли все сорта атомов перемешаны между собой. Вулканическая деятельность, ветер и вода постоянно их смешивают, и они то и дело взбалтываются и перемешиваются. Но, несмотря на это, каким-то чудом атомы кремния постепенно начинают отыскивать друг друга, а потом и атомы кислорода, чтобы образовать вместе кремнезем. К одним атомам поодиночке пристраиваются другие, образуя кристалл, и смесь разделяется. А где-нибудь по соседству атомы хлора и натрия находят друг друга и строят кристалл соли.
Как же получается, что кристалл, начав строиться, позволяет присоединяться к себе только определенному сорту атомов? Так происходит потому, что вся система в целом стремится к наименьшему возможному значению энергии. Растущий кристалл примет новый атом, если благодаря ему энергия станет наименьшей. Но откуда кристалл знает, что атом кремния (или кислорода), будучи поставлен в данное место, приведет к наименьшему значению энергии? Узнаёт он это методом проб и ошибок. В жидкости все атомы находятся в непрестанном движении. Каждый атом ударяется о соседние примерно 1013 раз в секунду. Если он ударяется о подходящее место в растущем кристалле, вероятность того, что он улетит обратно, будет несколько меньше там, где меньше энергия. Продолжая так пробовать миллионы лет, с частотой 1013 проб в секунду, атомы постепенно оседают на тех местах, где находят для себя положение с наименьшей энергией. В конце концов из них вырастают большие кристаллы.
§ 4. Кристаллические решетки
Расположение атомов в кристалле — кристаллическая решетка — может принимать множество геометрических форм. Мы опишем сначала простейшие решетки, характерные для большинства металлов и инертных газов в твердом состоянии. Это кубические решетки, которые могут быть двух видов: объемноцентрированная кубическая (фиг. 30.4, а) и гранецентрированная кубическая (фиг. 30.4, б).
Фиг. 30.4. Элементарная ячейка кубического кристалла, а — объемноцентрированная; б — гранецентрированная.
Конечно, на рисунках показан только один «куб» решетки; вы должны мысленно представить, что все это повторяется в трех измерениях до бесконечности. Для простоты на рисунке показаны только «центры» атомов. В настоящих кристаллах атомы скорее похожи на соприкасающиеся друг с другом шарики. Темные и светлые шарики на приведенных рисунках могут, вообще говоря, означать либо разные, либо одинаковые сорта атомов. Так, железо имеет объемноцентрированную кубическую решетку при низких температурах и гранецентрированную кубическую решетку при более высоких температурах. Физические свойства этих двух кристаллических форм совершенно различны.
Но как возникают такие формы? Представьте, что вы должны как можно плотнее упаковать атомы — шарики. Можно было бы начать со слоя, где шарики уложены в «гексагональной плотной упаковке», как показано на фиг. 30.5, а.
Фиг. 30.5. Устройство гексагональной решетки с плотной упаковкой.
Затем можно построить второй слой наподобие первого, но сместив его в горизонтальном направлении, как показано на фиг. 30.5, б. А потом можно наложить и третий слой. Вот тут — внимание! Третий слой можно наложить двумя разными способами. Если вы начнете класть третий слой, помещая атом в точку А на фиг. 30.5, б, то каждый атом в третьем слое окажется прямо над атомом первого нижнего слоя. Если же начать класть третий слой, помещая атом в точку В, то атомы третьего слоя будут расположены как раз над центрами треугольников, образованных тремя атомами нижнего слоя. Любая другая начальная точка эквивалентна А или В, так что существует только два способа размещения третьего слоя.
Если третий слой имеет атом в точке В, кристаллическая решетка будет гранецентрированной кубической, но видно это под некоторым углом. Забавно, что, начав с шестиугольников, можно прийти к кубической структуре. Но обратите внимание, что куб, рассматриваемый под определенным углом, имеет очертания шестиугольника. Например, фиг. 30.6 может изображать либо плоский шестиугольник, либо и куб в перспективе!
Если к фиг. 30.5, б добавляется третий слой, начиная с атома в точке А, то кубической структуры не возникает и у решетки будет только гексагональная симметрия. Ясно, что обе описанные нами возможности дают одинаковую плотную упаковку.
Некоторые металлы (например, серебро и медь) выбирают первую альтернативу — решетка у них гранецентрированная кубическая. Другие же (например, бериллий и магний) предпочитают вторую возможность и образуют гексагональные кристаллы. Очевидно, появление той или иной решетки не может зависеть только от способа упаковки маленьких шариков, но должно еще определяться и другими факторами. В частности, оказывается существенной небольшая угловая зависимость межатомных сил (или в случае металлов от энергии электронного океана).
Фиг. 30.6. Что это — шестиугольник или куб?
Все эти вещи вы несомненно узнаете из курса химии.
§ 5. Симметрии в двух измерениях
Теперь мне хотелось бы обсудить некоторые свойства кристаллов с точки зрения их внутренних симметрии. Основное свойство кристалла состоит в том, что если вы сдвинетесь от одного атома на один период решетки к соответствующему атому, то попадете в точно такое же окружение. Это фундаментальное утверждение. Но если бы вы сами были атомом, то могли бы заметить другое передвижение, которое привело бы вас в точно такое же окружение, т. е. в другую возможную «симметрию». На фиг. 30.7, а показан еще один возможный узор обоев (хотя вы, наверно, такого никогда не видали).
Фиг. 30.7. Узор обоев с высокой симметрией.
Предположим, что мы сравниваем окружения в точках А и В. Вы могли бы сперва подумать, что они одинаковы. Не совсем. Точки С и D эквивалентны А, но окружение В подобно А, только если все рядом обращать как будто в зеркале.
В этом узоре имеются еще и другие виды «эквивалентных» точек. Так, точки Е и F обладают «одинаковыми» окружениями, за тем исключением, что одно повернуто на 90° по отношению к другому. Узор особенный. Вращение на 90°, проделанное сколько угодно раз вокруг такой вершины, как A, снова дает тот же узор. Кристалл с такой структурой имел бы на поверхности прямые углы, но внутри он устроен сложнее, чем простой куб.
Теперь, когда мы описали ряд частных случаев, попытаемся вывести все возможные типы симметрии, какие может иметь кристалл. Прежде всего посмотрим, что получается в плоскости. Плоская решетка может быть определена с помощью двух так называемых основных векторов, которые идут от одной точки решетки к двум ближайшим эквивалентным точкам. Два вектора 1 и 2 суть основные векторы решетки на фиг. 30.1. Два вектора а и b на фиг. 30.7, а — основные векторы для изображенного там узора. Мы могли бы, конечно, с тем же успехом заменить а на -а или b на -b. Раз а и b одинаковы по величине и перпендикулярны друг другу, то вращение на 90° переводит а в b и b в а и снова дает ту же решетку.
Итак, мы видим, что существуют решетки, обладающие «четырехсторонней» симметрией. А раньше мы описали плотную упаковку, основанную на шестиугольнике и обладающую шестисторонней симметрией. Вращение набора кружков на фиг. 30.5, а на угол 60° вокруг центра любого шарика переводит рисунок сам в себя.
Какие виды вращательной симметрии существуют еще? Может ли быть, например, вращательная симметрия пятого или восьмого порядка? Легко понять, что они невозможны. Единственная симметрия, связанная с фигурой, имеющей более четырех сторон, есть симметрия шестого порядка. Прежде всего покажем, что симметрия более чем шестого порядка невозможна. Попытаемся вообразить решетку с двумя равными основными векторами, образующими угол менее 60° (фиг. 30.8, а).
Фиг. 30.8. Симметрия вращения выше шестого порядка невозможна (а); симметрия вращения пятого порядка невозможна (б).
Мы должны предположить, что точки В и С эквивалентны А и что а и b — наиболее короткие векторы, проведенные из А до эквивалентных соседей. Но это, безусловно, неверно, потому что расстояние между В и С короче, чем от любого из них до А. Должна существовать соседняя точка D, эквивалентная А, которая ближе к А, чем к В или С. Мы должны были бы выбрать b' в качестве одного из основных векторов. Поэтому угол между основными векторами должен быть равен 60° или еще больше. Октагональная симметрия невозможна.
А как быть с пятикратной симметрией? Если мы предположим, что основные векторы а и b имеют одинаковую длину и образуют угол 2p/5=72° (фиг. 30.8, б), то должна существовать эквивалентная точка решетки в D под 72° к линии АС. Но вектор b' от Е к D тогда короче b, и b уже не основной вектор. Пятикратной симметрии быть не может. Единственные возможности, не приводящие к подобным трудностям, это q=60, 90 или 120°. Очевидно, допустимы также нуль и 180°. Можно еще так выразить полученный нами результат: рисунок может не меняться при повороте на полный оборот (ничего не изменяется), полоборота, одну треть, одну четверть или одну шестую оборота. И этим исчерпываются все возможные вращательные симметрии на плоскости — всего их пять. Если 8=2p/n, то мы говорим об «n-кратной» симметрии, или симметрии n-го порядка. Мы говорим, что узор, для которого n равно 4 или 6, обладает более «высокой симметрией», чем узор с n, равным 1 или 2.
Вернемся к фиг. 30.7, а. Мы видим, что узор там обладает четырехкратной вращательной симметрией. На фиг. 30.7, б мы нарисовали другое расположение, которое обладает теми же свойствами симметрии, что и фиг. 30.7, а. Маленькие фигурки, похожие на запятые,— это асимметричные объекты, которые служат для определения симметрии изображения внутри каждого квадратика. Заметьте, что запятые в соседних квадратиках перевернуты попеременно, так что элементарная ячейка больше одного квадратика. Если бы запятых не было, рисунок по-прежнему обладал бы четырехкратной симметрией, но элементарная ячейка была бы меньше. Посмотрим внимательно на фиг. 30.7; мы обнаружим, что они обладают еще и другими типами симметрии. Так, отражение относительно каждой пунктирной линии R—R воспроизводит рисунок без изменений. Но это еще не все. У них есть еще один тип симметрии. Если отразить рисунок относительно линии y—y, а затем сдвинуть на один квадратик вправо (или влево), то снова получится первоначальный рисунок. Линия у—у называется линией скольжения.
Этим исчерпываются все типы симметрии в пространстве двух измерений. Есть еще одна пространственная операция симметрии, которая на плоскости эквивалентна вращению на 180°, однако в трехмерном пространстве она не сводится к этому вращению, а есть совсем другая операция. Я говорю об инверсии. Под инверсией мы подразумеваем такую операцию, когда любая точка, отвечающая вектору смещения из начала координат R (например, точка А на фиг. 30.9, б), переносится в точку —R.
Фиг. 30.9. Операция симметрии, называемая инверсией.
а — рисунок меняется; б — рисунок не меняется при преобразовании R ® -R;
в — в трех измерениях рисунок не симметричен после операции инверсии;
г — рисунок симметричен в трех измерениях.
Инверсия рисунка а на фиг. 30.9 дает новый рисунок, а инверсия рисунка б приводит к такому же рисунку. На двумерном узоре (вы можете это видеть) инверсия рисунка б в точке А эквивалентна повороту на 180° вокруг той же самой точки. Предположим, однако, что мы сделали узор на фиг. 30.9, б трехмерным, вообразив на маленьких шестерках и девятках «стрелочки», смотрящие из страницы кверху. В результате инверсии в трехмерном пространстве все стрелочки перевернутся и направятся вниз, так что узор не воспроизведется. Если мы обозначим острия и хвосты стрелок точками и крестиками, то сможем образовать трехмерный рисунок (фиг. 30.9, в), который несимметричен относительно инверсии, или же мы можем получить рисунок, который такой симметрией обладает (фиг. 30.9, г). Заметьте, что трехмерную инверсию нельзя получить никакой комбинацией вращений.
Если мы будем характеризовать «симметрию» рисунка (или решетки) разного рода операциями симметрии, которые мы только что описали, то окажется, что в двумерном случае существуют 17 различных форм узоров. Узор с наинизшей возможной симметрией мы изобразили на фиг. 30.1, а узор с одной из наивысших симметрии — на фиг. 30.7. Отыщите сами все 17 возможных форм рисунков.
Удивительно, как мало типов из этих 17 используется при изготовлении обоев и тканей! Всегда видишь одни и те же три или четыре основных типа. В чем здесь дело? Неужели так убога фантазия художников или, может быть, многие из возможных типов рисунков не будут радовать глаз?
§ 6. Симметрии в трех измерениях
До сих пор мы говорили только об узорах в двух измерениях. На самом же деле нас интересуют способы размещения атомов в трех измерениях. Прежде всего очевидно, что трехмерный кристалл имеет три основных вектора. Если же мы поинтересуемся возможными операциями симметрии в трех измерениях, то обнаружим, что существует 230 возможных типов симметрии! По некоторым соображениям, эти 230 типов можно разделить на семь классов, представленных на фиг. 30.10.
Фиг. 30.10. Семь классов кристаллической решетки.
Решетка с наименьшей симметрией называется триклинной. Ее элементарная ячейка представляет собой параллелепипед. Основные векторы все имеют разную длину и нет ни одной одинаковой пары углов между ними. И никакой вращательной или зеркальной симметрии здесь нет. Однако есть еще одна операция: при инверсии в узле элементарная ячейка может меняться, а может и не меняться. [Под инверсией в трех измерениях мы снова подразумеваем, что пространственное смещение R заменяется на -R, или, другими словами, точка с координатами (х, у, z) переходит в точку с координатами (-x,-y, -z). Поэтому симметрия триклинной решетки может быть только двух типов — с центром инверсии и без него.] Пока мы считали, что все векторы разные и расположены под произвольными углами. Если же все векторы одинаковы и углы между ними равны, то получается тригональная решетка, изображенная на рисунке. Ячейка такой решетки может иметь добавочную симметрию; она может еще и не меняться при вращении вокруг наибольшей телесной диагонали.
Если один из основных векторов, скажем с, направлен под прямым углом к двум остальным, то мы получаем моноклинную элементарную ячейку. Здесь возможна новая симметрия — вращение на 180° вокруг с. Гексагональная решетка — это частный случай, когда векторы а и b равны и угол между ними составляет 60°, так что вращение на 60, 120 или 180° вокруг вектора с приводит к той же самой решетке (для определенных внутренних типов симметрии).
Если все три основных вектора перпендикулярны друг другу, но не равны по длине, получается ромбическая ячейка. Фигура симметрична относительно вращений на 180° вокруг трех осей. Типы симметрии более высокого порядка возникают у тетрагональной ячейки, все углы которой прямые и два основных вектора равны. Наконец, имеется еще кубическая ячейка, самая симметричная из всех.
Основной смысл всего этого разговора о типах симметрии состоит в том, что внутренняя симметрия кристалла проявляется (иногда весьма тонким образом) в макроскопических физических свойствах кристалла. В гл. 31 мы увидим, например, что электрическая поляризуемость кристалла, вообще говоря, представляет собой тензор. Если описывать тензор в терминах эллипсоида поляризуемости, то мы должны доказать, что некоторые типы симметрии кристалла проявятся в этом эллипсоиде. Так, кубический кристалл симметричен по отношению к вращению на 90° вокруг любого из трех взаимно перпендикулярных направлений. Единственный эллипсоид с таким свойством,—очевидно, сфера. Кубический кристалл должен быть изотропным диэлектриком.
С другой стороны, тетрагональный кристалл обладает вращательной симметрией четвертого порядка. Две главные оси его эллипсоида должны быть равны, а третья должна быть параллельна оси кристалла. Аналогично, поскольку ромбический кристалл обладает вращательной симметрией второго порядка относительно трех перпендикулярных осей, его оси должны совпадать с осями эллипсоида поляризуемости. Точно так же одна из осей моноклинного кристалла должна быть параллельна одной из главных осей эллипсоида, хотя о других осях мы ничего сказать не можем. Триклинный кристалл не обладает вращательной симметрией, поэтому его эллипсоид может иметь любую ориентацию.
Как видите, мы можем с пользой провести время, придумывая всевозможные типы симметрии и связывая их со всевозможными физическими тензорами. Мы рассмотрели только тензор поляризуемости, здесь дело было простое, а для других тензоров, например для тензора упругости, рассуждать будет труднее. Существует раздел математики, называемый «теорией групп», который занимается такими вещами, но обычно можно сообразить все, что нужно, опираясь лишь на здравый смысл.
§ 7. Прочность металлов
Мы говорили, что металлы обычно имеют простую кубическую кристаллическую структуру; сейчас мы обсудим их механические свойства, которые зависят от этой структуры. Вообще говоря, металлы очень «мягкие», потому что один слой кристалла легко заставить скользить над другим. Вы, наверное, подумаете: «Ну, это дико — металлы ведь твердые». Нет, монокристалл металла легко деформируется.
Рассмотрим два слоя кристалла, подвергающихся действию силы сдвига (фиг. 30.11, а).
Фиг. 30.11. Сдвиг плоскостей кристалла.
Вероятно, вы сперва решите, что весь слой будет сопротивляться сдвигу, пока сила не станет достаточно велика, чтобы сдвинуть весь слой «над горбами» на одно место влево. Хотя скольжение по некоторой плоскости возможно, все происходит совсем не так. (Иначе, согласно вычислениям, получилось бы, что металл гораздо прочнее, чем он есть на самом деле.) В действительности же дело больше походит на то, что атомы перескакивают поочередно: сначала прыгает первый атом слева, затем следующий и т. д., как показано на фиг. 30.11, б. В результате пустое место между двумя атомами быстро путешествует направо и весь второй ряд сдвигается на одно межатомное расстояние. Скольжение происходит таким образом, что на перекатывание атома через горб поодиночке требуется гораздо меньше энергии, чем на поднятие всего ряда в целом. Как только сила возрастет до значения, достаточного для начала процесса, весь процесс протекает очень быстро.
Оказывается, что в реальном кристалле скольжение возникает поочередно: сначала в одной плоскости, затем заканчивается там и начинается в другом месте. Почему оно начинается и почему заканчивается — совершенно непонятно. В самом деле, очень странно, что последовательные области скольжения часто расположены довольно редко. На фиг. 30.12 представлена фотография очень маленького и тонкого кристалла меди, который был растянут.
Фиг. 30.12. Маленький кристалл меди после растяжения.
Вы можете заметить разные плоскости, в которых возникало скольжение.
Неожиданное соскальзывание отдельных кристаллических плоскостей легко заметить, если взять кусок оловянной проволоки, в которой содержатся большие кристаллы, и растягивать ее, держа близко к уху. Вы ясно различите звуки «тик-тик», когда плоскости защелкиваются в новых положениях, одна за другой.
Проблема «нехватки» атома в одном из рядов сложнее, чем может показаться при рассматривании фиг. 30.11.
Когда слоев больше, ситуация скорее походит на то, что изображено на фиг. 30.13.
Фиг. 30.13. Дислокация в кристалле.
Подобный дефект в кристалле называют дислокацией. Считается, что такие дислокации возникают при образовании кристалла или же в результате царапины или трещины на его поверхности. Раз возникнув, они довольно свободно могут проходить сквозь кристалл. Большие нарушения возникают из-за движения множества таких дислокаций.
Дислокации могут свободно передвигаться. Это значит, что для них требуется немного дополнительной энергии, если только весь остальной кристалл имеет совершенную решетку. Но они могут и «застыть», встретив какой-нибудь другой дефект в кристалле. Если для прохождения дефекта требуется много энергии, они остановятся. Это и есть тот механизм, который сообщает прочность несовершенным кристаллам металла. Кристаллы чистого железа совсем мягкие, но небольшая концентрация атомов примесей может вызвать достаточное количество дефектов, чтобы противостоять дислокациям. Как вы знаете, сталь, состоящая в основном из железа, очень тверда. Чтобы получить сталь, при плавке к железу примешивают немного углерода; при быстром охлаждении расплавленной массы углерод выделяется в виде маленьких зерен, образуя в решетке множество микроскопических нарушений. Дислокации уже не могут свободно передвигаться, и металл становится твердым.
Чистая медь очень мягкая, но ее можно «закалить» наклепом. Это делается отбиванием или сгибанием ее в одну и другую стороны. В таком случае образуется много различных дислокаций, которые взаимодействуют между собой и ограничивают подвижность друг друга. Быть может, вы видели фокус, когда берут кусочек «мягкой» меди и легко обвивают чье-нибудь запястье в виде браслета. В тот же момент медь становится закаленной и разогнуть ее становится очень трудно! «Закаленный» металл типа меди можно снова сделать мягким с помощью отжига при высокой температуре. Тепловое движение атомов «размораживает» дислокации и вновь создает отдельные большие кристаллы. О дислокациях можно рассказывать очень много. Так, до сих пор мы описывали только так называемые «дислокации скольжения» (краевые дислокации). Существует еще множество других видов, в частности винтовая дислокация, изображенная на фиг. 30.14.
Фиг. 30.14. Винтовая дислокация.
Такие дислокации часто играют важную роль в росте кристаллов.
§ 8. Дислокации и рост кристаллов
Одну из величайших загадок природы долгое время представлял процесс роста кристаллов. Мы уже описывали, как атом, многократно примериваясь, может определить, где ему лучше — в кристалле или снаружи. Но отсюда следует, что каждый атом должен найти положение с наименьшей энергией. Однако атом, попавший на новую поверхность, связан только одной-двумя связями с нижними атомами, и его энергия при этом не равна энергии того атома, который попал в угол, где он окружен атомами с трех сторон. Вообразим растущий кристалл как набор из кубиков (фиг. 30.15).
Фиг. 30.15. Схематическое представление роста кристалла.
Если мы поставим новый кубик, скажем, в положение А, он будет иметь только одного из тех шести соседей, какими он в конце концов будет окружен. А раз не хватает стольких связей, то и энергия его не будет очень низкой. Более выгодно положение В, где кристалл уже имеет половину своей доли связей. И действительно, кристаллы растут, присоединяя новые атомы к участкам типа В.
Но что произойдет, когда данный ряд завершится? Чтобы начать новый ряд, атом должен осесть, имея связь с двух сторон, а это опять же маловероятно. Даже если он осядет, что произойдет, когда весь слой будет завершен? Как мог бы начаться новый слой? Один из возможных ответов — кристалл предпочитает расти по дислокации, например по винтовой дислокации, вроде той, что показана на фиг. 30.14. По мере прибавления кубиков к этому кристаллу всегда остается место, где можно получить три связи. Следовательно, кристалл предпочитает расти с встроенной внутрь дислокацией. Иллюстрацию такого спирального роста представляет собой фотография монокристалла парафина (фиг. 30.16).
Фиг. 30.16. Кристалл парафина, выросший вокруг винтовой дислокации.
§ 9. Модель кристалла по Брэггу и Наю
Мы, разумеется, не можем увидеть, что происходит с отдельными атомами в кристалле. Как вы теперь понимаете, существует еще множество сложных явлений, которые трудно описать количественно. Лоуренс Брэгг и Дж. Най придумали модель металлического кристалла, которая удивительным образом моделирует множество явлений, возникающих, по-видимому, в реальном металле. Лучше всего прочесть эту работу самим; в ней описан и сам метод, и полученные с его помощью результаты [статья была напечатана в Proceedings of the Royal Society of London, 190, 474 (1947)] .
* В сокращенном виде она помещена в конце этого выпуска, — Прим. ред.
* Литература: Ch. Кittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется перевод: Ч.Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.)
Глава 31
ТЕНЗОРЫ
§1. Тензор поляризуемости
§2. Преобразование компонент тензора
§3. Эллипсоид энергии
§4.Другие тензоры; тензор инерции
§5. Векторное произведение
§6. Тензор напряжений
§7. Тензоры высших рангов
§8. Четырехмерный тензор электромагнитного импульса
Повторить: гл. 11 (вып. 1)
«Векторы»; гл. 20 (вып. 2)
«Вращение в пространстве»
§ 1. Тензор поляризуемости
У физиков есть привычка брать простейший пример какого-то явления и называть его «физикой», а примеры посложнее отдавать на растерзание других наук, скажем прикладной математики, электротехники, химии или кристаллографии. Даже физика твердого тела для них только «полуфизика», ибо ее волнует слишком много специальных вопросов. По этой-то причине мы в наших лекциях откажемся от множества интересных вещей. Например, одно из важнейших свойств кристаллов и вообще большинства веществ — это то, что их электрическая поляризуемость различна в разных направлениях. Если вы в каком-либо направлении приложите электрическое поле, то атомные заряды слегка сдвинутся и возникнет дипольный момент; величина же этого момента зависит очень сильно от направления приложенного поля. А это, конечно, усложнение. Чтобы облегчить себе жизнь, физики начинают разговор со специального случая, когда поляризуемость во всех направлениях одинакова. А другие случаи мы предоставляем другим наукам. Поэтому для наших дальнейших рассмотрении нам совсем не понадобится то, о чем мы собираемся говорить в этой главе.
Математика тензоров особенно полезна для описания свойств веществ, которые изменяются с направлением, хотя это лишь один из примеров ее использования. Поскольку большинство из вас не собираются стать физиками, а намерены заниматься реальным миром, где зависимость от направления весьма сильная, то рано или поздно, но вам понадобится использовать тензор. Вот, чтобы у вас не было здесь пробела, я и собираюсь рассказать вам про тензоры, хотя и не очень подробно. Я хочу, чтобы ваше понимание физики было как можно более полным. Электродинамика, например, у нас вполне законченный курс; она столь же полна, как и любой курс электричества и магнетизма, даже институтский. А вот механика у нас не закончена, ибо, когда мы ее изучали, вы еще не были столь тверды в математике и мы не могли обсуждать такие разделы, как принцип наименьшего действия, лагранжианы, гамильтонианы и т. п., которые представляют наиболее элегантный способ описания механики. Однако полный свод законов механики, за исключением теории относительности, у нас все же есть. В той же степени, как электричество и магнетизм, у нас закончены многие разделы. Но вот квантовую механику мы так и не закончим; впрочем, нужно что-то оставить и на будущее! И все же, что такое тензор, вам все-таки следует знать уже сейчас.
В гл. 30 мы подчеркивали, что свойства кристаллического вещества в разных направлениях различны — мы говорим, что оно анизотропно. Изменение индуцированного дипольного момента с изменением направления приложенного электрического поля — это только один пример, но именно его мы и возьмем в качестве примера тензора. Будем считать, что для заданного направления электрического поля индуцированный дипольный момент единицы объема Р пропорционален напряженности прикладываемого поля Е. (Для многих веществ при не слишком больших Е это очень хорошее приближение.) Пусть константа пропорциональности будет α. Теперь мы хотим рассмотреть вещества, у которых а зависит от направления приложенного поля, например известный вам кристалл турмалина, дающий удвоенное изображение, когда вы смотрите через него.
Предположим, мы обнаружили, что для некоторого выбранного кристалла электрическое поле Е1; направленное по оси х, дает поляризацию Р1, направленную по той же оси, а одинаковое с ним по величине электрическое поле Е2, направленное по оси у, приводит к какой-то другой поляризации Р2, тоже направленной по оси у. А что получится, если электрическое поле приложить под углом 45°? Ну, поскольку оно будет просто суперпозицией двух полей, направленных вдоль осей х и y, то поляризация Р равна сумме векторов P1 и Р2, как это показано на фиг. 31.1, а.
Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.
Поляризация уже не параллельна направлению электрического поля. Нетрудно понять, отчего так происходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заряды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы. Разумеется, угол 45° ничем не выделен. То, что индуцированная поляризация не направлена по электрическому полю, справедливо и в общем случае. Перед этим нам просто «посчастливилось» выбрать такие оси х и у, для которых поляризация Р была направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызванная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,6. Но несмотря на все это усложнение, величина поляризации Р для любого поля Е по-прежнему пропорциональна его величине.
Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Р с компонентами по всем трем осям, поэтому мы можем написать
Рx =axxEx, Ру=aухЕх, Рz=azxЕx. (31.1)
Этим я хочу сказать лишь, что электрическое поле, направленное по оси х, создает поляризацию не только в этом направлении, оно приводит к трем компонентам поляризации Рх, Рy и Pz, каждая из которых пропорциональна Ех. Коэффициенты пропорциональности мы назвали aхх, aух и azx (первый значок говорит, о какой компоненте идет речь, а второй относится к направлению электрического поля).
Аналогично, для поля, направленного по оси у, мы можем написать
Рх=aхуЕy, Ру=aууЕу, Рz=aгуЕу, (31.2)
а для поля в z-направлении
Px=axzEz, Py=ayzEz Pz=azzEz. (31,3)
Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Е с компонентами х и у, то x-компонента поляризации Р будет суммой двух Рх, определенных уравнениями (31.1) и (31.2), ну а если Е имеет составляющие по всем трем направлениям х, у и z, то составляющие поляризации Р должны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде
Диэлектрические свойства кристалла, таким образом, полностью описываются девятью величинами (axx,, axy,,axz,ayz , ...), которые можно записать в виде символа aij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электрическое поле Е можно разложить на составляющие Еx, Еy и Еz. Зная их, можно воспользоваться коэффициентами aij и найти Рх, Рy и Pz, которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов aij называется тензором — в данном примере тензором поляризуемости. Точно так же как три величины (Ех, Еу, Еz) «образуют вектор Е», и мы говорим, что девять величин (aхх, aху, ...) «образуют тензор aij».
§ 2. Преобразование компонент тензора
Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Ег' тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты aij оказываются различными. Однако вполне можно выяснить, как должны изменяться а при надлежащем изменении компонент Е и Р, ибо, если мы описываем то же самое электрическое поле, но в новой системе координат, мы должны получить ту же самую поляризацию Р. Для любой новой системы координат Px' будет линейной комбинацией Рх, Рy' , и Рz':
Рx’=аРх+bРу+сРz,
и аналогично для других компонент. Если вместо Рх, Рy и Рz подставить их выражения через Е согласно (31.4), то получится
Теперь напишите, как выражается Ех, Еy и Ez через Еx' , Еy' и Еz' , например,
Ex = a'Ex'+b'Ey'+c'Ez' ,
где числа а', b' и с' связаны с числами а, b и c, но не равны им. Таким образом, у вас получилось выражение Рх' через компоненты Ех', Еy' и Ez' , т. е. получились новые aij. Никаких хитростей здесь нет, хотя все это достаточно запутано.
Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то a не изменяются. И обратно, если по отношению к осям изменять ориентацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристалла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются заданием компонент тензора поляризуемости aij. в любой произвольно выбранной системе координат. Точно так же как вектор скорости v = (vx, vy , vz) можно связать с частицей, зная, что три его компоненты при замене осей координат будут изменяться некоторым определенным образом, тензор поляризуемости aij, девять компонент которого при изменении системы осей координат преобразуются вполне определенным образом, можно связать с кристаллом.
Связь между Р и Е в уравнении (31.4) можно записать в более компактном виде:
где под значком i понимается какая-то из трех букв х, у или z, а суммирование ведется по j=x, у и z. Для работы с тензорами было придумано много специальных обозначений, но каждое из них удобно для ограниченного класса проблем. Одно из таких общих соглашений состоит в том, что можно не писать знака суммы (S) в уравнении (31.5), понимая при этом, что когда один и тот же индекс встречается дважды (в нашем случае j), то нужно просуммировать по всем значениям этого индекса. Однако, поскольку работать с тензорами нам придется немного, давайте не будем осложнять себе жизнь введением каких-то специальных обозначений или соглашений.
§ 3. Эллипсоид энергии
Потренируемся теперь в обращении с тензорами. Рассмотрим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна e0Е2/2 на единицу объема)? Представьте на минуту атомные заряды, которые должны быть перемещены. Работа, требуемая для перемещения одного такого заряда на расстояние dx, равна qExdx, а если таких зарядов в единице объема содержится N штук, то для перемещения их требуется работа qExNdx. Но qNdx равно изменению дипольного момента единицы объема dPx. Так что работа, затраченная на единицу объема, равна
ExdPx.
Складывая теперь работы всех трех компонент, найдем, какой должна быть работа в единице объема:
E·dP.
Но поскольку величина Р пропорциональна Е, то работа, затраченная на поляризацию единицы объема от 0 до Р, равна интегралу от E·dP. Обозначая ее через ир, можно написать
Теперь можно воспользоваться уравнением (31.5) и выразить Р через E. В результате получим
Плотность энергии ир — величина, не зависящая от выбора осей, т. е. скаляр. Таким образом, тензор обладает тем свойством, что, будучи просуммирован по одному индексу (с вектором), он дает новый вектор, а будучи просуммирован по обоим индексам (с двумя векторами), дает скаляр.
Тензор aij на самом деле нужно называть «тензором второго ранга», ибо у него два индекса. В этом смысле вектор, у которого всего один индекс, можно назвать «тензором первого ранга», а скаляр, у которого вообще нет индексов,— «тензором нулевого ранга». Итак, выходит, что электрическое поле Е будет тензором первого ранга, а плотность энергии up — тензором нулевого ранга. Эту идею можно распространить на тензоры с тремя и более индексами и определить тензоры, ранг которых выше двух.
Индексы нашего тензора поляризуемости могут принимать три различных значения, т. е. это трехмерный тензор. Математики рассматривают также тензоры размерности четыре, пять и больше. Кстати, четырехмерный тензор нам уже встречался при релятивистском описании электромагнитного поля (см. гл. 26, вып. 6) — это Fmv .
Тензор поляризуемости aij обладает одним интересным свойством: он симметричен, т. е. axy=ayx и т. п. для любой пары индексов. (Это свойство отражает физические качества реального кристалла, и вовсе не обязательно у любого тензора.) Вы можете самостоятельно доказать это, подсчитав изменения энергии кристалла по следующей схеме:
1) включите электрическое поле в направления оси х;
2) включите поле в направлении оси у;
3) выключите x-поле;
4) выключите y-поле.
Теперь кристалл вернулся к прежнему положению и полная работа, затраченная на поляризацию, должна быть нулем. Но для этого, как вы можете убедиться, axy должно быть равно а. Однако те же рассуждения можно провести и для axz и т. д. Таким образом, тензор поляризуемости симметричен.
Это означает также, что тензор поляризуемости можно найти простым измерением энергии, необходимой для поляризации кристалла в различных направлениях. Предположим, мы сначала взяли электрическое поле Е с компонентами х и у; тогда, согласно уравнению (31.7),
Если бы у нас была только одна компонента Ех, мы могли бы определить aхх, а с одной компонентой Еy можно определить ayy . Включив обе компоненты Ех и Еy , мы из-за присутствия члена (aху+aух) получим добавочную энергию, ну а поскольку axy и ayx равны, то этот член превращается в 2axy и может быть вычислен из добавочной энергии.
Выражение для энергии (31.8) имеет очень красивую геометрическую интерпретацию. Предположим, что нас интересует, какие поля Ех и Еy отвечают данной плотности энергии, скажем u0. Возникает чисто математическая задача решения уравнения
Это уравнение второй степени, так что, если мы отложим по осям величины Ех и Еy , решением этого уравнения будут все точки эллипса (фиг. 31.2).
Фиг. 31.2 Конец любого вектора E=(Ex, ev) , лежащего на этой кривой, дает одну и ту же анергию поляризации.
(Это должен быть именно эллипс, а не парабола и не гипербола — ведь энергия поля всегда положительна и конечна.) А само Е с компонентами Ех и Еy представляет вектор, идущий из начала координат до точки на эллипсе. Такой «энергетический эллипс» — хороший способ «увидеть» тензор поляризуемости.
Если теперь пустить в дело все три компоненты, то любой вектор Е, необходимый для создания единичной плотности энергии, задается точками, расположенными на эллипсоиде, подобно изображенному на фиг. 31.3. Форма этого эллипсоида постоянной энергии однозначно характеризует тензор поляризуемости.
Заметьте теперь, что эллипсоид имеет очень интересное свойство — его всегда можно описать простым заданием направления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наименьшего и наибольшего диаметра и направление, перпендикулярное к ним. На фиг. 31.3 они обозначены буквами а, b и с.
Фиг. 31.3. Эллипсоид анергии для тензора поляризуемости.
По отношению к этим осям уравнение эллипсоида имеет особенно простую форму:
Итак, по отношению к главным осям у тензора поляризуемости останутся только три ненулевые компоненты aаа, abb и aсс. Другими словами, сколь бы ни был сложен кристалл, всегда можно выбрать оси так (они не обязательно будут осями самого кристалла), что у тензора поляризуемости останется только три компоненты. Уравнение (31.4) для таких осей становится особенно простым:
Ра =aааЕа, Рb =abbEb, Рс =aссЕс. (31.9)
Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.
Тензор часто записывается в виде таблицы из девяти коэффициентов, взятых в скобки:
Для главных же осей а, b и с в таблице остаются только диагональные члены, поэтому мы говорим, что тензор становится «диагональным», т. е.
Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически любой симметричный тензор второго ранга какого угодно числа измерений).
Если все три элемента тензора поляризуемости в диагональной форме равны друг другу, т. е. если
то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изотропным. В тензорных обозначениях
где.dij—единичный тензор:
что, разумеется, означает
Тензор dij часто называют также «символом Кронекера». Для забавы вы можете доказать, что тензор (31.14) после замены одной прямоугольной системы координат на другую будет иметь в точности ту же самую форму. Тензор поляризуемости типа (31.13) дает
т. е. получается наш старый результат для изотропного диэлектрика:
Р=aЕ.
Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрии и что для многих целей их удобно разбить на 7 классов в соответствии с формой элементарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симметричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° относительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен переходить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно.
Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллипсоид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для кубического кристалла равными должны быть все три диаметра эллипсоида — он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях.
Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симметрии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемости увидеть, какова должна быть эта связь, относительно легко.
§ 4. Другие тензоры; тензор инерции
В физике есть еще немало других примеров тензоров. В металле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока j приблизительно пропорциональна электрическому полю Е, причем константа пропорциональности называется проводимостью s
j=sЕ.
Однако для кристалла соотношение между j и Е более сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем
Другим примером физического тензора является момент инерции. В гл. 18 (вып. 2) мы видели, что момент количества движения L твердого тела, вращающегося относительно фиксированной оси, пропорционален угловой скорости w, и коэффициент пропорциональности I мы назвали моментом инерции:
L = Iw.
Момент инерции тела произвольной формы зависит от его ориентации относительно оси вращения. Моменты инерции прямоугольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость со и момент количества движения L — оба векторы. Для вращения относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления to и L, вообще говоря, не совпадают (фиг. 31.4).
Фиг. 31.4. Момент количества движения L твердого предмета, вообще говоря, не параллелен вектору угловой скорости w.
Они связаны точно таким же образом, как Е и Р, т. е. мы должны писать:
Девять коэффициентов Iij называют тензором инерции. По аналогии с поляризацией кинетическая энергия для любого момента количества движения должна быть некоторой квадратичной формой компонент wx, wy и wz:
Мы можем снова воспользоваться этим выражением для определения эллипсоида инерции. Кроме того, снова можно воспользоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. Iij=Iji.
Тензор инерции твердого тела можно написать, если известна форма тела. Нам нужно только выписать полную кинетическую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией 1/2mv2, а полная кинетическая энергия равна просто сумме
S1/2mv2
по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью wтвердого тела. Предположим, что тело вращается относительно центра масс, который мы будем считать покоящимся. Если при этом r — положение частицы относительно центра масс, то ее скорость v задается выражением wXr. Поэтому полная кинетическая энергия равна
к. э.=S1/2m(wX г)2. (31.18)
Единственное, что нужно теперь сделать,— это переписать wXr через компоненты wх, wy , wz и координаты х, у, z, а затем сравнить результат с уравнением (31.17); приравнивая коэффициенты, найдем Iij. Проделывая всю эту алгебру, мы пишем:
Умножая это уравнение на m/2, суммируя по всем частицам и сравнивая с уравнением (31.17), мы видим, что Ixx, например, равно
Это и есть та формула для момента инерции тела относительно оси х, которую мы получали уже раньше (гл. 19, вып. 2).
Ну а поскольку r2 =x2+y2+z2, то эту же формулу можно написать в виде
Ixx=Sm(r2-x2). Выписав остальные члены тензора инерции, получим
Если хотите, его можно записать в «тензорных обозначениях»:
где через ri обозначены компоненты (х, у, z) вектора положения частицы, а 2 означает суммирование по всем частицам. Таким образом, момент инерции есть тензор второго ранга, элементы которого определяются свойствами тела и который связывает момент количества движения L с угловой скоростью w:
Для любого тела независимо от его формы можно найти эллипсоид энергии, а следовательно, и три главные оси. Относительно этих осей тензор будет диагональным, так что для любого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.
§ 5. Векторное произведение
Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы определили там «момент силы, действующий в плоскости», например txy, следующим образом:
txy=xFy-yFx.
Обобщая это определение на три измерения, можно написать
tij=riFj-rjFi. (31.22)
Как видите, величина tij — это тензор второго ранга. Один из способов убедиться в этом — свернуть tij с каким-то вектором, скажем с единичным вектором е, т. е. составить
Если эта величина окажется вектором, то tij должен преобразовываться как тензор — это просто наше определение тензора. Подставляя выражение для tij, получаем
Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что tij-— действительно тензор.
Однако tij принадлежит к особому сорту тензоров, он антисимметричен, т. е.
tij=-tji.
Поэтому у такого тензора есть только три разные и неравные нулю компоненты: txy, tyz и tzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда определить вектор
t=(tx,. ty, tz) = (tyz, tzx, txy).
Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет шесть различных ненулевых членов, и его, разумеется, нельзя заменить вектором, у которого компонент только четыре.
Точно так же как аксиальный вектор t==rXF является тензором, по тем же соображениям тензором будет и любое векторное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.
Вообще говоря, для любых двух векторов а и b девять величин aibj образуют тензор (хотя для физических целей он не всегда может быть полезен). Таким образом, для вектора положения r величины rirj являются тензором, а поскольку dij. тоже тензор, то мы видим, что правая часть (31.20) действительно является тензором. Подобным же образом тензором будет и (31.22), так как оба члена в правой части — тензоры.
§ 6. Тензор напряжений
Встречавшиеся до сих пор симметричные тензоры возникали как коэффициенты, связывающие один вектор с другим. Сейчас я познакомлю вас с тензором, имеющим совершенно другой физический смысл,— это тензор напряжений. Предположим, что на твердое тело действуют различные внешние силы. Мы говорим, что внутри тела возникают различные «напряжения», имея при этом в виду внутренние силы между смежными частями материала. Мы уже говорили немного о подобных напряжениях в двумерном случае, когда рассматривали поверхностное натяжение напряженной диафрагмы (см. гл. 12, § 3, вып. 5). А теперь вы увидите, что внутренние силы в материале трехмерного тела записываются в виде тензора.
Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были действовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представьте себе, что мы смотрим на воображаемую плоскость, перпендикулярную оси х, подобную плоскости s на фиг. 31.5, и интересуемся силами, действующими на маленькой площадке Dy/Dz, расположенной в этой плоскости.
Фиг. 31.5. Материал, находящийся слева от плоскости s на площади Dy/Dz, действует на материал, находящийся справа, с силой DF1.
Материал, находящийся слева от площадки, действует на материал с правой стороны с силой DF1 (фиг. 31.5, б). Есть, конечно, и обратная реакция, т.е. на материал слева от поверхности действует сила —DF1. Если площадка достаточно мала, то мы ожидаем, что сила DF1 пропорциональна площади Dy/Dz.
Вы уже знакомы с одним видом напряжений — статическим давлением жидкости. Там сила была равна давлению, умноженному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущейся вязкой жидкости сила не обязательно перпендикулярна поверхности: помимо давления (положительного или отрицательного), появляется еще и сдвигающая сила. (Под «сдвигающей» силой мы подразумеваем тангенциальные компоненты сил, действующих на поверхности.) Для этого нужно учитывать все три компоненты силы. Заметьте еще, что если разрез мы сделаем по плоскости с какой-то другой ориентацией, то действующие на ней силы тоже будут другими. Полное описание внутренних напряжений требует применения тензоров.
Определим тензор напряжений следующим образом. Вообразите сначала разрез, перпендикулярный оси х, и разложите силу DF1, действующую на разрезе, на ее компоненты: DFx1, DFy1, DFz1 (фиг. 31.6).
Фиг. 31.6. Сила DF1, действующая на элементе площади DyDz, перпендикулярной оси х, разлагается на три компоненты: DFx1, DFу1 и DFz1.
Отношение этих сил к площади Dy/Dz мы назовем Sxx, Syx и Szx. Например,
Syx=DFу1/DyDz
Первый индекс у относится к направлению компоненты силы, а второй х — к направлению нормали к плоскости. Если угодно, площадь DyDz можно записать как Dах, имея в виду элемент площади, перпендикулярный оси х, т. е.
Syx=DFу1/Dах
А теперь представьте себе разрез, перпендикулярный оси у. Пусть на маленькую площадку DxDz действует сила DF2.
Разлагая снова эту силу на три компоненты, как показано на фиг. 31.7, мы определяем три компоненты напряжения Sxy, Syy, Szy как силы, действующие на единичную площадь в этих трех направлениях.
Фиг. 31.7. Сила, действующая на элемент площади, перпендикулярной оси у, разлагается на три взаимно перпендикулярные компоненты.
Наконец, проведем воображаемый разрез, перпендикулярный оси z, и определим три компоненты Sxz, Syz и Szz. Таким образом, получается девять чисел:
Я хочу теперь показать, что этих девяти величин достаточно, чтобы полностью описать внутреннее напряженное состояние, и что Sij-—действительно тензор. Предположим, что мы хотим знать силу, действующую на поверхность, наклоненную под некоторым произвольным углом. Можно ли найти ее, исходя из Sij? Можно, и это делается следующим образом. Вообразите маленькую призму, одна грань N которой наклонна, а другие — параллельны осям координат. Если окажется, что грань N параллельна оси z, то получается картина, изображенная на фиг. 31.8.
Фиг. 31.8. Разложение на компоненты силы Fn, действующей на грани N (с единичной нормалью n).
(Это, конечно, частный случай, но он достаточно хорошо иллюстрирует общий метод.) Дальше, напряжения, действующие на эту призмочку, должны быть такими, чтобы она находилась в равновесии (по крайней мере в пределе бесконечно малого размера), так что действующая на нее полная сила должна быть равна нулю. Силы, действующие на грани, параллельные осям координат, известны нам непосредственно из тензора Sij. А их векторная сумма должна равняться силе, действующей на грань N, так что эту силу можно выразить через Sij.
Наше допущение, что поверхностные силы, действующие на малый объем, находятся в равновесии, предполагает отсутствие объемных сил, подобных силе тяжести или псевдосилам, которые тоже могут присутствовать, если наша система координат не инерциальна. Заметьте, однако, что такие объемные силы будут пропорциональны объему призмочки и поэтому пропорциональны Dx,Dy, Dz, тогда как поверхностные силы пропорциональны DxDy, DyDz и т. п. Итак, если размер призмочки взять достаточно малым, то объемные силы будут пренебрежимо малы по сравнению с поверхностными.
А теперь сложим силы, действующие на нашу призмочку. Возьмемся сначала за х-компоненту, которая состоит из пяти частей, по одной от каждой грани. Но если Dz достаточно мало, то силы от треугольных граней (перпендикулярные оси z) будут равны друг другу и противоположны по направлению, поэтому о них можно забыть. На основание призмы действует x-компонента силы, равная
DFx2=SxyDхDz,
а x-компонента силы, действующей на вертикальную прямоугольную грань, равна
DFx1=SхxDz.
Сумма этих двух сил должна быть равна x-компоненте силы, действующей извне на грань N. Обозначим через n единичный вектор нормали к грани N, а через Fn — действующую на нее силу, тогда получим
DFxn=SxxDyDz+SxyDxDz.
Составляющая напряжения по оси х (Sxn), действующего в этой плоскости, равна силе DFxn, деленной на площадь, т. е. DzЦ(Dx2+Dy2), или
Но, как видно из фиг. 31.8, отношение Dх/Ц(Dx2+Dy2) — это косинус угла q между n и осью у и может быть записан как пу, т. е. y-компонента вектора n. Аналогично, Dy/Ц(Dx2+Dy2) равно sinq=nх. Поэтому мы можем написать
Sxn=Sxxnx+Sxyny
рели теперь обобщить это на произвольный элемент поверхности, то мы получим
Sxn= Sxxnx+Sxyny+Sxznz,
или в еще более общей форме:
Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы Sij и полностью описать внутреннее напряжение.
Уравнение (31.24) говорит, что тензор Sij связывает силу Sn с единичным вектором n точно так же, как aij связывает Р с Е. Но поскольку n и Sn — векторы, то компоненты Sij при изменении осей координат должны преобразовываться как тензор. Так что Sij действительно тензор.
Можно также доказать, что Sij симметричный тензор. Для этого нужно обратить внимание на силы действующие на маленький кубик материале. Возьмем кубик, rpaни которого параллельны осям координат, и посмотрим на eго разрез (фиг. 31.9).
Фиг. 31.9. х- и у-компоненты сил, действующих на четыре грани маленького единичного кубика.
Если допустить что ребра куба равны единице, то х- и y-компоненты сил на гранях, перпендикулярных к осям х и у, должны быть такими, как показано на рисунке. Если взять достаточно маленький кубик, можно надеяться, что напряжение на его противоположных гранях будет отличаться ненамного, а поэтому компоненты сил должны быть равны и противоположны, как это показано на рисунке. Заметьте теперь, что на кубик не должен действовать никакой момент си иначе кубик начал бы вращаться. Но полный момент относительно центра равен произведению (Syx-Sxy) на единичную длину ребра куба, а поскольку полный момент равен нулю, то S должно быть равно Sxy, и тензор напряжений, таким образом, оказывается симметричным.
Благодаря этой симметрии тензора Sij его можно то; описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим: осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никак сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательном. Таким образом, для гидростатического давления тензор диагонален, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать
(31.25)
Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компоненту Sij как функцию положения. Тензор напряжений, таким образом, является полем. Мы уже имели примеры скалярных полей, подобных температуре Т(х, у, z), и векторных полей, подобных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задаваемого в каждой точке пространства девятью числами, из которых для симметричного тензора Sij реально остается только шесть. Полное описание внутренних сил в произвольном твердом теле требует знания шести функций координат х, у и z.
§ 7. Тензоры высших рангов
Тензор напряжений Sij описывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформации удобно описывать с помощью другого тензора Tij— так называемого тензора деформаций. Для простого объекта, подобного бруску из металла, изменение длины DL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука
DL=gF.
Для произвольных деформаций упругого твердого тела тензор деформаций Tij связан с тензором напряжений Sij системой линейных уравнений
Вы знаете также, что потенциальная энергия пружины (или бруска) равна
а обобщением плотности упругой энергии для твердого тела будет выражение
Полное описание упругих свойств кристалла должно задаваться коэффициентами gijkl. Это знакомит нас с новым зверем — тензором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего оказывается 34=81 коэффициент. Но различны из них на самом деле только 21. Во-первых, поскольку тензор Sij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициентов. Затем, не изменяя энергии, мы можем переставить Sij и Skl, так что gijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей возможной симметрии, требуется 21 упругая постоянная! Разумеется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кристалл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.
В справедливости последнего утверждения можно убедиться следующим образом. В случае изотропного материала компоненты gijkl не должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры dij. Но существует лишь два возможных выражения, имеющих требуемую симметрию,— это dijdkl и dikdjl+dil+djk, так что gijkl должно быть их линейной комбинацией. Таким образом, для изотропного материала
gijkl =а(dijdkl) + b(dikdjl+dildjk);
следовательно, чтобы описать упругие свойства материала, требуются две постоянные: а и b. Я предоставляю вам самим доказать, что для кубического кристалла требуются три такие постоянные.
И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При напряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид
где ei— электрическое поле, a Pijk— пьезоэлектрические коэффициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z®-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.
§ 8. Четырехмерный тензор электромагнитного импульса
Все тензоры, с которыми мы сталкивались в этой главе, были связаны с трехмерным пространством; они определялись как величины, имеющие известные трансформационные свойства при пространственных поворотах. А вот в гл. 26 (вып. 6) мы имели возможность воспользоваться тензором в четырехмерном пространстве-времени: это был тензор электромагнитного поля Fmv. Компоненты такого четырехмерного тензора особым образом преобразуются при преобразованиях Лоренца. (Мы этого, правда, не делали, но могли бы рассматривать преобразования Лоренца как своего рода «вращение» в четырехмерном «пространстве», называемом пространством Минковского; тогда аналогия с тем, что мы рассматривали здесь, была бы ярче.)
В качестве последнего примера мы хотим рассмотреть другой тензор в четырех измерениях (t, x, y, z) теории относительности. Когда мы говорили о тензоре напряжений, то определяли Sij как компоненту силы, действующую на единичную площадку. Но сила равна скорости изменения импульса со временем. Поэтому вместо того, чтобы говорить «Sxy — это х-компонента силы, действующей на единичную площадку, перпендикулярную оси у», мы с равным правом могли бы сказать: «Sxy — это скорость потока x-компоненты импульса через единичную площадку, перпендикулярную оси у». Другими словами, каждый член Sij представляет поток i-й компоненты импульса через единичную площадку, перпендикулярную оси j. Так обстоит дело с чисто пространственными компонентами, но они составляют только часть «большего» тензора Smv в четырехмерном пространстве m. и v=t, x, у, z), содержащего еще дополнительные компоненты Stx, S yt, Stt и т. п. Попытаемся теперь выяснить физический смысл этих дополнительных компонент.
Нам известно, что пространственные компоненты представляют поток импульса. Чтобы найти ключ к распространению этого понятия на «временное направление», обратимся к «потоку» другого рода — потоку электрического заряда. Скорость потока скалярной величины, подобной заряду (через единичную площадь, перпендикулярную потоку), является пространственным вектором — вектором плотности тока j. Мы видели, что временная компонента вектора потока — это плотность текущего вещества. Например, j можно скомбинировать с плотностью заряда jt=r и получить четырехвектор jm=(r, j), т. е. значок m у вектора jm принимает четыре значения: t, х, у, z. Это означает «плотность», «скорость потока в x-направлении», «скорость потока в y-направлении» и «скорость потока в z-направлении» скалярного заряда.
Теперь по аналогии с нашим утверждением о временной компоненте потока скалярной величины можно ожидать, что вместе c Sxx,Sxy и Sxz, описывающими поток x-компоненты импульса, должна быть и временная компонента Sxt , которая по идее должна бы описывать плотность того, что течет, т. е. Sxt должна быть плотностью х-компоненты импульса. Таким образом, мы можем расширить наш тензор по горизонтали, включив в него t-компоненты, и в нашем распоряжении оказываются:
Sxt — плотность x-компоненты импульса,
Sxx — поток z-компоненты импульса в направлении оси х,
Sxy — поток y-компоненты импульса в направлении оси у,
Sxz — поток z-компоненты импульса в направлении оси z.
Аналогичная вещь происходит и с y-компонентой; у нас есть три компоненты потока: Syx , Syy и Syz , к которым нужно добавить четвертый член:
Syt — плотность y-компоненты импульса,
а к трем компонентам Szx, Szy и Szz мы добавляем
Szt — плотность z-компоненты импульса.
В четырехмерном пространстве у импульса существует также и t-компонента, которой, как мы знаем, является энергия. Так что тензор Sij следует продолжить по вертикали с включением в него Stx, Sty и Stz, причем
Stx — поток энергии в направлении оси х, Sty — поток энергии в направлении оси у, (31.28) Stz — поток энергии в направлении оси z,
т. е. Stx— это поток энергии в единицу времени через поверхность единичной площади, перпендикулярную оси х, и т. д. Наконец, чтобы пополнить наш тензор, нужна еще величина Stt, которая должна быть плотностью энергии. Итак, мы расширили наш трехмерный тензор напряжений до четырехмерного тензора энергии-импульса Smv. Индекс m может принимать четыре значения: t, х, у и z, которые означают «плотность», «поток через единичную площадь в направлении оси х», «поток через единичную площадь в направлении оси y» и «поток через единичную площадь в направлении оси z». Значок v тоже принимает четыре значения: t, х, у, z, которые говорят нам, что же именно течет: «энергия», x-компонента импульса», «y-компонента импульса» или же «z-компонента импульса».
В качестве примера рассмотрим этот тензор не в веществе, а в пустом пространстве с электромагнитным полем. Вы знаете, что поток энергии электромагнитного поля описывается вектором Пойнтинга S=e0c2EXВ. Так что х-, у- и z-компоненты вектора S с релятивистской точки зрения являются компонентами: Six, Stн и Stz нашего тензора энергии-импульса. Симметрия тензора Sij переносится и на временные компоненты, так что четырехмерный тензор Smv тоже симметричен:
Smv=Svm. . (31.29)
Другими словами, компоненты Sxt, Syt, Szt, которые представляют плотности х-, у- и z-компонент импульса, равны также х-, у- и z-компонентам вектора Пойнтинга S, или, как мы видели раньше из других соображений, вектора потока энергии.
Оставшиеся компоненты тензора электромагнитного напряжения Smv тоже можно выразить через электрическое и магнитное поля Е и В. Иначе говоря, для электромагнитного поля в пустом пространстве мы должны допустить существование тензора напряжений, или, выражаясь менее таинственно, потока импульса электромагнитного поля. Мы уже обсуждали это в гл. 27 (вып. 6) в связи с уравнением (27.21), но тогда мы не входили в детали.
Тем из вас, кто хочет испытать свою удаль на четырехмерных тензорах, может понравиться выражение для тензора Smv через поля:
где суммирование по a и b проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы S и символа d принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а dtt=+1, тогда как dxx.=dуу = dzz=-1 и dmv=0 для всех m№v (с=1). Сможете ли вы доказать, что эта формула приводит к плотности энергии Stt=(e0/2)(E2+B2) и вектору Пойнтинга e0ЕXВ? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электрическому полю и вдоль направления поля возникает натяжение (e0/2)E2 и равное ему давление в направлении, перпендикулярном направлению поля?
* Если не полагать с=1, как это делается здесь, то плотность энергии в принятых в книге единицах будет равна (e0/2)(E2+с2B2) или в единицах СИ 1/2[e0E2+(l/m0)B2]. — Прим. ред.
* Эту работу, затраченную на создание поляризации электрическим полем, не нужно путать с потенциальной энергией —p0*Е постоянного дипольного момента p0 в поле Е.
* Обычно для коэффициентов пропорциональности между Р и Е пользуются термином тензор восприимчивости, оставляя термин поляризуемость для величин, относящихся к одной частице. Прим. ред.
* В гл. 10, следуя общепринятому соглашению, мы писали Р=e0cЕ и величину c (хи) называли «восприимчивостью». Здесь же нам удобнее пользоваться одной буквой, так что вместо e0c мы будем писать a. Для изотропного диэлектрика a=(c-1)e0, где c — диэлектрическая проницаемость (см. гл. 10 §4 вып.5)
Главa 32
ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА
§ 1. Поляризация вещества
§ 2. Уравнения Максвелла в диэлектрике
§ 3. Волны в диэлектрике
§ 4. Комплексный показатель преломления
§ 5. Показатель преломления смеси
§ 6. Волны в металлах
§ 7.Низкочастотное и высокочастотное приближение глубина скин-слоя и плазменная частота
Повторить: всё что в табл. 32.
§ 1. Поляризация вещества
Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плотным веществом. Теорию показателя преломления мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на показателе преломления веществ с малой плотностью наподобие газов. Но физические принципы, приводящие к возникновению показателя преломления, мы там все же выяснили. Электрическое поле световой волны поляризует молекулы газа, создавая тем самым осциллирующие дипольные моменты, а ускорение осциллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерферируя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эффект в целом оказывается эквивалентным изменению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникающими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действующие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эффект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.
Ну а теперь мы увидим, что эта задача с помощью дифференциальных уравнений решается совсем просто. Конечно, дифференциальные уравнения затуманивают физическую причину возникновения преломления (как результата интерференции вновь излученных волн с первоначальными), но зато они упрощают теорию плотного материала. В этой главе сойдется вместе многое из того, что мы делали уже раньше. Практически мы уже получили все, что нам потребуется, так что по-настоящему новых идей в этой главе будет сравнительно немного. Поскольку вам может понадобиться освежить в памяти то, с чем мы здесь столкнемся, то в табл. 32.1 приводится список уравнений, которые я собираюсь использовать вместе со ссылкой на те места, где их можно найти. Во многих случаях из-за нехватки времени я не смогу снова останавливаться на физических аргументах, а сразу же буду браться за уравнения.
Таблица 32.1 · ЧТО БУДЕТ ИСПОЛЬЗОВАНО В ЭТОЙ ГЛАВЕ
Начну с напоминания о механизме преломления в газе. Мы предполагаем, что в единице объема газа находится N частиц и каждая из них ведет себя как гармонический осциллятор. Мы пользуемся моделью атома или молекулы, к которой электрон привязан силой, пропорциональной его перемещению (как будто он удерживается пружинкой). Отметим, что такая модель атома с классической точки зрения незаконна, однако позднее будет показано, что правильная квантовомеханическая теория дает (в простейших случаях) эквивалентный результат. В наших прежних рассмотрениях мы не учитывали «тормозящей» силы в атомном осцилляторе, а сейчас это будет сделано. Такая сила соответствует сопротивлению при движении, т. е. она пропорциональна скорости электрона. Уравнением движения при этом будет
F=qeE =m(x+gx+w20x), (32.1)
где х — перемещение, параллельное направлению поля Е. (Осциллятор предполагается изотропным, т. е. восстанавливающая сила одинакова во всех направлениях. Кроме того, на время мы ограничимся линейно поляризованной волной, так что поле Е не меняет своего направления.) Если действующее на атом электрическое поле изменяется со временем синусоидально, то мы пишем.
E=E0eiwt. (32.2)
С той же самой частотой будет осциллировать и перемещение, поэтому можно считать
х=х0еiwt .
Подставляя х=iwх и х=-w2х, можно выразить х через Е:
А зная перемещение, можно вычислить ускорение х и найти ответственную за преломление излученную волну. Именно таким способом в гл. 31 (вып. 3) мы подсчитывали показатель преломления.
Теперь же мы пойдем другим путем. Индуцированный дипольный момент атома р равен qex, или в силу уравнения (32.3)
Так как р пропорционально Е, то мы пишем
р=e0a(w)Е, (32,5) где a — атомная поляризуемость:
Подобный же ответ для движения электронов в атоме дает и квантовая механика, но с учетом следующих особенностей. У атомов есть несколько собственных частот, каждая из которых имеет свою диссипативную постоянную g. Кроме того, каждая гармоника имеет еще свою эффективную «силу», выражаемую в виде произведения поляризуемости при данной частоте на постоянную связи f, которая, как ожидается, по порядку величины равна единице. Обозначая каждый из трех параметров w0, g и f для каждой из гармоник через wok, gk и fk и суммируя по всем гармоникам, мы вместо (32.6) получаем
Если число атомов в единице объема вещества равно N, то поляризация Р будет просто Np=e0NaE, т. е. пропорциональна Е:
Р=e0Na(w)Е. (32.8)
Другими словами, когда на материал действует синусоидальное электрическое поле, оно индуцирует пропорциональный себе дипольный момент, причем константа пропорциональности а, как мы уже отмечали, зависит от частоты. При очень больших частотах a мала: реакция материала слабая. А вот при низких частотах реакция может быть очень сильной. Константа пропорциональности, кроме того, еще оказывается комплексной, т. е. поляризация не следует точно за всеми изменениями электрического поля, а в какой-то степени может быть сдвинута по фазе. Во всяком случае, электрическое поле вызывает в материале поляризацию, пропорциональную его напряженности.
§ 2. Уравнения Максвелла в диэлектрике
Наличие в веществе поляризации означает, что там возникают поляризационные заряды и токи, которые необходимо учитывать в полных уравнениях Максвелла при нахождении полей. Сейчас мы собираемся решать уравнения Максвелла для случая, когда заряды и токи не равны нулю, но неявно определяются вектором поляризации. Нашим первым шагом должно быть явное нахождение плотности зарядов r и плотности тока j, усредненных по тому же самому малому объему, который имелся в виду при определении вектора Р. Потом необходимые нам значения r и j могут быть определены из поляризации. В гл. 10 (вып. 5) мы видели, что когда поляризация Р меняется от точки к точке, то возникает плотность зарядов:
rпол=-С·Р. (32.9)
В то время мы имели дело со статическими полями, но эта же формула справедлива и для переменных полей. Но когда Р изменяется со временем, заряды движутся, так что появляется поляризационный ток. Каждый из осциллирующих зарядов вносит в ток свой вклад, равный произведению его заряда qe на скорость v. Когда же таких зарядов в единице объема N штук, то они создают плотность тока j:
j=Nqev.
Ну а поскольку известно, что v=dx/dt, то j=Nqedx/dt, что как раз
равно dP/dt. Следовательно, при переменной поляризации возникает плотность тока
jпол=dP/dt (32.10)
Наша задача стала теперь простой и понятной. Мы пишем уравнения Максвелла с плотностями заряда и тока, определяемыми поляризацией Р посредством уравнений (32.9) и (32.10). (Предполагается, что других зарядов и токов в веществе нет.) Затем мы свяжем Р с Е формулой (32.5) и будем разрешать их относительно Е и В, отыскивая при этом волновое решение.
Но прежде чем приступить к решению, мне бы хотелось сделать одно замечание исторического характера. Первоначально Максвелл писал свои уравнения в форме, отличающейся от той, в которой они используются нами. И именно потому, что уравнения писались в другой форме в течение многих лет (да и сейчас многими пишутся так), я постараюсь объяснить вам разницу. В те дни механизм диэлектрической проницаемости не был понятен с ясностью и полнотой. Не была ясна ни природа атомов, ни существование поляризации в веществе. Поэтому тогда не понимали, что С·P дает дополнительный вклад в плотность заряда р. Были известны только заряды, не связанные в атомах (такие, как заряды, текущие по проводу или возникающие при трении).
Сегодня же мы предпочитаем обозначать через r полную плотность зарядов, включая в нее и заряды, связанные с индивидуальными атомами. Если назвать эту часть зарядов rпол, то можно написать
r=rпол+rдр,
где rдр— плотность зарядов, учтенная Максвеллом и относящаяся к другим зарядам, не связанным с определенными атомами. При этом мы бы написали
После подстановки rпол из (32.9) получаем
или
В плотность тока, фигурирующую в уравнениях Максвелла для СXB, вообще говоря, тоже вносится вклад от связанных атомных электронных токов. Поэтому мы можем написать
j=jпол+jдр,
причем уравнение Максвелла приобретает вид
Используя уравнение (32.10), получаем
Теперь вы видите, что если бы мы определили новый вектор D
D=e0E+P, (32.14)
то два уравнения поля приняли бы вид
С·D=rдр (32.15)
и
Это и есть та форма уравнений, которую использовал Максвелл для диэлектриков. А вот и остальные два уравнения:
СXЕ=-дB/дt
и
С·B=0,
которые в точности совпадают с нашими.
Перед Максвеллом и другими учеными того времени вставала проблема магнетиков (за них мы вскоре примемся). Они ничего не знали о циркулирующих токах, ответственных за атомный магнетизм и поэтому, в плотности тока утеряли еще одну часть. Вместо уравнения (32.16) они на самом деле писали
где Н отличается от e0с2В, так как последнее учитывает эффекты атомных токов. (При этом j' представляет то, что осталось от токов.) Таким образом, у Максвелла было четыре полевых вектора: Е, D, В и Н, причем в D и Н скрывалось то, на что он не обратил внимания,— процессы, происходящие внутри вещества. Уравнения, написанные в таком виде, вы встретите во многих местах.
Чтобы решить их, необходимо как-то связать D и Н с другими полями, поэтому зачастую писали
D =eE
и
В=mH. (32.18)
Однако эти связи верны лишь приближенно для некоторых веществ, и то лишь когда поля не изменяются слишком быстро со временем. (Для синусоидально изменяющихся полей зачастую можно писать уравнения таким способом, считая при этом e и m комплексными функциями частоты, но для произвольных изменений поля со временем это неверно.) На какие только ухищрения не пускаются ученые, чтобы решить уравнения! А мне кажется, что правильнее всего оставить уравнения записанными через фундаментальные величины, как мы понимаем их теперь, т. е. как раз то, что мы и проделали.
§ 3. Волны в диэлектрике
Теперь нам предстоит выяснить, какого сорта электромагнитные волны могут существовать в диэлектрическом веществе, где других зарядов, кроме тех, что связаны в атомах,
нет. Таким образом, мы возьмем r=-С·Р и j=дP/дt . При этом уравнения Максвелла примут такой вид:
Мы можем решить эти уравнения, как делали это прежде. Начнем с применения к уравнению (32.19в) операции ротора:
СX(СXE)=-(д/дt)СXB.
Используя затем векторное тождество
СX(СXE) = С(С·E)-С2E и подставляя выражение для СXB из (32.19б), получаем
Используя уравнение (32.19а) для С·Е, находим
Таким образом, вместо волнового уравнения мы теперь получили, что даламбертиан Е равен двум членам, содержащим поляризацию Р.
Однако Р зависит от Е, поэтому уравнение (32.20) все еще допускает волновые решения. Сейчас мы будем ограничиваться изотропными диэлектриками, т. е. Р всегда будет иметь то же направление, что и Е. Попробуем найти решение для волны, движущейся в направлении оси z. Электрическое поле при этом будет изменяться как еi(wt-kz). Предположим также, что волна поляризована в направлении оси х, т. е. что электрическое поле имеет только x-компоненту. Все это записывается следующим образом:
Ex=E0ei(wt-kz). (32.21)
Вы знаете, что любая функция от (z-vt) представляет волну, бегущую со скоростью v. Показатель экспоненты в выражении (32.21) можно переписать в виде
-ik[z-(w/k)t],
так что выражение (32.21) представляет волну, фазовая скорость которой равна
vфаз=w/k.
В гл. 31 (вып. 3) показатель преломления n определялся нами из формулы
vфаз=c/n.
С учетом этой формулы (32.21) приобретает вид
Ex=E0eiw(t-nz/c).
Таким образом, показатель n можно определить, если мы найдем ту величину k, которая необходима, чтобы выражение (32.21) удовлетворяло соответствующим уравнениям поля, и затем воспользуемся соотношением
n=kc/w. (32.22)
В изотропном материале поляризация будет иметь только x-компоненту; кроме того, Р не изменяется с изменением координаты х, поэтому С·P=0 и мы сразу же избавляемся от первого члена в правой стороне уравнения (32.20). Вдобавок мы считаем наш диэлектрик «линейным», поэтому Рх будет изменяться как еiwt и d2Px/dt2= -w2Px. Лапласиан же в уравнении (32.20) превращается просто в д2Ex/dz2=-k2Еx, так что в результате получаем
Теперь на минуту предположим, что раз Е изменяется синусоидально, то Р можно считать пропорциональной Е, как в уравнении (32.5). (Позднее мы вернемся к этому предположению и обсудим его.) Таким образом, пишем
Px=e0NaEx.
При этом Ех выпадает из уравнения (32.23), и мы находим
k2=w2/c2(1+Na). (32.24)
Мы получили, что волна вида (32.21) с волновым числом k, задаваемым уравнением (32.24), будет удовлетворять уравнениям поля. Использование же выражения (32.22) для показателя n дает
n2 = l+Na. (32.25)
Сравним эту формулу с тем, что получилось у нас для показателя преломления газа (гл. 31, вып. 3). Там мы нашли уравнение (31.19), которое тогда имело вид
Формула (32.25) после подстановки w из (32.6) дает
Что здесь нового? Во-первых, появился новый член igw, возникший в результате учета поглощения энергии в осцилляторах. Во-вторых, слева вместо n теперь стоит n2 и, кроме того, отсутствует дополнительный множитель 1/2. Но заметьте, что если значение N достаточно мало, так что n близок к единице (как это имеет место в газе), то выражение (32.27) говорит, что n2 равен единице плюс некое малое число, т. е. n2=1+e. При этом условии мы можем написать, что n=Ц(1+e)»l+e/2, и оба выражения оказываются эквивалентными. Таким образом, наш новый метод дает для газа тот же самый, найденный нами ранее результат.
Теперь можно надеяться, что выражение (32.27) должно давать показатель преломления и для плотных материалов. Но по некоторым причинам оно нуждается в модификации. Во-первых, при выводе этого уравнения предполагалось, что поляризованное поле, действующее на каждый из атомов,— это поле Ех. Однако такое предположение неверно, поскольку в плотном материале существуют и другие поля, создаваемые соседними атомами, которые могут быть сравнимы с Ех. Аналогичную задачу мы уже рассматривали при изучении статических полей в диэлектрике (см. гл. 11, вып. 5). Вы, вероятно, помните, что мы нашли поле, действующее на отдельный атом, представив его сидящим в сферической полости в окружающем диэлектрике. Поле в такой полости (мы назвали его локальным) увеличивается по сравнению со средним полем Е на величину Р/3e0. (Не забудьте, однако, что этот результат, строго говоря, справедлив только для изотропного материала, а также в случае кубического кристалла.)
Те же рассуждения верны и для электрического поля в волне, но до тех пор, пока длина ее много больше расстояния между атомами. При таком ограничении
Именно это локальное поле следует использовать вместо Е в (32.8), т. е. это выражение должно быть переписано следующим образом:
Р =e0NaЕлок. (32.29)
Подставляя теперь Елок из формулы (32.28), находим
или
Иными словами, Р для плотного материала все еще пропорциональна Е (для синусоидального поля). Однако константа пропорциональности будет уже e0/Na/[1-(Na/3)], а не e0Nallfa, как раньше. Таким образом, нам нужно поправить формулу (32.25):
Более удобно переписать это в виде
который алгебраически эквивалентен прежнему. Это и есть известная формула Клаузиуса — Моссотти.
В плотном материале возникает и другое усложнение. Поскольку атомы расположены слишком тесно, они сильно взаимодействуют друг с другом. Поэтому внутренние гармоники осцилляции изменяются. Собственные частоты атомных осцилляций размазываются этими взаимодействиями и обычно весьма сильно подавляются ими, а коэффициент трения становится очень большим. Таким образом, все w0 и g твердого вещества будут другими, чем для свободных атомов. С этой оговоркой мы все-таки можем представлять а, по крайней мере приближенно, уравнением (32.7), так что
Наконец, последнее усложнение. Если плотный материал представляет собой смесь нескольких компонент, то каждая из них дает свой вклад в поляризацию. Полная a будет суммой вкладов различных компонент смеси [за исключением неточности приближения локального поля в упорядоченных кристаллах, т. е. выражения (32.28) — эффекты, которые мы обсуждали при разборе сегнетоэлектриков]. Обозначая через nj число атомов каждой компоненты в единице объема, мы должны заменить формулу (32.32) следующей:
где каждая aj будет определяться выражением типа (32.7). Выражение (32.34) завершает нашу теорию показателя преломления. Величина 3(n2-1)/(n2+2) задается комплексной функцией частоты, каковой является средняя атомная поляризуемость a(w). Точное вычисление a(w) (т. е. нахождение fk, gk и w0k) для плотного вещества — одна из труднейших задач квантовой механики. Это было сделано только для нескольких особенно простых веществ.
§ 4. Комплексный показатель преломления
Обсудим теперь следствия нашего результата (32.33). Прежде всего обратите внимание на то, что a — комплексное число, так что показатель преломления n тоже оказывается комплексным. Что это означает? Давайте возьмем и запишем n в виде вещественной и мнимой частей:
где nR и nj — вещественные функции w. Мы написали inj с отрицательным знаком, так что nj для обычных оптических материалов будет положительной величиной. (Для обычных оптически неактивных материалов, которые не служат сами источниками света, как это происходит у лазеров, g—положительное число, а это делает мнимую часть n отрицательной.) Наша: плоская волна запишется теперь через n следующим образом:
Ех=Е0е-iw(t-nz/c).
Если подставить n в виде выражения (32.35), то мы получим
и с увеличением z она экспоненциально убывает. График напряженности электрического поля как функции от z в некоторый момент времени и для nI» nR/2p показан на фиг. 32.1.
Фиг. 32.1. График поля Ех в некоторый момент t при nI»nR2/p.
Мнимая часть показателя преломления из-за потерь энергии в атомных осцилляторах приводит к ослаблению волны. Интенсивность волны пропорциональна квадрату амплитуды, так что
Интенсивность ~е-2wnIz/c.
Часто это записывается как
Интенсивность ~е-bz,
где b=2wnI/с — коэффициент поглощения. Таким образом, в уравнении (32.33) содержится не только теория показателя преломления вещества, но и теория поглощения им света.
В тех материалах, которые мы обычно считаем прозрачными, величина c/wnI, имеющая размерность длины, оказывается гораздо больше толщины материала.
§ 5. Показатель преломления смеси
В нашей теории показателя преломления имеется еще одно предсказание, которое можно проверить экспериментально. Предположим, что мы рассматриваем смесь двух материалов. Показатель преломления смеси не будет средним двух показателей, а определяется через сумму двух поляризуемостей, как в уравнении (32.34). Если, скажем, мы интересуемся показателем преломления раствора сахара, то полная поляризуемость будет суммой поляризуемостей воды и сахара. Но каждая из них, разумеется, должна подсчитываться исходя из данных о числе молекул N данного сорта в единице объема. Другими словами, если в данном растворе содержится N1 молекул воды, поляризуемость которой a1, и N2 молекул сахарозы (C12H22O11), поляризуемость которой a2, то мы должны получить
Этой формулой можно воспользоваться для экспериментальной проверки нашей теории — измерения показателя для различных концентраций сахарозы в воде. Однако здесь мы должны сделать несколько допущений. Наша формула предполагает, что при растворении сахарозы никакой химической реакции не происходит и что возмущение индивидуальных осцилляторов при различных частотах отличается не слишком сильно. Поэтому наш результат, безусловно, будет только приближенным. Тем не менее давайте посмотрим, насколько он хорош.
Раствор сахара мы выбрали потому, что мы располагаем хорошими данными измерений показателя преломления и, кроме того, сахар представляет собой молекулярный кристалл и переходит в раствор без ионизации и других изменений химического состояния.
В первых трех столбцах табл. 32.2 приведены данные из указанного справочника. В столбце А дан процент сахарозы по весу, в столбце В приведена измеренная плотность в г/см3, а в столбце С даны измерения показателя преломления света с длиной волны 589,3 ммк. В качестве показателя чистого сахара мы взяли результаты измерений для кристалла сахара. Эти кристаллы не изотропны, так что показатель преломления в разных направлениях различен.
Таблица 32.2 в ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ РАСТВОРА САХАРА И СРАВНЕНИЕ С ПРЕДСКАЗАНИЕМ УРАВНЕНИЯ (32.37)
Справочник дает три величины:
n1=1,5376, n2=1,5651, n3=1,5705.
Мы взяли среднее.
Попытаемся теперь подсчитать n для каждой концентрации, но мы не знаем, какие нужно взять значения a1 и a2. Проверим теорию таким способом: будем предполагать, что поляризуемость воды (a1) при всех концентрациях одна и та же, и подсчитаем поляризуемость сахарозы, используя экспериментальную величину n и разрешая (32.37) относительно a2. Если теория верна, то мы для любой концентрации должны получить одно и то же значение a2.
Прежде всего нам нужно знать числа N1 и N2; выразим их через число Авогадро N0. В качестве нашей единицы объема давайте возьмем один литр (1000 см3). Тогда отношение Ni/N0 равно весу одного литра, поделенному на грамм-молекулу. А вес литра равен произведению плотности (умноженной на 1000, чтобы получить граммы) на весовую долю либо сахарозы, либо воды. Таким путем получаем N2//N0 и n1/n0, записанные в столбцах D и Е нашей таблицы. В столбце F мы подсчитали 3(n2-1)/(n2+2), исходя из экспериментальных значений n (столбец С). Для чистой воды 3(n2-1)/(n2+2) равно 0,617, что как раз будет N1a1. Затем мы можем заполнить остальную часть колонки G, поскольку для каждой строки отношение G/E должно быть одной и той же величиной, именно 0,617:55,5. Вычитая столбец G из столбца F, находим вклад N2a2, вносимый сахарозой, который записан в столбце Н. А затем, поделив эти данные на величину N2/N0 из столбца D, мы получаем величину N0a2, приведенную в столбце 1.
Из нашей теории мы ожидали, что все величины N0a2 должны получиться одинаковыми. Они получились хотя и не точно равными, но довольно близкими друг к другу. Отсюда можно заключить, что наши идеи правильны. Более того, мы нашли, что поляризуемость молекул сахара, по-видимому, не зависит сильно от ее окружения: их поляризуемость приблизительно одна и та же как в разбавленном растворе, так и в кристалле.
§ 6. Волны в металлах
Теорию, которая в этой главе развивалась для твердых материалов, после очень небольшой модификации вполне можно применить и к хорошим проводникам типа металлов. На некоторые из электронов в металлах не действует сила, привязывающая их к какому-то частному атому; это так называемые «свободные» электроны, ответственные за проводимость. Там есть и другие электроны, которые связаны в атомах, и изложенная выше теория непосредственно приложима именно к ним. Однако их влияние обычно «забивается» эффектами электронов проводимости. Поэтому сейчас мы рассмотрим только эффекты
свободных электронов.
Если на электрон не действует никакая восстанавливающая сила, но сопротивление его движению все же остается, то уравнение движения электрона отличается от (32.1) только отсутствием члена w20х. Так что единственное, что нам нужно сделать,— это положить w20=0 во всей остальной части наших выводов. Но есть еще одно отличие. В диэлектриках мы должны различать среднее и локальное поля и вот почему: в изоляторе каждый из диполей занимает фиксированное положение по отношению к другим диполям. Но в металле из-за того, что электроны проводимости движутся и меняют свое место, поле, действующее на них, в среднем как раз равно среднему полю Е. Так что поправка, которую мы сделали к формуле (32.5), не годится, т. е. применение формулы (32.28) для электронов проводимости недопустимо. Следовательно, выражение для показателя преломления в металле должно выглядеть подобно выражению (32.27), в котором следует положить w0=0, именно:
Это только вклад от электронов проводимости, которые, как мы думаем, играют в металлах главную роль.
Но теперь мы даже знаем, какой нам взять величину g, ибо она связана с проводимостью металла. В гл. 43 (вып. 4) мы обсудили связь проводимости металлов с диффузией свободных электронов в кристалле. Электроны движутся по ломаному пути от одного соударения до другого, а между этими толчками они летят свободно, за исключением ускорения из-за какого-то среднего электрического поля (фиг. 32.2).
Фиг. 32.2. Движение свободного электрона.
Там же, в гл. 43 (вып. 4), мы нашли, что средняя скорость дрейфа равна просто произведению ускорения на среднее время между соударениями t. Ускорение равно qeE/m, так что
vдрейф=(qeE/m)t. (32.39)
В этой формуле поле Е считается постоянным, так что скорость vдрейф тоже постоянна. Поскольку в среднем ускорение отсутствует, сила торможения равна приложенной силе. Мы определили g через силу торможения, равную gmv [см. (32.1)], или qeE, поэтому получается, что
g=1/t (32.40)
Несмотря на то что мы не можем с легкостью измерять непосредственно t, можно определять его, измеряя проводимость металла. Экспериментально обнаружено, что электрическое поле Е порождает в металлах ток с плотностью j, пропорциональной Е (для изотропного материала, конечно):
причем постоянная пропорциональности s называется проводимостью.
В точности то же самое мы ожидаем из выражения (32.39),
если положить
j=Nqevдрейф,
тогда
Таким образом, t, а следовательно, и g могут быть связаны с наблюдаемой электрической проводимостью. Используя (32.40] и (32.41), можно переписать нашу формулу (32.38) для показателя преломления в виде
где
Это и есть известная формула для показателя преломления в металлах.
§ 7. Низкочастотное и высокочастотное приближения; глубина скин-слоя и плазменная частота
Наш результат для показателя преломления в металлах —формула (32.42) — предсказывает для распространения волн с разными частотами совершенно различные характеристики. Прежде всего давайте посмотрим, что получается при низких частотах. Если величина w достаточно мала, то (32.42) можно приближенно записать в виде
Возведением в квадрат можно проверить, что
таким образом, для низких частот
Вещественная и мнимая части n имеют одну и ту же величину. С такой большой мнимой частью n волны в металлах затухают очень быстро. В соответствии с выражением (32.36) амплитуда волны, идущей в направлении оси z, уменьшается как
Запишем это в виде
е-z/d, (32.47)
где d — это то расстояние, на котором амплитуда волны уменьшается в е=2,72 раза, т. е. приблизительно в 3 раза. Амплитуда такой волны, как функция от z, показана на фиг. 32.3.
Фиг. 32.3. Амплитуда поперечной электромагнитной волны в металле как функция расстояния.
Поскольку электромагнитные волны проникают в глубь металла только на это расстояние, величина d называется глубиной скин-слоя и определяется выражением
Но что все-таки мы понимаем под «низкими» частотами? Взглянув на уравнение (32.42), мы видим, что его можно приближенно заменить уравнением (32.44), только когда wt много меньше единицы и когда we0/s также много меньше единицы, т. е. наше низкочастотное приближение применимо при
w<<1/t
и
w<<s/e0. (32.49)
Давайте посмотрим, какие частоты соответствуют этому приближению для такого типичного металла, как медь. Для вычисления t воспользуемся уравнением (32.43), а для вычисления s/e0 — известными значениями s и e0. Справочник дает нам такие данные:
s=5,76·107 (ом·м)-1,
Атомный вес = 63,5 г,
Плотность = 8,9 г/см3,
Число Авогадро=6,02·1023.
Если мы предположим, что на каждый атом приходится по одному свободному электрону, то число электронов в кубическом метре будет равно
N=8,5·1028 м-3.
Используя далее
qe=1,6·10-19 кулон,
e0=8,85·10-12 ф/м,
m=9,11·10-31 кг,
получаем
t=2,4·10-14 сек,
1/t=4,l·1013 сек-1,
s/e0 = 6,5·1018 сек-1.
Таким образом, для частот, меньших чем приблизительно 1012 гц, медь будет иметь описанное нами «низкочастотное» поведение. (Это будут волны с длиной, большей 0,3 мм, т. е. очень короткие радиоволны!)
Для таких волн глубина скин-слоя равна
Для микроволн с частотой 10 000 Мгц (3-сантиметровые волны)
s=6,7·10-4 см,
т. е. волны проникают на очень малое расстояние.
Теперь вы видите, почему при изучении полостей (и волноводов) нам нужно беспокоиться только о полях внутри полости, а не о волнах в металле или вне полости. Кроме того, мы видим, почему серебрение или золочение полости уменьшает потери в ней. Ведь потери происходят благодаря токам, которые ощутимы только в тонком слое, равном глубине скин-слоя.
Рассмотрим теперь показатель преломления в металле типа меди при высоких частотах. Для очень высоких частот сот много больше единицы, и уравнение (32.42) очень хорошо аппроксимируется следующим:
Для высокочастотных волн показатель преломления в металлах становится чисто вещественным и меньшим единицы! Это следует также из выражения (32.38), если пренебречь диссипативным членом с 7, что может быть сделано при очень больших значениях w. Выражение (32.38) дает при этом
что, разумеется, эквивалентно уравнению (32.50). Раньше нам
уже встречалась величина (Nq2e/e0m)1/2, которую мы назвали
плазменной частотой (см. гл. 7, § 3, вып. 5);
Таким образом, (32.50) или (32.51) можно переписать в виде
Эта плазменная частота является своего рода «критической». Для w<wр показатель преломления металла имеет мнимую часть и происходит поглощение волн, но при w>>wp показатель становится вещественным, а металл — прозрачным. Вы знаете, конечно, что металлы в достаточной мере прозрачны для рентгеновских лучей. Но некоторые металлы прозрачны даже для ультрафиолета. В табл. 32.3 мы приводим для некоторых металлов экспериментально наблюдаемые длины волн, при которых эти металлы начинают становиться прозрачными. Во второй колонке дана вычисленная критическая длина волны lp =2pc/wp . Учитывая, что экспериментальная длина волны определена не очень хорошо, согласие с теорией следует признать замечательным.
Таблица 32.3 · длины волн, при которых МЕТАЛЛ СТАНОВИТСЯ ПРОЗРАЧНЫМ
Вас может удивить, почему плазменная частота wр должна иметь отношение к распространению волн в металлах. Плазменная частота появилась у нас в гл. 7 (вып. 5) как собственная частота колебаний плотности свободных электронов. (Электрическое расталкивание группы электронов и их инерция приводят к колебаниям плотности.) Продольные волны плазмы резонируют при частоте w. Но сейчас мы говорим о поперечных волнах, и мы уже нашли, что при частотах, меньших wр, происходит их поглощение. (Это очень интересное и отнюдь не случайное совпадение.)
Хотя мы все время говорили о распространении волн в металлах, вы одновременно, должно быть, почувствовали универсальность явлений физики: нет никакой разницы в том, находятся ли свободные электроны в металле, в плазме, в ионосфере Земли или в атмосфере звезд. Чтобы понять распространение радиоволн в ионосфере, можно воспользоваться тем же выражением, разумеется, при надлежащих значениях величин N и t. Теперь мы можем видеть, почему длинные радиоволны поглощаются или отражаются ионосферой, тогда как короткие свободно проходят через нее. (Поэтому для связи с искусственными спутниками Земли должны применяться короткие волны.)
Мы говорили о распространении предельных высоко- и низкочастотных волн в металлах. Для промежуточных же частот необходимо использовать «полновесное» уравнение (32.42). В общем случае показатель преломления будет иметь вещественную и мнимую части, и при распространении волн в металлах происходит их поглощение. Очень тонкие слои металла прозрачны даже для обычных оптических частот. В качестве примера приведем специальные защитные очки для рабочих, работающих около высокотемпературных печей. Эти очки изготавливаются напылением на стекло очень тонкого слоя золота; стекло это достаточно прозрачно для видимого света и на просвет выглядит как зеленое, но инфракрасные лучи сильно поглощает.
И, наконец, от читателя невозможно скрыть тот факт, что многие из этих формул в некотором отношении напоминают формулы для диэлектрической проницаемости c, рассмотренные в гл. 10 (вып. 5). Диэлектрической проницаемостью c измеряется реакция материала на статическое электрическое поле, т. е. когда w=0. Если вы посмотрите повнимательнее на определение n и c, то обнаружите, что c есть не что иное, как предел n2 при w®0. В самом деле, положив в уравнениях этой главы w=0 и n2=c, мы воспроизведем уравнения теории диэлектрической проницаемости гл. 11 (вып. 5).
* Или записав — i=е-ip/2; Ц-i=e-ip/4 = соsp/4- isinp/4, что приводит к тому же результату.
* Взяты из справочника «Handbook of Physics and Chemistry».
* Всюду в этой главе мы будем пользоваться обозначениями, принятыми в гл. 31 (вып. 3); пусть a — атомная поляризуемость, как это определено здесь. В предыдущей главе мы пользовались буквой a для обозначения объемной поляризуемости, т. е. отношения Р к Е. Но в обозначениях этой главы P=Nae0E [см. выражение (32.8)].
Глава 33
ОТРАЖЕНИЕ ОТ ПОВЕРХНОСТИ
§1. Отражение и преломление света
§2. Волны в плотных материалах
§3. Граничные условия
§4. Отраженная и преломленная волны
§5. Отражение от металлов
§6. Полное внутреннее отражение
Повторить: гл. 33 (вып. 3) « Поляризация »
§ 1. Отражение и преломление света
Предметом обсуждения в этой главе будет преломление и отражение света и электромагнитных волн вообще от поверхности. О законах отражения и преломления света мы говорили уже в вып. 3. Вот что мы там выяснили:
1. Угол отражения равен углу падения. Причем углы определяются, как это показано на фиг. 33.1:
Фиг. 33.1. Отражение и преломление волн на поверхности.
Направления распространения волн перпендикулярны их гребням.
qr=qi. (33.1)
2. Произведение nsinq одинаково как для падающего луча, так и для преломленного (закон Снелла):
n1sinq=n2sinqt. (33.2)
3. Интенсивность отраженного света зависит как от угла падения, так и от направления поляризации. Для вектора Е, перпендикулярного плоскости падения, коэффициент отражения R┴ равен
Для вектора Е, параллельного плоскости падения, коэффициент отражения R║ равен
4. Для перпендикулярно падающего луча (разумеется, при любой поляризации!)
(Мы использовали индекс i для обозначения величин в падающем луче, t — в преломленном, а r — в отраженном.)
Наши прежние рассуждения практически достаточно полны для обычной работы, но мы собираемся применить здесь другой способ. Вы хотите знать почему? Причина заключается в том, что раньше мы считали показатель преломления вещественным (т. е. что никакого поглощения в материале не происходит). Однако есть и другая причина: вам следует уметь обращаться с волнами на поверхности с точки зрения уравнений Максвелла. Ответы, конечно, получатся одинаковые, но теперь уже путем непосредственного решения волновой задачи, а не с помощью правдоподобных рассуждений.
Я хочу подчеркнуть, что амплитуда отраженной от поверхности волны не определяется такими свойствами материала, как показатель преломления. Она зависит от чисто «поверхностных свойств», которые, строго говоря, определяются тем, как обработана поверхность. Тонкий слой посторонней примеси на границе между двумя материалами с показателями n1 и n2 обычно изменяет отражение. (Имеются всяческие виды интерференции, примером которой могут служить разноцветные масляные пленки на воде. Подбором толщины можно свести амплитуду отражения данной частоты к нулю. Именно так и делаются просветленные линзы.) Формулы, которые мы получим, будут верны, только когда показатель преломления резко изменится на расстояниях, малых по сравнению с длиной волны. Длина волны света, например, составляет около 5000 Е, так, что под «гладкой» поверхностью мы понимаем поверхность, на которой условия изменяются всего на протяжении нескольких атомов (или на расстоянии нескольких ангстрем). Так что для света наши формулы будут работать только на хорошо отполированной поверхности. Вообще же если показатель преломления постепенно меняется на расстоянии нескольких длин волн, то отражение будет незначительным.
§ 2. Волны в плотных материалах
Прежде всего я напомню вам об удобном способе описания синусоидальных плоских волн, которым мы пользовались в гл. 36 (вып. 3). Любая компонента поля в волне (возьмем, например, Е) может быть записана в форме
E=E0ei(wt-k·r), (33.6)
где Е — амплитуда поля в точке г (относительно начала координат) в момент t. Вектор k указывает направление распространения волны, а его величина |k|=k=2pl равна волновому числу. Фазовая скорость волны vфаз=w/k для света в материале с показателем n будет равна c/n, поэтому
k=wn/c. (33.7)
Предположим, что вектор k направлен по оси z; тогда k·r будет просто хорошо знакомым нам kz. Для вектора k в любом другом направлении z следует заменить на rk — расстояние от начала в направлении вектора k, т. е. kz мы должны заменить на krk, что как раз равно k·r (фиг. 33.2).
Фиг. 33.2. Фаза волны в точке Р, распространяющейся в направлении k, равна (wt-k·r).
Таким образом, запись (33.6) является удобным представлением волны, идущей в любом направлении.
Разумеется, при этом мы должны помнить, что
k·r=kxx+kyy+k:zz,
где kx, ky и kz — компоненты вектора k по трем осям. Мы уже отмечали однажды, что на самом деле величины (w, kx, ky, kz) образуют четырехвектор и что его скалярное произведение на (t, x, у, z) является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде
Однако сейчас нам такие хитрости не понадобятся.
Для синусоидального поля Е, подобного выражению (33.6), производная dE/дt — это то же самое, что и iwE, a дЕ/дх — то же, что и ikxE, и аналогично для остальных компонент. Вы видите, чем удобна форма (33.6): когда мы работаем с дифференциальными уравнениями, то дифференцирование заменяется простым умножением. Другое полезное качество состоит в том, что операция С=(д/дx), (д/ду), (д/дz) заменяется тремя умножениями (-ikx,-iky , -ikz). Но эти три множителя преобразуются как компоненты вектора k, так что оператор С заменяется умножением на
Правило остается справедливым для операции С в любой комбинации, будь то градиент, дивергенция или ротор. Например, z-компонента СXЕ равна
Если и Еу и Ех изменяются как e-ik·r, то мы получаем
-ikxEy+ikyEx,
что представляет, как вы видите, z-компоненту —ikXЕ.
Таким образом, мы получили очень полезный общий закон, что в любом случае, когда вам нужно взять градиент от вектора, который изменяется, как волна в трехмерном пространстве (а они в физике играют важную роль), эту операцию вы можете проделать быстро и почти без всяких раздумий, если вспомните, что оператор С эквивалентен умножению на —ik.
Например, уравнение Фарадея
СXЕ=дB/дt
превращается для волны в
— ikXЕ=-iwB. Оно говорит, что
В=kXE/w. (33.9)
Это соответствует результату, найденному ранее для волн в пустом пространстве, т. е. что вектор В в волне направлен под прямым углом к вектору Е и направлению распространения волны. (В пустом пространстве w/k=с.) Знак в уравнении (33.9) вы можете проверить, исходя из того, что k является направлением вектора Пойнтинга S=e0c2(EXВ).
Если вы примените то же самое правило к другим уравнениям Максвелла, то снова получите результаты последней главы, в частности
Но раз уже это известно нам, давайте не будем проделывать все сначала.
Если вы хотите поразвлечься, можете попытаться решить такую устрашающую задачу (в 1890 г. она предлагалась студентам на выпускных экзаменах): решите уравнения Максвелла для плоской волны в анизотропном кристалле, т. е. когда поляризация Р связана с электрическим полем Е через тензор поляризуемости. Конечно, в качестве ваших осей вы выберете главные оси тензора, так что связи при этом упростятся (тогда Рх=aaЕх, Ру=abЕу, a Pz=acEz), но направление волны и ее поляризация пусть останутся произвольными. Вы должны найти соотношение между Е и В и определить, как изменяется k с направлением распространения волны и ее поляризацией. После этого вам будет понятна оптика анизотропного кристалла. Лучше начать с более легкого случая дважды лучепреломляющего кристалла, подобного турмалину, для которого два коэффициента поляризуемости равны между собой (например, ab=ac), и попытаться понять, почему, когда мы смотрим через такой кристалл, мы видим два изображения. Если это вам удастся, тогда испытайте свои силы на более трудном случае, когда все три а различны. После этого вам уже будет ясен уровень ваших знаний — знаете ли вы столько же, сколько студент, заканчивавший университет в 1890 г. Но мы с вами в этой главе будем рассматривать только изотропные вещества.
Из опыта вам известно, что когда на границу раздела двух материалов, скажем воздуха и стекла или воды и бензина, попадает плоская волна, то возникают как отраженная, так и преломленная волны.
Предположим, что, кроме этого факта, нам больше ничего неизвестно, и посмотрим, что можно из него вывести. Выберем наши оси так, чтобы плоскость yz совпадала с поверхностью раздела, а плоскость ху была перпендикулярна фронту волны (фиг. 33.3).
Фиг. 33.3. Векторы, распространения k, k' и k" для падающей, отраженной и преломленной волн.
Электрический вектор в падающей волне может быть записан в виде
Поскольку вектор k перпендикулярен оси z, то
k·r=kxx+kyy. (33.12) Отраженную волну мы запишем как
так что ее частота равна w', волновое число k', а амплитуда Е'0. (Мы, конечно, знаем, что частота и величина вектора k в отраженной волне те же, что и в падающей волне, но не хотим предполагать даже это. Пусть это все получится само собой из математического аппарата.) Наконец, запишем преломленную волну:
Вы знаете, что одно из уравнений Максвелла дает соотношение (33.9), так что для каждой из волн
Кроме того, если показатели преломления двух сред мы обозначим через n1 и n2, то из уравнения (33.10) получится
Поскольку отраженная волна находится в том же материале, то
в то время как для преломленной волны
§ 3. Граничные условия
Все что мы делали до сих пор, было описанием трех волн; теперь нам предстоит выразить параметры отраженной и преломленной волн через параметры падающей. Как это сделать?
Три описанные нами волны удовлетворяют уравнениям Максвелла в однородном материале, но, кроме того, уравнения Максвелла должны удовлетворяться и на границе между двумя материалами. Так что нам нужно сейчас посмотреть — что же происходит на самой границе. Мы найдем, что уравнения Максвелла требуют, чтобы три волны определенным образом согласовывались друг с другом.
Вот один из примеров того, что мы имеем в виду. Составляющая по оси у электрического поля Е должна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:
СXE=дB/дt, (33.19)
в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).
Фиг. 33.4. Граничное условие Ey2=Ey1, полученное из равенства
Согласно уравнению (33.19), криволинейный интеграл от Е по петле Г равен скорости изменения потока В через эту петлю:
Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Е должен быть нулем. Если y-компоненты поля на двух сторонах границы равны Еy1 и Еy2, а длина прямоугольника равна l, то мы получаем
Ey1l-Ey2l=0
или
Еу1=Еу2, (33.20)
как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.
Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрении маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватывающих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.
Как, например, в задаче о тепловом потоке через поверхность определить температуру на обеих прилежащих к ней сторонах? Конечно, вы вправе утверждать, что тепло, притекающее к границе с одной стороны, должно быть равно теплу, утекающему от нее с другой. Обычно это возможно и, вообще говоря, очень полезно находить граничные условия из такого рода физических рассуждений. Однако могут встретиться случаи, когда при работе над какой-то проблемой вам известны лишь уравнения и вы не можете непосредственно увидеть, какие же физические аргументы можно использовать. Так что, хотя в данный момент мы заинтересованы только в электромагнитных явлениях, где можно привести физические аргументы, я хочу научить вас методу, который можно применить в любой задаче: общему методу нахождения непосредственно из дифференциальных уравнений того, что происходит на границе.
Начнем с выписывания всех уравнений Максвелла для диэлектрика, но на этот раз скрупулезно выписывая все компоненты:
Эти уравнения должны быть справедливы как в области 1 (слева от границы), так и в области 2 (справа от нее). Мы уже выписывали решения в областях 1 и 2. Они должны удовлетворяться и на самой границе, которую мы можем назвать областью 3. Хотя обычно мы считаем границу чем-то абсолютно резким, на самом деле таких границ не бывает. Физические свойства, правда, изменяются очень быстро, но все же не бесконечно быстро. Во всяком случае, мы можем считать, что между областями 1 и 2 изменение показателя преломления хотя и очень быстрое, но непрерывное. Это небольшое расстояние, на котором оно происходит, мы можем назвать областью 3. Подобный же переход в области 3 будут претерпевать и другие характеристики поля, такие, как Рх или Еy и т. п. Однако дифференциальные уравнения должны удовлетворяться; именно следуя за дифференциальными уравнениями в этой области, мы придем к необходимым «граничным условиям».
Предположим, например, что у нас есть граница между вакуумом (область 1) и стеклом (область 2). В вакууме нечему поляризоваться, так что P1=0. А поляризация в стекле пусть равна Р2. Между вакуумом и стеклом существует гладкий, но быстрый переход. Если мы проследим за какой-то компонентой Р, скажем Рх, то она может изменяться так, как это показано на фиг. 33.5, а.
Фиг. 33.5. Поля в переходной области 3 между двумя различными материалами в областях 1 и 2.
Предположим теперь, что мы взяли первое из наших уравнений — уравнение (33.21). В него входит производная от компонент Р по переменным х, у и z. Производные по у и r не очень интересны — в этих направлениях не происходит ничего замечательного. Но производная от Рх по х в области 3 из-за быстрого изменения Рх будет громадна. Производная дРх/дх, как показано на фиг. 33.5,б, имеет на границе очень резкий пик. Если вы представите, что граница сжимается до еще более тонкой области, пик вырастет еще больше. Если для интересующих нас волн граница действительно резкая, то величина дP/дx в области 3 будет больше, много больше любого вклада, который может получиться из-за изменения Р в стороне от границы, так что мы пренебрегаем любыми другими изменениями, за исключением происходящих на границе.
Но как теперь можно удовлетворить уравнению (33.21), если с правой стороны у нас возвышается огромный пик? Только если существует равный ему громадный пик с другой стороны. Что-то и с левой стороны должно быть большим. Единственная возможность — это дЕх/дх, поскольку изменения в направлениях у и z в тех волнах, о которых мы только что упомянули, дают лишь малый эффект. Таким образом, -e0(дЕх/дх) должно быть, как это показано на фиг. 33.5,в, точной копией дP/дx. Получается
Если это уравнение проинтегрировать по х по всей области 3, то мы придем к заключению, что
e0(Еx2-Еx1)=-(Рx2-Рx1). (33.25)
Другими словами, скачок e0Ех при переходе от области 1 к области 2 должен быть равен скачку —Рх.
Уравнение (33.25) можно переписать в виде
e0Ex2+Рx2=e0Ex1+Рx1; (33.26)
оно гласит, что величина (e0Ex+Рx) имеет равные значения как в области 2, так и в области 1. В таких случаях люди говорят, что величина (e0Еx+Рх) непрерывна на границе. Таким образом, мы получили одно из наших граничных условий.
Хотя в качестве иллюстрации мы взяли случай, когда значение Р1 равно нулю, ибо в области 1 у нас был вакуум, ясно, что те же аргументы приложимы для любого материала в этих двух областях, так что уравнение (33.26) верно в общем случае. Давайте перейдем к остальным уравнениям Максвелла и посмотрим, что скажет нам каждое из них. Следующим мы возьмем уравнение (33.22а). У него нет производной по х, так что оно ничего нам не говорит. (Вспомните, что на границе сами поля не особенно велики. Только их производные по х могут стать столь огромными, что будут доминировать в уравнении.) Взглянем теперь на уравнение (33.22.б). Смотрите! Именно здесь у нас есть производная по х! С левой стороны имеется дEz/дx. Предположим, что эта производная громадна. Но минуточку терпения! С правой стороны нет ничего, способного потягаться с ней, поэтому Еz не может иметь скачка при переходе из области 1 к области 2. [Если бы это было так, то с левой стороны уравнения (33.22а) мы бы получили скачок, а с правой — его не было бы, и уравнение оказалось бы неверным.] Итак, мы получили новое условие:
Eя2=Eя1. (33.27)
После тех же самых рассуждений уравнение (33.22в) дает
Ey2=Ey1. (33.28)
Последний результат в точности совпадает с полученным с помощью контурного интеграла условием (33.20).
Перейдем к уравнению (33.23). Единственное, что может дать пик,— это дВх/дх. Но справа опять нет ничего, способного противостоять ему; в результате мы заключаем, что
Bx2=Bx1. (33.29)
И, наконец, последнее из уравнений Максвелла! Уравнение (33.24а) ничего не дает, ибо там нет производных по х. В уравнении (33.236) — одна производная: — с2(дВz/дх), но ей снова нечего противопоставить с другой стороны равенства, поэтому мы получаем
Bz1=Bz2. (33.30)
Совершенно аналогично второе уравнение, которое дает
By1=By2. (33.31)
Итак, последние три условия говорят нам, что В2=В1.
Хочу здесь подчеркнуть, что такой результат получен только потому, что по обеим сторонам границы мы взяли немагнитный материал, вернее, потому, что магнитным эффектом этих материалов мы можем пренебречь. Обычно это вполне допустимо для большинства материалов, за исключением ферромагнетиков. (Магнитные свойства материалов мы будем рассматривать в последующих главах.).
Наша программа привела нас к шести соотношениям между полями в областях 1 и 2. Все они выписаны в табл. 33.1. Их можно использовать для согласования волн в двух областях.
Таблица 33.1 · граничные условия на поверхности ДИЭЛЕКТРИКА
(Поверхность расположена в плоскости yz.)
Однако я хочу отметить, что идея, которую мы только что использовали, будет работать в любой физической ситуации, где у вас есть дифференциальные уравнения и требуется найти решение в области, пересекаемой резкой границей, по обе стороны которой некоторые из физических свойств различны. Для наших теперешних целей было бы легче получить те же самые уравнения с помощью рассуждений о потоках и циркуляциях на границе. (Проверьте, можно ли подобным путем получить те же самые результаты.) Однако теперь вы знаете метод, который будет хорош, даже когда вы попали в затруднительное положение и не видите простых физических соображений относительно того, что происходит на границе. Вы можете просто воспользоваться дифференциальными уравнениями.
§ 4. Отраженная и преломленная волны
Теперь мы готовы применить наши граничные условия к волнам, перечисленным в § 2, где мы получили:
Нами получены еще кое-какие сведения: вектор Е перпендикулярен для каждой волны вектору распространения k.
Полученный результат будет зависеть от направления вектора Е («поляризации») в падающей волне. Анализ сильно упростится, если мы рассмотрим отдельно случай, когда вектор Е параллелен «плоскости падения» (т. е. плоскости ху), и случай, когда он перпендикулярен к ней. Волна с любой другой поляризацией будет просто линейной комбинацией этих волн. Другими словами, отраженные и преломленные интенсивности для различных поляризаций будут разными и легче всего отобрать два простейших случая и отдельно рассмотреть их.
Я подробно проанализирую случай падающей волны, перпендикулярной к плоскости падения, а потом просто опишу вам, что получается в других случаях. Я немного жульничаю, рассматривая простейший пример, однако в обоих случаях принцип один и тот же. Итак, мы считаем, что вектор Еi имеет только z-компоненту, а поскольку все векторы Е смотрят в одном и том же направлении, векторный значок можно опустить.
Оба материала изотропны, поэтому вынужденные колебания зарядов в материале будут происходить в направлении оси z и у полей Е в преломленной и отраженной волнах тоже будет только одна z-компонента. Таким образом, для всех волн Ех и Еy , Рх и Рy равны нулю. Направления векторов Е и В в этих волнах показаны на фиг. 33.6.
Фиг. 33.6. Поляризации отраженной и преломленной волн, когда поле Е в падающей волне перпендикулярно к плоскости падения.
(Здесь мы изменили нашему первоначальному намерению все получить из уравнений. Этот результат также можно было бы получить из граничных условий, однако, используя физические аргументы, мы избежали больших алгебраических выкладок. Когда у вас будет свободное время, посмотрите, можно ли его действительно вывести из уравнений. Он, разумеется, согласуется с уравнениями; просто мы не доказали, что отсутствуют другие возможности.)
Теперь наши граничные условия [уравнения (33.26) — (33.31)] должны дать соотношения между компонентами Е и В в областях 1 и 2. В области 2 у нас есть только одна преломленная волна, а вот в области 1 — их две. Какую же из них нам взять? Поля в области 1 будут, разумеется, суперпозицией полей падающей и отраженной волн. (Поскольку каждое удовлетворяет уравнениям Максвелла, то им удовлетворяет и сумма.) Поэтому, когда мы используем граничные условия, нужно помнить, что
E1=Ei+Er, E2=Et
я аналогично для В.
Для поляризаций, которыми мы сейчас занимаемся, уравнения (33.26) и (33.28) не дают никакой новой информации, и только уравнение (33.27) поможет нам. Оно говорит, что на границе, т. е. при х=0:
Ei+Er=Et.
Таким образом, мы получаем уравнение
которое должно выполняться для любого t и любого у. Возьмем сначала y=0. Для этого значения уравнение (33.38) превращается в
согласно которому два осциллирующих члена равны третьему. Это может произойти, только когда частоты всех осцилляции одинаковы. (Невозможно, сложив три или какое-то другое число подобных членов с различными частотами, получить для любого момента времени в результате нуль.) Итак,
w"=w'=w, (33.39)
как это и было нам всегда известно, т. е. частоты преломленной и отраженной волн те же самые, что и падающей.
Если бы мы предположили это с самого начала, то несомненно избежали бы многих трудностей, но мне хотелось показать вам, что тот же самый результат можно получить и из уравнений. А вот когда перед вами будет стоять реальная задача, лучше всего пускать в оборот сразу все, что вы знаете. Это избавит вас от лишних хлопот.
По определению абсолютная величина k задается равенством k2=n2w2/с2, поэтому
А теперь обратимся к уравнению (33.38) для t=0. Используя снова те же рассуждения, что и прежде, но на сей раз основываясь на том, что уравнения должны быть справедливы при всех значениях у, мы получаем
k"y=k'y=ky. (33.41)
Из формулы (33.40) k'2=k2, так что
k'2x+k'2y =k2x+k2y. Комбинируя это с (33.41), находим
k'2x=k2x , или k'x=+kx. Знак плюс не имеет никакого смысла; он не дает нам никакой отраженной волны, а лишь другую падающую волну, и с самого начала мы говорили, что будем решать задачу с единственной падающей волной, так что
k'x=-kx. (33.42)
Два соотношения (33.41) и (33.42) говорят нам, что угол отражения равен углу падения, как это и ожидалось (см. фиг. 33.3). Итак, в отраженной волне
Для преломленной волны мы уже получали
Их можно решить и в результате получить
Предположим на мгновение, что n1 и n2 — вещественные числа (т. е. что мнимая часть показателей очень мала). Тогда все k тоже будут вещественными и из фиг. 33.3 мы видим, что
ky/k =sinqi, ky/k"=sinqt. (33.46)
Но ввиду уравнения (33.44) мы получаем
n2sinqt=nisinqi;, (33.47)
т. е. уже известный нам закон Снелла для преломления. Если же показатель преломления не вещественный, то волновые числа оказываются комплексными и нам следует воспользоваться
(33.45). [Конечно, мы могли бы определить углы qi. и qt из
(33.46), и тогда закон Снелла (33.47) был бы верен и в общем случае. Однако при этом углы тоже стали бы комплексными числами и, следовательно, потеряли бы свою геометрическую интерпретацию как углы. Уж лучше описывать поведение волн соответствующими комплексными величинами kx или k"x..]
До сих пор мы не обнаружили ничего нового. Мы доставили себе только простенькое развлечение, выводя очевидные вещи из сложного математического механизма. А сейчас мы готовы найти амплитуды волн, которые нам еще не известны. Используя результаты для всех w и k, мы можем сократить экспоненциальный множитель в (33.38) и получить
е0+е'0=е"0. (33.48)
Но поскольку мы не знаем ни Е'0, ни Е"9, то необходимо еще одно соотношение. Нужно использовать еще одно граничное условие. Уравнения для Ех и Еy не помогут, ибо все Е имеют только одну z-компоненту. Так что мы должны воспользоваться условием на В. Попробуем взять (33.29):
Bx2 =Bx1. Согласно условиям (33.35)—(33.37),
Вспоминая, что w" =w'= w и k"y=k'y=ky , получаем
е0+е'0 =е"0.
Но это снова уравнение (33.48)! Мы напрасно потратили время и получили то, что уже давно нам известно.
Можно было бы обратиться к (33.30) Bz2=Вz1, но у вектора В отсутствует z-компонента! Осталось только одно условие — (33.31) Ву2=Ву1. Для наших трех волн
Подставляя вместо Ei,Er и Et волновые выражения при x=0 (ибо дело происходит на границе), мы получаем следующее граничное условие:
Учитывая равенство всех w и ky , снова приходим к условию kxE0 + k'xE'0=k"xE"0. (33.50)
Это дает нам уравнение для величины Е, отличное от (33.48). Получившиеся два уравнения можно решить относительно E'0 и Е"0. Вспоминая, что k’x=-kx, получаем
Вместе с (33.45) или (33.46) для k”x эти формулы дают нам все, что мы хотели узнать. Следствия полученного результата мы обсудим в следующем параграфе.
Если взять поляризованную волну с вектором Е, параллельным плоскости падения, то Е, как это видно из фиг. 33.7, будет иметь как x-, так и y-компоненту. Вся алгебра при этом будет менее хитрая, но более сложная. (Можно, правда, несколько уменьшить работу в этом случае, выражая все через магнитное поле, которое целиком направлено по оси z.)
Фиг. 33.7. Поляризации волн, когда поле Е в падающей волне параллельно плоскости падения.
При этом мы найдем
и
Давайте посмотрим, будет ли наш результат согласовываться с тем, что мы получали раньше. Выражение (33.3) мы вывели в вып. 3, когда находили отношение интенсивностей отраженной и падающей волн. Однако тогда мы рассматривали только вещественный показатель преломления. Для вещественного показателя (или вещественных k) можно записать:
kx=kcosqi=(wn1/c)cosqi,
k"x=k"cosqt=(wn2/c)cosqt.
Подставляя это в уравнение (33.51), получаем
что нисколько не похоже на уравнение (33.3). Если, однако, мы воспользуемся законом Снелла и избавимся от всех n, то сходство будет восстановлено. Подставляя n2=n1(sinqi/sinqt) и умножая числитель и знаменатель на sinqt, получаем
Обратите внимание, что в числителе и знаменателе стоят просто синусы (qi-qt) и (qi+qt), поэтому
Поскольку амплитуды E'0 и E0 измеряются в том же самом материале, интенсивности пропорциональны квадратам электрических полей и мы получаем тот же результат, что и раньше. Подобным же образом формула (33.53) тоже аналогична формуле (33.4).
Для волн, падающих перпендикулярно, qi=0 и qt=0. Формула (33.56) выглядит как 0/0, от чего нам пользы мало. Однако мы можем вернуться назад к формуле (33.55), согласно которой
Этот результат, естественно, применим для «любой» поляризации, поскольку для перпендикулярного луча нет никакой особой «плоскости падения».
§ 5. Отражение от металлов
Теперь мы можем использовать наши результаты для понимания интересного явления — отражения от металлов. Почему металлы блестят? В предыдущей главе мы видели, что показатель преломления металлов для некоторых частот имеет очень большую мнимую часть. Давайте посмотрим, какова будет интенсивность отраженной волны, когда свет падает из воздуха (с показателем n=1) на материал с n=- inI. При этом условии уравнение (33.55) дает (для нормального падения)
Для интенсивности отраженной волны нам нужны квадраты абсолютных величин Е'0 и Е0:
или
Для материала с чисто мнимым показателем преломления получается стопроцентное отражение!
Металлы не отражают 100% света, но все же многие из них хорошо отражают видимый свет. Другими словами, мнимая часть их показателя очень велика. Однако мы видели, что большая мнимая часть показателя означает сильное поглощение. Итак, имеется общее правило: если какой-то материал оказывается очень хорошим поглотителем при какой-то частоте, то отражение волн от его поверхности очень велико и очень мало волн попадает внутрь. Этот эффект вы можете наблюдать на сильных красителях. Чистые кристаллы самых сильных красителей имеют «металлический» блеск. Вероятно, вы замечали, что на краях бутылки с фиолетовыми чернилами засохший краситель имеет золотистый металлический блеск, а засохшие красные чернила имеют иногда зеленоватый металлический оттенок. Красные чернила поглощают из проходящего света зеленые лучи, так что, если концентрация чернил очень велика, они будут давать сильное поверхностное отражение при частоте зеленого света.
Вы можете очень эффектно продемонстрировать это. Намажьте стеклянную пластинку красными чернилами и дайте им высохнуть. Если вы направите пучок белого света на обратную сторону пластинки (фиг. 33.8), то сможете наблюдать проходящий красный свет и отраженный зеленый свет.
Фиг. 33.8. Материал, который сильно поглощает свет с частотой w, отражает его с той же частотой.
§ 6. Полное внутреннее отражение
Если свет идет из материала, подобного стеклу, с вещественным показателем преломления n, большим единицы, в воздух с показателем n2, равным единице, то, согласно закону Снелла,
sinqt=nsinqi.
Угол qt преломленной волны становится равным 90° при угле падения qi равном некоторому «критическому углу» qc, определяемому равенством nsinqc= l. (33.59)
Что происходит при qi, большем, чем критический угол? Вы уже знаете, что здесь возникает полное внутреннее отражение. Но откуда оно все-таки берется?
Вернемся назад к уравнению (33.45), которое дает волновое число k"x для преломленной волны. Из него получилось
Но так как ky=ksinqi, a k=wn/с, то
Если nsinqi больше единицы, то k"2х становится отрицательным, a k"x — чисто мнимым, скажем ±ik. Однако теперь вы знаете, что это значит! «Преломленная» волна при этом будет иметь вид [см. (33.34)]
т. е. с увеличением х амплитуда волны будет либо экспоненциально расти, либо падать, но сейчас, разумеется, нам нужен только отрицательный знак. При этом амплитуда волны справа от границы будет вести себя, как показано на фиг. 33.9.
Фиг. ЗЗ.9. Полное внутреннее отражение.
Обратите внимание, что k1 по порядку величины равно а/с, т. е. l0 равна длине волны света в пустоте. Когда свет полностью отражается от внутренней поверхности стекло — воздух, то в воздухе возникают поля, но они не выходят за пределы расстояний, равных по порядку величины длине волны света.
Теперь нам ясно, как нужно отвечать на такой вопрос: если световая волна в стекле падает на поверхность под достаточно большим углом, то она полностью отражается; если же придвинуть к поверхности другой кусок стекла (так что «поверхность» фактически исчезает), то свет будет проходить. В какой точно момент происходит этот переход? Ведь наверняка должен существовать непрерывный переход от полного отражения к полному его отсутствию! Ответ, разумеется, состоит в том, что если прослойка воздуха настолько мала, что экспоненциальный «хвост» волны в воздухе имеет еще ощутимую величину во втором куске стекла, то он будет «трясти» электроны и порождать новую волну (фиг. 33.10).
Фиг. 33.10. Для очень маленькой щели внутреннее отражение не будет «полным», за щелью появляется прошедшая волна.
Некоторое количество света будет проходить через систему. (Конечно, наше решение неполно; нам следовало бы заново решить все уравнения для случая тонкого слоя воздуха между двумя областями стекла.)
Для обычного света этот эффект прохождения можно наблюдать, только если щель очень мала (порядка длины волны, т. е. 10-5 см), но для 3-сантиметровых волн он демонстрируется очень легко. Для таких волн экспоненциально затухающие поля распространяются на расстояние нескольких сантиметров.
Микроволновая аппаратура, с помощью которой демонстрируют этот эффект, изображена на фиг. 33.11.
Фиг. 33.11. Проникновение волн внутреннего отражения.
Волны из маленького передатчика 3-сантиметровых волн направляются на парафиновую призму, имеющую сечение в форме равнобедренного прямоугольного треугольника. Показатель преломления парафина для этих частот равен 1,50, поэтому критический угол будет 41,5°. Таким образом, волны полностью отражаются от поверхности, наклоненной под 45°, и принимаются детектором А (фиг.33.11, а). Если к первой призме плотно приложить вторую парафиновую призму (фиг. 33.11, б), то волны проходят прямо сквозь них и регистрируются детектором В. Если же между призмами оставить щель в несколько сантиметров (фиг.33.11, в), то мы получим как отраженную, так и проходящую волны. Поместив детектор В в нескольких сантиметрах от наклоненной под 45° поверхности призмы, можно увидеть и электрическое поле вблизи нее.
Глава 34
МАГНЕТИЗМ ВЕЩЕСТВА
§ 1. Диамагнетизм и парамагнетизм
§ 2. Магнитные моменты и момент количества движения
§ 3. Прецессия атомных магнитиков
§ 4. Диамагнетизм
§ 5. Теорема Лармора
§ 6. В классической физике нет ни диамагнетизма, ни парамarнетизма
§7. Момент количества движения в квантовой механике
§ 8. Магнитная энергия атомов
Повторить: гл. 15 (вып. 6) «Векторный потенциал»
§ 1. Диамагнетизм и парамагнетизм
В этой главе я начну рассказывать о магнитных свойствах материалов. Материал, обладающий наиболее сильными магнитными свойствами, разумеется,— железо. Подобными же магнитными свойствами обладают еще такие элементы, как никель, кобальт и (при достаточно низких температурах, ниже 16° С) гадолиний и другие редкоземельные металлы, а также некоторые особые сплавы. Такой вид магнетизма называется ферромагнетизмом. Это достаточно сложное и удивительное явление, и ему мы посвятим специальную главу. Но и все обычные вещества тоже имеют некоторые магнитные свойства, хотя и не столь ярко выраженные, а много слабее — в тысячи и миллион раз меньше, чем эффекты в ферромагнитных материалах. Здесь мы собираемся описать обычный магнетизм, т. е. магнетизм неферромагнитных веществ.
Этот слабый магнетизм бывает двух сортов. Некоторые материалы притягиваются магнитным полем, другие же отталкиваются им. В отличие от электрического эффекта в веществе, который всегда приводит к притяжению диэлектриков, магнитный эффект имеет два знака. Наличие этих двух знаков легко продемонстрировать с помощью сильного электромагнита, один из полюсных наконечников которого заострен, а другой — плоский (фиг. 34.1).
Фиг. 34.1. Небольшой висмутовый цилиндр слабо отталкивается заостренным полюсом; кусочек алюминия будет притягиваться.
Магнитное поле у заостренного полюса намного сильнее, нежели у плоского. Если небольшой кусочек материала, подвешенный на длинной струне, поместить между полюсами такого магнита, то на него, вообще говоря, действует очень слабенькая сила. Действие этой силы можно обнаружить по незначительному смещению подвешенного кусочка материала при повороте магнита. Оказывается, что ферромагнитные материалы сильно притягиваются заостренным полюсом, а все остальные — очень слабо. А есть и такие, которые не притягиваются заостренным полюсом, а слабо отталкиваются.
Этот эффект легче всего наблюдать на маленьком цилиндре из висмута, который выталкивается, из области сильного поля. Вещества, которые отталкиваются, подобно висмуту, называются диамагнетиками. Висмут — один из сильнейших диамагнетиков, но даже и его магнитный эффект очень слаб. Диамагнетизм всегда очень слаб. Если между полюсами подвесить кусочек алюминия, то на него все же будет действовать слабенькая сила, но направленная в сторону заостренного полюса. Вещества, подобные алюминию, называются парамагнетиками. (В таких экспериментах при включении и выключении магнита из-за вихревых токов возникают силы, которые могут дать сильный толчок. Поэтому нужно быть очень внимательным и смотреть только на чистое перемещение после того, как подвешенный предмет успокоился.)
Сейчас я коротко опишу механизм этих двух эффектов. Прежде всего атомы многих веществ не имеют постоянных магнитных моментов, или, вернее, все магнитные моменты внутри каждого атома уравновешены так, что суммарный магнитный момент атома равен нулю. Спиновые и орбитальные моменты электронов сбалансированы так, что у каждого данного атома никакого среднего магнитного момента нет. Если при этих обстоятельствах вы включаете магнитное поле, то внутри атома по индукции генерируются слабые дополнительные токи.
В соответствии с законом Ленца эти токи действуют так, чтобы сопротивляться увеличивающемуся магнитному полю. Таким образом, наведенный магнитный момент атомов направлен противоположно магнитному полю. Это и есть механизм диамагнетизма.
Однако существуют такие вещества, атомы которых все же обладают магнитным моментом, т. е. электронные спины и орбиты которых имеют ненулевой полный циркулирующий ток. Таким образом, кроме диамагнитного эффекта (а он всегда присутствует), существует еще возможность «выстраивания» индивидуальных атомных моментов в одном направлении. Магнитные моменты в этом случае стараются выстроиться по направлению магнитного поля (точно так же, как постоянные диполи в диэлектрике выстраиваются в электрическом поле) и наведенный магнетизм стремится усилить магнитное поле. Это и есть парамагнитные вещества. Парамагнетизм, вообще говоря, довольно слаб, потому что выстраивающие силы относительно малы по сравнению с силами теплового движения, которые стараются разрушить упорядочивание. Отсюда также следует, что парамагнетизм обычно чувствителен к температуре. (Исключение составляет парамагнетизм, обусловленный спинами электронов, ответственных за проводимость металлов. Но мы не будем обсуждать здесь это явление.) Для обычного парамагнетизма эффект тем сильнее, чем ниже температура. При низких температурах атомы выстраиваются в большей степени, поскольку разупорядочивание вследствие тепловых колебаний (соударений) будет меньше. Но, с другой стороны, диамагнетизм более или менее не зависит от температуры. У любого вещества с выстроенными магнитными моментами есть как диамагнитный, так и парамагнитный эффекты, причем парамагнитный эффект обычно доминирует.
В гл. 11 (вып. 5) мы описывали сегнетоэлектрические материалы, все электрические диполи которых выстраиваются в результате взаимного действия атомов друг на друга своими электрическими полями. Можно представить себе магнитный аналог сегнетоэлектричества, в котором все атомные моменты, действуя друг на друга, выстраивают сами себя. Если бы вы попытались вычислить, как это должно происходить, то обнаружили бы, что из-за того, что магнитные силы гораздо слабее электрических, тепловое движение должно расстраивать упорядочивание даже при столь низких температурах, как 10° К. Так что при комнатных температурах любое постоянное выстраивание магнитных моментов казалось бы невозможно.
Но, с другой стороны, именно это явление происходит в железе: там магнитные моменты все-таки выстраиваются. Между магнитными моментами различных атомов железа действуют эффективные силы, которые во много-много раз больше прямого магнитного взаимодействия. Это косвенный эффект, который можно объяснить только с помощью квантовой механики. Он примерно в десять тысяч раз сильнее прямого магнитного взаимодействия, и именно он выстраивает магнитные моменты в ферромагнитных материалах. Об этом особом взаимодействии мы будем говорить в дальнейшем.
Я попытался дать вам качественные объяснения диамагнетизма и парамагнетизма, однако хочу тут же внести поправку и сказать, что с точки зрения классической механики честным путем понять магнитные эффекты невозможно. Подобные магнитные эффекты — явления целиком квантовомеханические. Тем не менее привести некоторые «правдоподобные» классические рассуждения и дать вам представление о том, как здесь все происходит, все-таки небесполезно.
Попробуем встать на этот путь. Можно приводить разные физические аргументы и строить догадки о том, что происходит с веществом, однако все эти аргументы будут в той или иной степени «незаконными», так как в любом из магнитных явлений весьма существенную роль играет квантовая механика. С другой стороны, бывают такие системы, подобные плазме или скоплению множества свободных электронов, где электроны все же живут по законам классической механики. При таких обстоятельствах некоторые из теорем классического магнетизма будут очень полезны. Кроме того, классические рассуждения полезны еще и по историческим причинам: ведь пока люди еще не могли понять глубокий смысл и поведение магнитных материалов, они пользовались классическими аргументами. Так что классическая механика все же способна дать нам полезные сведения. И только если стремиться быть совсем честным, то надо отложить изучение магнетизма до тех пор, пока вы не пройдете квантовую механику.
А мне все-таки не хочется ждать так долго ради того, чтобы понять такую простую вещь, как диамагнетизм. Для целого ряда полуобъяснений происходящего можно ограничиться классической механикой, сознавая, однако, что наши доводы на самом деле нуждаются в квантовомеханическом подкреплении.
§ 2. Магнитные моменты и момент количества движения
Первая теорема, которую мы хотим доказать в классической механике, гласит: если электрон движется по круговой орбите (например, крутится вокруг ядра под действием центральных сил), то менаду магнитным моментом и моментом количества движения существует определенное соотношение. Обозначим через J момент количества движения, а через m — магнитный момент электрона на орбите. Величина момента количества движения равна произведению массы электрона на скорость и на радиус (фиг. 34.2). Он направлен перпендикулярно плоскости орбиты:
J=mvr. (34.1)
Фиг. 34.2. Для любой круговой орбиты магнитный момент m равен произведению q!2m на момент количества движения J.
(Хотя эта формула и нерелятивистская, но для атома она должна быть достаточно хороша, ибо у захваченного на орбиту электрона отношение v/c в общем случае равно по порядку величины е2/hc=1/137, или около 1%.)
Магнитный момент той же самой орбиты равен произведению тока на площадь (см. гл. 14, § 5, вып. 5). Ток равен положительному заряду, проходящему в единицу времени через любую точку на орбите, т. е. произведению заряда q на частоту вращения. А частота равна скорости, поделенной на периметр орбиты, так что
I=q(v/2pr). Так как площадь равна pr2, то магнитный момент будет
m=qvr/2 (34.2)
Он тоже направлен перпендикулярно плоскости орбиты. Таким образом, J и m имеют одинаковое направление:
m=(q/2m)J (орбиты). (34.3)
Их отношение не зависит ни от скорости, ни от радиуса. Для любой частицы, движущейся по круговой орбите, магнитный момент равен произведению q/2m на момент количества движения. Для электрона, заряд которого отрицателен (обозначим его через -qe),
m=-(qe/2m)J (для электрона на орбите). (34.4)
Вот что получается в классической физике, и совершенно удивительно, что то же самое справедливо и в квантовой механике. Это один из правильных выводов. Однако если развивать его дальше по пути классической физики, то вы натолкнетесь на такие места, где он даст неправильные ответы; разобраться же потом, какие результаты верны, а какие неверны, — целое дело. Уж лучше я сразу скажу, что в квантовой механике верно в общем случае. Прежде всего соотношение (34.4) остается верным для орбитального движения; однако это не единственное место, где мы встречаемся с магнетизмом. Электрон, кроме того, совершает еще вращение вокруг собственной оси (подобное вращению Земли вокруг ее оси), и в результате этого вращения у него возникает момент количества движения и магнитный момент. Но по чисто квантовомеханическим причинам (классическое объяснение этого совершенно отсутствует) отношение m к J для собственного вращения (спина) электрона в два раза больше, чем для орбитального движения крутящегося электрона:
m=-(qe/m)J (спин электрона). (34.5)
В любом атоме, вообще говоря, имеется несколько электронов, и его полный момент количества движения и полный магнитный момент представляют некоторую комбинацию спиновых и орбитальных моментов. И без каких-либо на то классических оснований в квантовой механике (для изолированного атома) направление магнитного момента всегда противоположно направлению момента количества движения. Отношение их не обязательно должно быть -qe/m или -qe/2m; оно расположено где-то между ними, ибо здесь «перемешиваются» вклады от спинов и орбит. Можно записать
'm=-g(qe/2m)J (34.6)
где множитель g характеризует состояние атома. Для чисто орбитальных моментов он равен единице, для чисто спиновых равен 2, а для сложной системы, подобной атому, он расположен где-то между ними. Конечно, пользы от этой формулы не очень много. Она только говорит, что магнитный момент параллелен моменту количества движения, но может иметь любую величину. Тем не менее форма уравнения (34.6) все же удобна, ибо величина g, называемая «фактором Ланде», есть безразмерная постоянная порядка единицы. Одна из задач квантовой механики — предсказание фактора g для разных атомных состояний. Быть может, вам интересно знать, что происходит в ядрах атомов. Протоны и нейтроны в ядре движутся по своего рода орбитам и в то же время, подобно электронам, имеют спин. Магнитный момент снова параллелен моменту количества движения. Только теперь порядок величины отношения магнитного момента к моменту количества движения для каждой из этих частиц будет таким, как можно было ожидать для протона, движущегося по кругу; при этом массу m в уравнении (34.3) нужно взять равной массе протона.
Поэтому для ядер обычно пишут (в скобках положительная величина)
m=g(qe/2mp)J (34.7)
где mp— масса протона, а постоянная g, называемая ядерным g-фактором,— число порядка единицы, которое должно определяться отдельно для каждого сорта ядер.
Другое важное отличие в случае ядер состоит в том, что g-фактор спинового магнитного момента протона не равен 2, как у электрона. Для протона g=2·(2,79). Крайне удивительно, что спиновый магнитный момент есть и у нейтрона и отношение этого магнитного момента к моменту количества движения равно 2·(-1,93). Другими словами, нейтрон в магнитном смысле не будет в точности «нейтральным». Он напоминает маленький магнитик и имеет такой же магнитный момент, как и вращающийся отрицательный заряд.
§ 3. Прецессия атомных магнитиков
Одно из следствий пропорциональности магнитного момента моменту количества движения заключается в том, что атомные магнитики, помещенные в магнитное поле, будут прецессироватъ. Обсудим это сначала с точки зрения классической физики. Пусть у нас имеется магнитный момент m, свободно висящий в однородном магнитном поле. Он испытывает действие момента силы t, равного mXB, пытающегося повернуть его в том же направлении, что и поле. Но атомный магнит — ведь это гироскоп, у него есть момент количества движения J. Поэтому момент силы от магнитного поля не вызовет поворота в направлении поля. Вместо этого магнит, как мы видели, когда говорили о гироскопе в гл. 20 (вып. 2), начнет првцессироватъ. Момент количества движения, а вместе с ним и магнитный момент прецессируют вокруг оси, параллельной магнитному полю. Скорость прецессии можно найти тем же методом, что и в гл. 20 (вып. 2).
Предположим, что за малый промежуток времени Dt момент количества движения меняется от J до J' (фиг. 34.3), оставаясь при этом всегда под одним и тем же углом q к направлению магнитного поля В.
Фиг. 34.3. Объект в моментом количества движения J и параллельным ему магнитным моментом m в магнитном поле В прецессирует с угловой скоростью wp,.
Обозначим через wp угловую скорость прецессии, так что за промежуток времени Dt угол прецессии будет равен wpDt. Из геометрии рисунка мы видим, что изменение момента количества движения за время Dt равно
DJ=(Jsinq)(wpDt), а скорость изменения момента количества движения
dJ/dt=wpJsinq (34.8)
что должно равняться моменту силы
t=mBsinq. (34.9)
Угловая скорость прецессии будет равна
Подставляя из уравнения (34.6) отношение m/J, мы видим, что для атомной системы
wp=g(qe/2m)B (34.11)
т. е. частота прецессии пропорциональна В. Полезно запомнить, что для атома (или электрона)
а для ядра
(Формулы для атомов и ядер различны только благодаря различным соглашениям относительно g в этих двух случаях.) Итак, в соответствии с классической теорией электронные орбиты и спины в атоме должны прецессировать в магнитном поле. Верно ли это и в квантовой механике? В сущности это верно, однако смысл «прецессии» здесь совсем иной. В квантовой механике нельзя говорить о направлении момента количества движения в том же смысле, как это делается классически; тем не менее аналогия здесь очень близкая, настолько близкая, что мы продолжаем пользоваться термином «прецессия». Мы еще обсудим это позднее, когда будем говорить о квантовомеханической точке зрения.
§ 4. Диамагнетизм
Рассмотрим теперь с классической точки зрения диамагнетизм. К этому можно подойти несколькими путями, но один из лучших такой. Предположим, что по соседству с атомом медленно включается магнитное поле. При изменении магнитного поля благодаря магнитной индукции будет генерироваться электрическое поле. По закону Фарадея контурный интеграл от Е по замкнутому контуру равен скорости изменения магнитного потока через этот контур. Предположим, что в качестве контура Г мы выбрали окружность радиусом r, центр которой совпадает с центром атома (фиг. 34.4).
Фиг. 34.4. Индуцированные электрические силы, действующие на электроны в атоме.
Среднее тангенциальное электрическое поле Е на этом контуре определяется выражением
т. е. возникает циркулирующее электрическое поле, напряженность которого равна
Индуцированное электрическое поле, действуя на атомный электрон, создает момент силы, равный -qeEr, который должен быть равен скорости изменения момента количества движения dJ/dt:
Интегрируя теперь по времени, начиная с нулевого поля, мы находим, что изменение момента количества движения из-за включения поля будет равно
Это и есть тот дополнительный момент количества движения, который сообщается электрону за время включения поля.
Такой добавочный момент количества движения приводит к добавочному магнитному моменту, который благодаря тому, что это орбитальное движение, равен просто произведению -qe/2m на момент количества движения. Наведенный диамагнитный момент
Знак минус (как можно убедиться непосредственно из закона Ленца) означает, что направление добавочного момента противоположно магнитному полю.
Мне бы хотелось написать выражение (34.16) несколько по-иному. Появившаяся у нас величина r2 представляет собой расстояние от оси, проходящей через атом и параллельной полю В, так что если поле В направлено по оси z, то оно равно x2+y2. Если мы рассмотрим сферически симметричные атомы (или усредним по атомам, естественные оси которых могут располагаться во всех направлениях), то среднее от z2+y2 равно 2/3 среднего квадрата истинного радиального расстояния от центра атома. Поэтому уравнение (34.16) обычно более удобно записывать в виде
Во всяком случае, мы нашли, что индуцированный атомный момент пропорционален магнитному полю В и противоположен ему по направлению. Это и есть диамагнетизм вещества. Именно этот магнитный эффект ответствен за малые силы, действующие на кусочек висмута в неоднородном магнитном поле.(Вы можете определить величину этой силы, воспользовавшись выражением для энергии наведенного момента в поле и результатами измерений изменения энергии при движении образца в область сильного поля или из нее.)
Но перед нами все еще стоит такая проблема: чему равен средний квадратичный радиус <r2>ср? Классическая механика не может дать нам ответа. Мы должны вернуться назад и, вооружившись квантовой механикой, начать все снова. Мы не можем знать, где именно находится электрон в атоме, а знаем лишь, что имеется вероятность его обнаружить в некотором месте. Если мы будем интерпретировать <r2>ср как среднее значение квадрата расстояния от центра для данной вероятности распределения, то диамагнитный момент, даваемый квантовой механикой, определяется тем же самым выражением (34.17). Оно, разумеется, дает нам момент одного электрона. Полный же момент будет суммой по всем электронам в атоме. Удивительно, что и классические рассуждения и квантовая механика дают тот же ответ, хотя, как мы увидим дальше, «классические» рассуждения, которые приводят к (34.17), на самом деле несостоятельны в рамках самой классической механики.
Такой же диамагнитный эффект будет наблюдаться даже у атомов с постоянным магнитным моментом. При этом система тоже будет прецессировать в магнитном поле. Во время прецессии атома в целом он набирает небольшую дополнительную угловую скорость, а подобное медленное вращение приводит к маленькому току, который дает поправку к магнитному моменту. Это тот же диамагнитный эффект, но поданный по-другому. Однако на самом деле, когда мы говорим о парамагнетизме, нам не нужно заботиться об этой добавке. Если мы сначала подсчитали диамагнитный эффект, как это было сделано здесь, нас не должен беспокоить небольшой дополнительный ток, происходящий из-за прецессии. Он уже включен нами в диамагнитный член.
§ 5. Теорема Лармора
Теперь уже из наших результатов можно сделать кое-какие заключения. Прежде всего в классической теории момент m всегда пропорционален J, причем для каждого вида атомов со своей константой пропорциональности. В классической теории у электрона нет никакого спина и константа пропорциональности всегда равна -qe/2m, иначе говоря, мы должны в (34.6) положить g=1. Отношение m к J не зависело от внутреннего движения электронов. Таким образом, в соответствии с классической теорией все системы электронов должны были прецессировать с одной и той же угловой скоростью. (В квантовой механике это неверно.) Этот результат связан с одной теоремой классической механики, которую мне бы хотелось сейчас доказать. Предположим, что имеется группа электронов, которые удерживаются вместе притяжением к центральной точке, подобно электронам, притягиваемым ядром. Эти электроны будут также взаимодействовать друг с другом, и движение их, вообще говоря, довольно сложно. Пусть вы нашли их движение в отсутствие магнитного поля и хотите знать, каково будет движение в слабом магнитном поле. Теорема утверждает, что движение в слабом магнитном поле всегда будет таким же, как и движение без поля с добавочным вращением относительно оси поля с угловой скоростью wL=qeB/2m. (Это то же самое, что и wp при g=1.) Разумеется, возможных движений может быть много. Все дело в том, что каждому движению без магнитного поля соответствует движение в поле, которое состоит из первоначального движения плюс равномерное вращение. Это и есть теорема Лармора, а частота wL называется ларморовой частотой.
Мне бы хотелось показать вам, как можно доказать эту теорему, но детали доказательства я предоставлю вам самим.
Возьмем сначала электрон в центральном силовом поле. На него просто действует направленная к центру сила F(r). Если теперь включить однородное магнитное поле, то появится дополнительная сила qvXВ, так что полная сила будет равна
F(r)+qvXB. (34.18)
Посмотрим теперь на те же самые электроны из системы координат, вращающейся с угловой скоростью w относительно оси, проходящей через центр силы и параллельной полю В. Она уже не будет инерциальной системой, а посему нам нужно добавить надлежащие псевдосилы: центробежные силы и силы Кориолиса, о которых мы говорили в гл. 19 (вып. 2). Там мы обнаружили, что в системе отсчета, вращающейся с угловой скоростью w, действуют кажущиеся тангенциальные силы, пропорциональные vr — радиальной компоненте скорости:
Ft = -2mwvr. (34.19) Кроме того, там действует кажущаяся радиальная сила
Fr=mw2r+2mwvt, (34.20)
где vt — тангенциальная компонента скорости, измеряемая во вращающейся системе отсчета. (Радиальная компонента vr одна и та же как для вращающихся, так и для инерциальных систем.)
Теперь для достаточно малых угловых скоростей (т. е. когда (wr<<vt) первым (центробежным) слагаемым в уравнении (34.20) можно пренебречь по сравнению со вторым (кориолисовым). После этого уравнения (34.19) и (34.20) можно записать вместе как
F=-(2mwXv). (34.21)
Если же теперь скомбинировать вращение и магнитное поле, то мы должны к силе (34.18) добавить силу (34.21). Полная сила получится такой:
F(r)+qvXB+2mvXw. (34.22)
[В последнем слагаемом по сравнению с (34.21) мы переставили сомножители в векторном произведении и изменили знак.] Взглянув теперь на полученный результат, мы видим, что если
2mw=-qB,
то последние два члена сократятся, и единственной силой в движущейся системе будет сила F(r). Движение электрона будет таким же, как и в отсутствие магнитного поля, но добавится, разумеется, вращение. Мы доказали теорему Лармора для одного электрона. Поскольку при доказательстве мы предполагали со малым, то это означает, что теорема верна только для слабых магнитных полей. Единственно, что я прошу вас рассмотреть самостоятельно,— это случай многих электронов, взаимодействующих друг с другом в том же самом центральном поле. Докажите теорему для такого случая. Таким образом, каким бы сложным ни был атом, если его поле центральное,— теорема будет верна. Но это уже конец классической механики, ибо то, что система прецессирует таким образом, неверно. Частота прецессии wp в уравнении (34.11) только тогда равна wL., когда g=1.
§ 6. В классической физике пет ни диамагнетизма, ни парамагнетизма
Сейчас я хочу показать вам, что в соответствии с классической механикой не получается ни диамагнетизма, ни парамагнетизма. На первый взгляд это звучит дико — ведь только что мы доказали, что там есть и диамагнетизм, и парамагнетизм, и прецессирующие орбиты и т. п., а теперь собираемся доказывать, что все это ложь. Увы, так оно и есть! Я собираюсь доказать, что если достаточно долго следовать за классической механикой, то никаких магнитных эффектов не получится: они исчезнут все до единого. Если вы начнете с классических рассуждений, но вовремя остановитесь, то получите желаемый результат. И только законные и последовательные доказательства показывают, что никаких магнитных эффектов нет.
Вот одно из следствий классической механики. Если у вас есть какая-то заключенная в ящик система, скажем электронный или протонный газ или что-то в этом роде, не способная вращаться как нечто целое, то никакого магнитного эффекта возникнуть не может. Магнитный эффект может получиться лишь при наличии изолированной системы, удерживаемой от разлетания своими собственными силами подобно звезде, которая, будучи помещена в магнитное поле, может начать вращаться. Но если ваш кусок материала удерживается в одном положении и не может начать крутиться, то никакого магнитного эффекта не будет. Более точно мы понимаем под этим следующее: мы предполагаем, что при данной температуре существует только одно состояние теплового равновесия. Тогда теорема утверждает, что если вы включите магнитное поле и выждете, пока система не придет в тепловое равновесие, то никакого наведенного магнитного эффекта не появится — ни диамагнетизма, ни парамагнетизма. Доказательство: Согласно статистической механике, вероятность того, что система имеет заданное состояние движения, пропорциональна e-U/kT, где U — энергия этого движения. Но что такое энергия движения? Для частиц в постоянном магнитном поле она равна обычной потенциальной энергии плюс mv2/2 без какой бы то ни было добавки от магнитного поля. [Вы знаете, что сила, действующая со стороны электромагнитного поля, равна q(E+vXB), а мощность F·v будет просто qE·v, т. е. никакого влияния магнитного поля нет и в помине.] Итак, энергия системы независимо от того, находится ли она в магнитном поле или нет, всегда будет суммой только кинетической и потенциальной энергий. А поскольку вероятность любого движения зависит только от энергии, т. е. от скорости и положения, то для нее безразлично, включено ли магнитное поле или нет. Следовательно, на тепловое равновесие магнитное поле не оказывает никакого влияния. Если мы возьмем сначала одну систему, заключенную в первом ящике, а затем другую — во втором ящике, но на этот раз в магнитном поле, то вероятность какого-то определенного значения скорости в некоторой точке в первом ящике будет той же самой, что и во втором. Если в первом ящике отсутствуют средние циркулирующие токи (которых не должно быть, если система находится в равновесии со стационарными стенками), то там нет никакого магнитного момента. А поскольку все движения во втором ящике такие же, как и в первом, у него тоже нет никакого магнитного момента. Следовательно, если температура поддерживается постоянной, то после включения поля и восстановления теплового равновесия никакого наведенного магнитного момента в соответствии с классической механикой быть не должно. Удовлетворительное объяснение магнитных явлений можно получить только в квантовой механике.
К сожалению, я не уверен в вашем полном понимании квантовой механики, поэтому обсуждать эти вопросы здесь вряд ли уместно. Но, с другой стороны, не всегда следует начинать изучение чего-то с выписывания правил и применения их в различных обстоятельствах. Почти каждый предмет, с которым мы имели дело в нашем курсе, начинался по-разному. Для электродинамики, например, мы на первой же странице выписали уравнения Максвелла, а уж затем выводили из них все следствия. Это один способ. Однако сейчас я не собираюсь начать новую «первую страницу» выписыванием уравнений квантовой механики и получением следствий из них. Я просто расскажу вам о некоторых результатах квантовой механики до того еще, как вы узнали, откуда они берутся. Итак, за дело.
§ 7. Момент количества движения в квантовой механике
Я уже приводил вам соотношение между магнитным моментом и моментом количества движения. Очень хорошо. Но что означает магнитный момент и момент количества движения в Квантовой механике? Оказывается, что для полной уверенности в том, что они означают в квантовой механике, лучше определять вещи, подобные магнитному моменту, через другие понятия, такие, как энергия. Магнитный момент легко определить через энергию, ибо энергия магнитного момента в магнитном поле равна в классической теории—m·В. Следовательно, в квантовой механике необходимо принять следующее определение. Если мы вычисляем энергию системы в магнитном поле и видим, что она пропорциональна напряженности (для малых полей), то коэффициент пропорциональности мы будем называть магнитным моментом в направлении поля. (Нам сейчас в нашей работе не требуется особой элегантности и мы можем продолжать думать о магнитном моменте в обычном, т. е. в каком-то отношении классическом смысле.)
Теперь мне бы хотелось обсудить понятие момента количества движения в квантовой механике, или, вернее, характеристики того, что в квантовой механике называется моментом количества движения. Видите ли, при переходе к законам нового рода нельзя предполагать, что каждое слово будет в точности означать то же, что и раньше. Подумав, вы можете сказать: «Постойте, а ведь я знаю, что такое момент количества движения. Это штука, которую измеряет момент силы». Но что такое момент силы? В квантовой механике у нас должно быть новое определение старых величин. Поэтому законно было бы назвать ее каким-то другим именем, вроде «углоквантового момента», или чем-то в этом духе, и уж это был бы момент количества движения «по-квантовомеханически». Однако если в квантовой механике мы можем найти величину, которая, когда система становится достаточно большой, идентична нашему старому понятию момента количества движения, то никакой пользы от изобретения новых слов нет. Ее тоже можно называть моментом количества движения. В этом понимании та странная вещь, которую мы собираемся описать, и есть момент количества движения. Это характеристика, в которой мы для больших систем узнаем момент количества движения классической механики.
Прежде всего возьмем систему с сохраняющимся моментом количества движения наподобие атома в пустом пространстве. Такая система (подобно Земле, вращающейся вокруг собственной оси) может крутиться вокруг любой оси, какую бы нам ни вздумалось выбрать. Для данной величины спина возможно много различных «состояний» с одной и той же энергией, причем каждое из них соответствует какому-то направлению оси момента количества движения. Таким образом, в классической механике с данным моментом количества движения связано бесконечное число возможных состояний с одной и той же энергией.
Однако в квантовой механике, как оказывается, происходит несколько странных вещей. Во-первых, число состояний, в которых может находиться, такая система, ограниченно — их можно перечислить. Для маленькой системы это число довольно мало, но если система велика, конечное число становится очень и очень большим. Во-вторых, мы не можем описывать «состояния» заданием направления момента количества движения, а можем только задавать его компоненту в некотором направлении, скажем в направлении оси z. Классически объект с данным полным моментом количества движения J может в качестве z-компоненты иметь любую величину между -J и +J. Но в квантовой механике z-компонента момента количества движения может принимать только определенные дискретные значения. Любая данная система, в частности атом или ядро или что-то другое, с заданной энергией имеет характерное число j, а ее z-компонента момента количества движения может принимать только одно из значений:
Наибольшая величина z-компоненты равна произведению j на h, следующая на h меньше и т. д. до — jh. Число j называется «спином системы». (Некоторые называют его «квантовым числом полного момента количества движения», а мы будем называть его попросту «спином».)
Вас, вероятно, волнует, не будет ли все сказанное нами верно только для некоторой особой оси z? Это не так. Для системы со спином j компонента момента количества движения по любой оси может принимать только одно из значений (34.23). Хотя все это выглядит довольно невероятно, я еще раз прошу вас мне поверить. Позднее мы еще вернемся к этому пункту и обсудим его. Вам, наверно, будет приятно услышать, что z-компонента пробегает набор значений от некоторого числа до минус то же самое число, так что нам, к счастью, не приходится гадать, какое же направление оси z положительное. (Конечно, если бы я сказал, что он пробегает значения от +j до минус какое-то другое число, это было бы крайне подозрительно, ибо тогда мы были бы лишены возможности направить ось z в другую сторону.)
Но если z-компонента момента количества движения изменяется на целое число от +j до -j, то не должно ли само j тоже быть целым числом? Нет! Не совсем так, целым должно быть удвоенное j, т. е. 2j. Иначе говоря, целым должна быть лишь разность между +j и -j. Таким образом, спин j', вообще говоря, может быть либо целым, либо полуцелым в зависимости от того, будет ли 2/ нечетным или четным. Возьмем, к примеру, ядро типа лития, спин которого равен j=3/2. При этом момент количества движения относительно оси z принимает в единицах h одно из следующих значений:
Так что если ядро находится в пустом пространстве в отсутствие внешних полей, то у него имеются четыре возможных состояния, каждое с одной и той же энергией. Для системы со спином 2 z-компонента момента количества движения принимает в единицах h только следующие значения:
2; 1; 0; -1; -2.
Если вы подсчитаете, сколько возможно состояний для данного спина j, то их получится (2j+1). Другими словами, если вы скажете мне, какова энергия системы и ее спин j, то число состояний с этой же энергией в точности будет равно (2j+1), причем каждое из них соответствует одной из различных величин z-компоненты момента количества движения.
Мне хотелось бы прибавить еще один факт. Если вы случайно выберете некоторый атом с известным j и измерите его s-компоненту момента количества движения, то сможете получить какое-то одно из возможных значений, причем каждое из них равновероятно. Любое состояние может характеризоваться только одним из возможных значений, но каждое из них столь же хорошо, как и любое другое. Каждое из них имеет в мире один и тот же вес (мы предполагаем, что никакой предварительной «сортировки» не было).
Кстати, этот факт имеет простой классический аналог. Представьте, что тот же самый вопрос вас интересует с классической точки зрения: какова вероятность какого-то определенного значения z-компоненты момента количества движения, если из набора систем, имеющих один и тот же момент количества движения, вы наугад выбрали одну? Ответ: любое из значений от максимального до минимального равновероятно (в чем вы можете легко убедиться сами). Этот классический результат соответствует равной вероятности любой из (2j+1) возможностей в квантовой механике.
Из того, что у нас было до сих пор, можно получить другое интересное и в каком-то смысле удивительное заключение. В некоторых классических расчетах в окончательном результате появлялась величина, равная квадрату момента количества движения J, другими словами, J·J. И вот оказывается, что правильную квантовомеханическую формулу можно угадать с помощью классических вычислений и следующего простого правила: замените J2 = J·J на j(j+1)h2. Этим правилом часто пользуются, и обычно оно дает верный результат, однако не всегда. Чтобы показать вам, почему это правило может хорошо работать, я приведу следующее рассуждение.
Скалярное произведение J·J можно записать как
J·J=J2x+J2y+J2z
Поскольку это скаляр, то он должен оставаться одним и тем же для любой ориентации спина. Предположим, что мы случайно выбрали образец какой-либо атомной системы и произвели измерения либо величины J2x, либо J2y, либо J2z — среднее
значение любой из них должно быть тем же самым. (Ни одно из направлений не имеет особого преимущества перед любым другим.) Следовательно, среднее значение J·J равно просто утроенной средней величине любой компоненты, скажем J2z :
<J·J>cp=3<J2z>.
Но поскольку J·J при любой ориентации одно и то же, его среднее, разумеется, будет постоянной величиной
J·J = 3<J2z>cp. (34.24)
Если же мы теперь скажем, что то же самое уравнение будет использоваться и в квантовой механике, то можем легко найти <J2z>ср. Нам просто нужно взять сумму (2j+1) возможных значений J2z и поделить ее на число всех значений:
Вот что получается для системы со спином 3/2:
Отсюда мы заключаем, что
На вашу долю остается доказать, что соотношение (34.25) вместе с (34.24) дает в результате
Хотя в рамках классической физики мы бы думали, что наибольшее возможное значение z-компоненты J равно просто абсолютной величине J, именно Ц(J·J), в квантовой механике максимальное значение Jz всегда немного меньше его, ибо jh всегда меньше Ц[j(j+1)]h. Момент количества движения никогда не направлен «полностью вдоль оси z».
§ 8. Магнитная энергия атомов
Теперь я снова хочу поговорить о магнитном моменте. Я уже говорил, что в квантовой механике магнитный момент атомной системы может быть связан с моментом количества движения соотношением (34.6):
где -qe—заряд, а m — масса электрона.
Атомные магнитики, будучи помещены во внешнее магнитное поле, приобретут дополнительную магнитную энергию, которая зависит от компоненты их магнитного момента в направлении поля. Мы знаем, что
Uмаг=-m·В. (34.28) Выбирая ось z вдоль направления поля В, получаем
Uмаг=mzВ. (34.29) А используя уравнение (34.27), находим
Согласно квантовой механике, величина Jz может принимать только такие значения: jh, (j-1)h,...,- jh. Поэтому магнитная энергия атомной системы не произвольна, допустимы только некоторые ее значения. Например, максимальная величина энергии равна
Величину qeh/2m обычно называют «магнетоном Бора» и обозначают через mB:
Возможные значения магнитной энергии будут следующими:
где Jz/h принимает одно из следующих значений: j, (j-1), (j-2), ..., (-j+1), -j.
Другими словами, энергия атомной системы, помещенной в магнитное поле, изменяется на величину, пропорциональную полю и компоненте Jг. Мы говорим, что энергия атомной магнитной системы «расщепляется магнитным полем на 2j+1 уровня». Например, атомы со спином j=3/2, энергия которых вне магнитного поля равна U0, в магнитном поле будут иметь четыре возможных значения энергии. Эти энергии можно изобразить на диаграмме энергетических уровней наподобие фиг. 34.5.
Фиг. 34.5. Возможные магнитные энергии атомной системы со спином 3/2 в магнитном поле В.
Однако энергия каждого атома в данном поле В принимает только одно из четырех возможных значений. Именно это говорит квантовая механика о поведении атомной системы в магнитном поле.
Простейшая «атомная» система — отдельный электрон. Спин электрона равен J/2, поэтому у него возможны два состояния: Jz=h/2 и Jz=-h/2. Для спинового магнитного момента отдельного покоящегося электрона (у которого отсутствует орбитальное движение) g=2, так что магнитная энергия будет ±mBB. На фиг. 34.6 показаны возможные энергии электрона в магнитном поле.
Фиг. 34.6. Два возможных энергетических состояния электрона в магнитном поле В.
Грубо говоря, спин электрона направлен либо «вверх» (по магнитному полю), либо «вниз» (против поля).
У системы с более высоким спином число состояний тоже больше. Поэтому мы можем в зависимости от величины Jz говорить о спине, направленном «вверх» или «вниз» или под некоторым «углом».
Эти результаты квантовой механики мы будем использовать при обсуждении магнитных свойств материалов в следующей главе.
Глава 35
ПАРАМАГНЕТИЗМ И МАГНИТНЫЙ РЕЗОНАНС
§ 1. Квантованные магнитные состояния
§ 2. Опыт Штерна — Герлаха
§ 3. Метод молекулярных пучков Раби
§ 4. Парамагнетизм
§ 5. Охлаждение адиабатическим размагничиванием
§ 6. Ядерный магнитный резонанс
Повторить: гл. 1 (вып. 5) «Внутреннее устройство диэлектрика
§ 1. Квантованные магнитные состояния
В предыдущей главе мы говорили, что в квантовой механике момент количества движения системы не может иметь произвольного направления, а его компоненты вдоль данной оси могут принимать только определенные дискретные эквидистантные значения. Это поразительная, но характерная особенность квантовой механики. Вам может показаться, что еще слишком рано влезать в такие вещи, что надо подождать, пока вы хоть немного не привыкнете к ним и не будете готовы воспринимать подобные идеи. Но дело в том, что привыкнуть к ним вы никогда не сможете. Вы никогда не сможете легко их воспринимать. Это, пожалуй, самое сложное из всего, что я рассказывал вам до сих пор и, главное, нет способа описать это как-то более вразумительно и не так хитроумно и сложно по форме. Поведение вещества в малых масштабах, как я уже говорил много раз, отличается от всего того, к чему вы привыкли, и поистине весьма странно. Вы, конечно, согласитесь, что было бы неплохо попытаться поближе познакомиться с явлениями в малом масштабе, продолжая одновременно использовать классическую физику, и приобрести поначалу хоть какой-то опыт, пусть даже не понимая всего достаточно глубоко. Понимание этих вещей приходит очень медленно, если оно приходит вообще. Конечно, понемногу начинаешь чувствовать, что может и что не может произойти в данной квантовомеханической ситуации, а это, возможно, и называется «пониманием», но добиться приятного чувства «естественности» квантовомеханических правил здесь невозможно. Они-то, конечно, естественны, но с точки зрения нашего повседневного опыта на привычном уровне остаются очень уж необычными. Мне бы хотелось объяснить вам, что позиция, которую мы собираемся занять по отношению к этому правилу о дискретности значений момента количества движения, совершенно отлична от отношения ко многим другим вещам, о которых шла речь. Я даже не буду пытаться «объяснять» его, но должен хоть рассказать вам, что получается. Было бы нечестно с моей стороны, описывая магнитные свойства материалов, не указать, что классическое объяснение магнетизма, т. е. момента количества движения и магнитного момента, несостоятельно.
Одно из наиболее необычных следствий квантовой механики состоит в том, что момент количества движения вдоль любой оси всегда оказывается равным целой или полуцелой доле h, причем какую бы ось вы ни взяли, это всегда будет так. Парадоксальность здесь заключается в следующем любопытном факте: если вы возьмете любую другую ось, то окажется, что компоненты относительно этой оси тоже будут взяты из того же самого набора значений. Однако оставим рассуждения до того времени, когда у вас наберется достаточно опыта и вы сможете насладиться тем, как этот кажущийся парадокс в конце концов разрешится.
Сейчас просто примите на веру, что у каждой атомной системы есть число j, называемое спином системы (оно может быть либо целым, либо полуцелым), и что компоненты момента количества движения относительно любой данной оси всегда принимают одно из значений между +jh и -jh:
Мы упомянули также, что магнитный момент любой простой атомной системы имеет то же самое направление, что и ее момент количества движения. Это справедливо не только для атомов или ядер, но и для элементарных частиц. Каждая элементарная частица обладает характерной для нее величиной j и своим собственным магнитным моментом. (Для некоторых частиц обе они равны нулю.) Мы понимаем под «магнитным моментом системы», что ее энергия в направленном по оси z магнитном поле для слабых полей может быть записана как — mzВ. Мы должны условиться не брать слишком больших полей, ибо они будут возмущать внутренние движения системы и энергия не будет мерой магнитного момента, который система имела до включения магнитного поля. Но если поле достаточно слабо, то оно изменяет энергию на величину
DU=-mzB, (35.2)
с тем условием, что в этом выражении мы должны сделать подстановку
причем Jz равно одному из значений (35.1).
Предположим, что мы взяли систему со спином j=3/2 В отсутствие магнитного поля у системы было бы четыре различных возможных состояния, соответствующих различным значениям Jz с одной и той же энергией. Но в тот момент, когда мы включаем магнитное поле, появляется дополнительная энергия взаимодействия, которая разделяет эти состояния на четыре состояния, слабо различающиеся по энергии, или, как говорят, первоначальный энергетический уровень расщепился; на четыре новых уровня. Эти уровни определяются энергией, пропорциональной произведению В на h, и на 3/2, 1/2 , -1/2 или -3/2 в зависимости от величины Jг. Расщепление энергетических уровней в атомной системе со спинами 1/2, 1 и 3/2 показаны на фиг. 35.1.
(Вспомните, что для любого расположения электронов магнитный момент всегда направлен противоположно моменту количества движения.)
Обратите внимание, что «центр тяжести» энергетических уровней на фиг. 35.1 один и тот же как в присутствии магнитного поля, так и без него. Заметьте также, что все расстояния от одного уровня до следующего для данной частицы в данном магнитном поле равны между собой. Расстояние между уровнями для данного магнитного поля В мы будем записывать как hwp, что является просто определением wp . Воспользовавшись (35.2) и (35.3), получим
hwp=g(qe/2m)hB.
или
wp=g(qe/2m)B. (35.4)
Величина g(qe/2m) равна просто отношению магнитного момента к моменту количества движения и характеризует свойства частицы. Формула (35.4) в точности совпадает с формулой, полученной нами в гл. 34 для угловой скорости прецессии гироскопа с магнитным моментом (m и моментом количества движения J в магнитном поле.
§ 2. Опыт Штерна — Герлаха
Факт квантования момента количества движения — вещь настолько удивительная, что мы поговорим немного об ее истории. Ученый мир был буквально потрясен, когда было сделано это открытие (даже несмотря на то, что это ожидалось теоретически). Первыми экспериментально наблюдали этот факт Штерн и Герлах в 1922 г. Если хотите, опыт Штерна и Герлаха можно рассматривать как прямое подтверждение квантования момента количества движения. Штерн и Герлах поставили эксперимент по измерению магнитного момента отдельных атомов серебра. Испаряя серебро в горячей печи и пропуская пары серебра через систему маленьких отверстий, они получали пучок атомов серебра. Этот пучок направлялся между полюсными наконечниками специального магнита (фиг. 35.2).
Фиг. 35.2. Опыт Штерна и Герлаха.
Идея заключалась в следующем. Если магнитный момент атомов серебра равен m, то в магнитном поле В, направленном по оси z, они приобретут добавочную энергию -mzB. В классической теории mг равно произведению магнитного момента на косинус угла между моментом и магнитным полем, так что дополнительная энергия в поле была бы равна
DU=-mBcosq. (35.5)
Разумеется, когда атомы вылетают из печи, их магнитные моменты имеют любые направления, поэтому возможны все значения угла 0. Но если магнитное поле быстро изменяется с изменением z, т. е. если есть большой градиент, магнитная энергия с изменением положения тоже меняется, а поэтому на магнитные моменты действует сила, направление которой зависит от того, будет ли косинус положительным или отрицательным. Атомы при этом должны отклоняться вверх или вниз силой, пропорциональной производной магнитной энергии; из принципа виртуальной работы
Fz=-дU/дz=mcosq(дB/дz). (35.6)
Чтобы получить очень быстрое изменение магнитного поля, Штерн и Герлах сделали один из полюсных наконечников своего магнита очень острым. Пучок атомов серебра направлялся прямо вдоль этого острого края, так что на атомы в таком неоднородном поле должна была действовать вертикальная сила. Атомы серебра с горизонтально направленными магнитными моментами не чувствовали бы никакой силы и проходили бы через магнит без отклонения. На атомы, магнитный момент которых направлен в точности вертикально, действовала бы максимальная сила по направлению к острому краю магнита. А атомы с магнитным моментом, направленным вниз, чувствовали бы силу, тянущую их вниз. Следовательно, покинув магнит, атомы должны были «расползтись» в соответствии с вертикальными компонентами своих магнитных моментов. В классической теории возможны любые углы, так что после осаждения пучка на стеклянной пластинке следовало ожидать «размазывания» его по вертикальной линии. Высота линии при этом должна была быть пропорциональной величине магнитного момента. Однако когда Штерн и Герлах увидели, что получается на самом деле, то полное поражение классических понятий стало явным. На стеклянной пластинке они обнаружили два отдельных пятнышка. Пучок атомов серебра распался на два пучка.
Самое удивительное, что пучок атомов, спины которых, казалось бы, должны были быть направлены совершенно случайно, расщепился на два отдельных пучка. Откуда магнитный момент может знать, что ему полагается иметь определенные компоненты вдоль направления магнитного поля? Этот вопрос и послужил началом открытия квантования момента количества движения, и я не буду сейчас даже пытаться дать вам теоретическое объяснение, а просто призову вас поверить в результаты этого эксперимента так же, как физики тех дней были вынуждены их признать. То, что энергия атома в магнитном поле может принимать только какой-то набор дискретных значений,— экспериментальный факт. Для каждого из этих значений энергия пропорциональна напряженности поля. Так что в той области, где поле изменяется, принцип виртуальной работы говорит нам, что возможные магнитные силы, действующие на атомы, могут принимать только дискретные значения: для каждого состояния силы оказываются различными и пучок атомов расщепляется на небольшое число отдельных пучков. Измеряя отклонение пучка, можно найти величину магнитного момента.
§ 3. Метод молекулярных пучков Раби
Теперь мне бы хотелось описать улучшенную аппаратуру для измерения магнитных моментов, разработанную И. Раби и его сотрудниками. В экспериментах Штерна — Герлаха отклонение атомов было очень небольшим и измерения магнитных моментов не очень точными. А техника Раби позволяет добиться фантастической точности при измерении магнитных моментов. Метод основан на том факте, что в магнитном поле первоначальная энергия атомов расщепляется на конечное число энергетических уровней. Тот факт, что энергия атома может иметь только определенные дискретные значения, на самом деле не более удивителен, чем то, что атом вообще имеет дискретные энергетические уровни; об этом мы часто говорили в начале курса. Почему бы этого не могло происходить и с атомами в магнитном поле? Так именно все и происходит. Однако когда пытаются связать расщепление с идеей ориентированных магнитных моментов, то в квантовой механике появляются некоторые странные выводы.
Когда атом имеет два уровня, отличающихся по энергии на величину DU, это может вызвать переход с верхнего уровня на нижний с излучением кванта света
hw=DU, (35.7)
где w — частота.
То же самое может произойти и с атомами в магнитном поле. Но только разность энергий настолько мала, что частота ее соответствует не свету, а микроволнам или радиочастотам. Переход с нижнего энергетического уровня на верхний может также происходить с поглощением света или (в случае атомов в магнитном поле) микроволновой энергии. Итак, если у нас есть атом в магнитном поле, то, прикладывая дополнительное электромагнитное поле надлежащей частоты, мы можем вызвать переход из одного состояния в другое. Другими словами, если у нас есть атом в сильном магнитном поле и мы будем «щекотать» его слабым переменным электромагнитным полем, то имеется некоторая вероятность «выбить» его на другой уровень, когда частота поля близка к w, определяемой соотношением (35.7). Для атома в магнитном поле эта частота в точности равна частоте, названной нами wр и зависящей от магнитного поля, согласно формуле (35.4). Если атом «щекотать» с другой частотой, то вероятность перехода станет очень мала. Таким образом, вероятность перехода при частоте wр имеет резкий резонанс. Измеряя частоту этого резонанса в известном магнитном поле В, можно измерить величину g(q/2m), а следовательно, и g-фактор, причем с огромной точностью.
Интересно, что к такому же заключению можно прийти и с классической точки зрения. В соответствии с классической картиной, когда мы помещаем гироскоп, обладающий магнитным моментом m, и моментом количества движения 3, во внешнее магнитное поле, гироскоп начнет прецессировать вокруг оси, параллельной этому полю (фиг. 35.3).
Фиг. 35.3. Классическая прецессия атома с магнитным моментом m и моментом количества движения J,
Предположим, нас интересует, как можно изменить угол классического гироскопа по отношению к магнитному полю, т. е. по отношению к оси z? Магнитное поле создает момент силы относительно горизонтальной оси. На первый взгляд кажется, что такой момент силы старается выстроить магниты в направлении поля, но он вызывает только прецессию. Если же мы хотим изменить угол гироскопа по отношению к оси z, то должны приложить момент силы относительно оси z. Если мы приложим момент силы, действующий в том же направлении, что и прецессия, угол гироскопа изменится и это приведет к уменьшению компоненты J в направлении оси z. Угол между направлением J и осью z на фиг. 35.3 должен увеличиться. Если мы попытаемся воспрепятствовать прецессии, вектор J будет двигаться по направлению к вертикали.
Но каким образом к нашему прецессирующему атому можно приложить нужный момент силы? Ответ: с помощью слабого магнитного поля, направленного в сторону. На первый взгляд вам может показаться, что направление этого магнитного поля должно крутиться вместе с прецессией магнитного момента, так чтобы поле всегда было направлено к нему под прямым углом, как это показано на фиг. 35.4, а с помощью поля В'.
Фиг. 35.4. Угол прецессии атомного магнитика можно изменить двумя путями:
а — горизонтальным магнитным полем, направленным всегда под прямым углом к m; б—осциллирующим полем.
Такое поле работает очень хорошо, однако нисколько не хуже действует и переменное горизонтальное поле. Если у нас есть горизонтальное поле В', которое всегда направлено по оси х (в положительную или отрицательную сторону) и которое осциллирует с частотой wp, тогда через каждые полпериода действующая на магнитный момент пара сил переворачивается, так что получается суммарный эффект, который почти столь же эффективен, как и вращающееся магнитное поле. С точки зрения классической физики мы бы ожидали при этом изменения компоненты магнитного момента вдоль оси z, если у нас есть очень слабое магнитное поле, осциллирующее с частотой, в точности равной wp. Разумеется, по классической физике mг должно изменяться непрерывно, но в квантовой механике z-компонента магнитного момента не может быть непрерывной. Она должна неожиданно «прыгать» от одного значения до другого. Я сравнивал следствия классической и квантовой механики, чтобы дать вам понятие о том, что может происходить классически, и как это связано с тем, что происходит на самом деле в квантовой механике. Обратите внимание, между прочим, что в обоих случаях ожидаемая резонансная частота одна и та же.
Еще одно дополнительное замечание. Из того, что мы говорили о квантовой механике, не видно, почему переходы не могут происходить при частоте 2wр. Оказывается, что в классическом случае этому совершенно нет никакого аналога, но в квантовой механике такие переходы невозможны, по крайней мере в описанном нами способе вынужденных переходов. При горизонтальном осциллирующем магнитном поле вероятность того, что частота 2wp вызовет скачок сразу на два шага, равна нулю. Все переходы, будь то переход вверх или вниз, предпочитают происходить только при частоте wр.
Вот теперь мы готовы к описанию метода Раби. Здесь мы опишем только, как этот метод измерения магнитных моментов работает в случае частиц со спином 1/2. Схема аппаратуры показана на фиг. 35.5.
Фиг. 35.5. Схема установки Раби в опытах с молекулярными пучками.
Вы видите здесь печь, которая создает поток нейтральных атомов, летящих по прямому пути через три магнита. Магнит 1 — такой же, как и на фиг. 35.2, он создает поле; с большим, скажем положительным, градиентом dBz/dz. Если атомы обладают магнитным моментом, то они будут отклоняться вниз при Jz=+h/2 или вверх приJz =-h/2 (поскольку для электронов m направлен противоположно J). Если мы будем рассматривать только те атомы, которые могут проходить через щель S1, то, как это показано на фиг. 35.5, возможны две траектории. Чтобы попасть в щель, атомы с Jz=+h/2 должны лететь по кривой а, а атомы с Jz=-h/2 — по кривой b. Атомы, вылетающие из печи в другом направлении, вообще не попадут в щель.
Магнит 2 создает однородное поле. В этой области на атомы никакие силы не действуют, поэтому они просто пролетают через нее и попадают в магнит 3. Этот магнит представляет собой копию магнита 1, но с перевернутым полем, так что у него, dBz/dz имеет отрицательный знак. Атомы с Jz=+h/2 (будем говорить «со спином, направленным вверх»), которые в магните 1 отклонялись вниз, в магните 3 будут отклоняться вверх; они продолжат свой полет по траектории а и через щель S2 попадут в детектор. Атомы с Jz=-h/2 («со спином, направленным вниз») в магнитах 1 и 3 тоже будут испытывать действие противоположных сил и полетят по траектории b, которая через щель S2 тоже приведет их в детектор.
Детектор можно сделать разными способами в зависимости от измеряемых атомов. Так, для щелочных металлов, подобных натрию, детектором может служить тонкая раскаленная вольфрамовая нить, подсоединенная к чувствительному гальванометру. Атомы натрия, оседая на этой нити, испаряются в виде ионов Na+ и оставляют на ней электрон. Возникает ток, пропорциональный числу осевших в 1 сек атомов натрия.
В щели магнита 2 находится набор катушек, которые создают небольшое горизонтальное магнитное поле В'. Эти катушки питаются током, осциллирующим с переменной частотой w, так что между полюсами магнита 2 создается сильное вертикальное магнитное поле В0 и слабое осциллирующее горизонтальное магнитное поле В'.
Предположим теперь, что частота со осциллирующего поля подобрана равной wp — частоте «прецессии» атомов в поле В. Переменное поле вызовет у некоторых из пролетающих атомов переход от одного значения Jz к другому. Атомы, спины которых были первоначально направлены вверх (Jг=+h/2), могут перевернуться вниз (Jz=-h/2). Теперь магнитный момент этих атомов перевернут, так что в магните 3 они будут чувствовать силу, направленную вниз, и полетят по траектории а', как показано на фиг. 35.5. Теперь они уже не смогут пройти через щель S2 и попасть в детектор. Точно так же некоторые из атомов, спин которых был первоначально направлен вниз
(Jz=-h/2), перевернутся при прохождении через магнит 2 вверх (Jz=+h/2). После этого они полетят по траектории b' и не попадут в детектор.
Если частота осциллирующего поля В' значительно отличается от wp оно не сможет вызвать переворачивания спина и атомы по своим «невозмущенным» орбитам пройдут прямо к детектору. Итак, как видите, можно найти частоту «прецессии» атомов wp в поле В0, подбирая частоту со магнитного поля В', пока не получим уменьшения тока атомов, приходящих в детектор. Уменьшение тока будет происходить тогда, когда w попадет «в резонанс» с wp. График зависимости тока в детекторе от со может напоминать кривую, изображенную на фиг. 35.6.
Фиг. 35.6. Количество атомов в пучке при w=wp уменьшается.
Зная w , можно найти величину g для данного атома.
Такой резонансный эксперимент с атомными или, как их часто называют, «молекулярными» пучками представляет очень красивый и точный способ измерения магнитных свойств атомных объектов. Резонансную частоту wp можно определить с очень большой точностью, по сути дела значительно точнее, нежели мы способны измерить поле В0, необходимое при нахождении g.
§ 4. Парамагнетизм
Теперь мне бы хотелось описать явление парамагнетизма вещества. Предположим, имеется вещество, в составе которого имеются атомы, обладающие постоянным магнитным моментом, например кристаллы медного купороса. В этих кристаллах содержатся ионы меди, у которых электроны на внутренних оболочках имеют суммарный момент количества движения и магнитный момент, не равные нулю. Таким образом, ионы меди будут источником постоянного магнитного момента молекул купороса. Буквально несколько слов о том, какие атомы имеют постоянный магнитный момент, а какие — нет. Любой атом, у которого число электронов нечетно, подобно натрию, например, будет иметь магнитный момент. На незаполненной оболочке натрия имеется один электрон. Этот электрон и определяет спин и магнитный момент атома. Однако обычно при образовании соединения этот дополнительный электрон на внешней оболочке спаривается с другим электроном, направление спина которого в точности противоположно, так что все моменты количества движения и магнитные моменты валентных электронов в точности компенсируют друг друга. Вот почему молекулы, вообще говоря, не обладают магнитным моментом. Конечно, если у вас есть газ атомов натрия, то там такой компенсации не происходит. Точно так же если у вас есть то, что в химии называется «свободным радикалом», т. е. объект с нечетным числом валентных электронов, то связи оказываются неполностью насыщенными и появляется ненулевой момент количества движения.
У подавляющего большинства материалов полный магнитный момент появляется только тогда, когда там присутствуют атомы с незаполненной внутренней электронной оболочкой. Благодаря этому они могут иметь суммарный момент количества движения и магнитный момент. Такие атомы принадлежат к «переходным элементам» периодической таблицы Менделеева, например: хром, марганец, железо, никель, кобальт, палладий и платина — элементы как раз такого сорта. Кроме того, все редкоземельные элементы имеют незаполненную внутреннюю оболочку, а следовательно, и постоянные магнитные моменты. Правда, встречаются еще странные вещества (к числу их относятся жидкий кислород и окись азота), которые, оказывается, тоже обладают магнитным моментом, но объяснить причины этих странностей я предоставляю химикам.
Предположим теперь, что у нас есть ящик, наполненный молекулами или атомами с постоянным магнитным моментом, скажем газ, жидкость или кристалл. Нам хочется знать, что получится, если мы поместим его во внешнее магнитное поле. В отсутствие магнитного поля атомы сбиваются тепловым движением и их магнитные моменты распределяются по всем направлениям. Но когда действует магнитное поле, оно выстраивает эти маленькие магнитики, так что магнитных моментов, направленных по полю, становится больше, чем направленных против него. Материал «намагничивается».
Намагниченность М материала мы определяем как полный магнитный момент единицы объема, под которым мы понимаем векторную сумму всех атомных магнитных моментов единицы объема. Если среднее число атомов в единице объема равно N, а их средний момент равен <m>cp, то М можно записать как произведение N на средний магнитный момент:
м = n<m>cp. (35.8)
Это определение М аналогично определению электрической поляризации Р, данному в гл. 10 (вып. 5).
Классическая теория парамагнетизма, как вы уже убедились в гл. 10 (вып. 5), в точности аналогична теории диэлектрической проницаемости. Предполагается, что магнитный момент m каждого из атомов всегда имеет одну и ту же величину, но может быть направлен в любую сторону. Магнитная энергия в поле В равна -m·B=-mBcosq, где q — угол между моментом и полем. Согласно статистической физике, относительная вероятность угла равна e-энергия/kT так что угол 0° более вероятен, чем угол p. Следуя в точности по пути, проделанному нами в гл. 11, § 3 (вып. 5), мы обнаружим, что для слабых магнитных полей М направлена параллельно В и имеет величину
[См. выражение (11.20), вып. 5.] Эта приближенная формула верна, только когда отношение mB/kT много меньше единицы.
Мы нашли, что намагниченность, т. е. магнитный момент единицы объема, пропорциональна магнитному полю. Это явление и называется парамагнетизмом. Вы увидите, что эффект сильнее проявляется при низких температурах и слабее при высоких. При помещении вещества в магнитное поле возникающий в нем магнитный момент в случае слабых полей пропорционален величине поля. Отношение М к В (для слабых полей) называется магнитной восприимчивостью.
Рассмотрим теперь парамагнетизм с точки зрения квантовой механики. Обратимся сначала к атомам со спином 1/2. Если в отсутствие магнитного поля атомы обладают вполне определенной энергией, то в магнитном поле энергия изменится; возможны два значения энергии для разных значений Jz. Для Jz=+h/2
магнитное поле изменяет энергию на величину
(Для атомов сдвиг энергии DU положителен, ибо заряд электрона отрицателен.) Для Jг =-h/2 энергия изменяется на величину
Для сокращения записи обозначим
тогда
DU = ±m0В. (35.13)
Совершенно ясен и смысл m0; — m0 равно z-компоненте магнитного момента для спина, направленного вверх, а + m0 равно z-компоненте магнитного момента в случае спина, направленного вниз.
Статистическая механика говорит нам, что вероятность нахождения атома в каком-то состоянии пропорциональна
g-(энергия состояния)/kT.
В отсутствие магнитного поля энергия обоих состояний одна и та же, поэтому в случае равновесия в магнитном поле вероятности пропорциональны
е-DU/kT, (35.14)
Число же атомов в единице объема со спином, направленным вверх, равно
а со спином, направленным вниз,
Постоянная а должна определяться из условия
Nвверх+Nвниз=N (35.17)
т.е. равна полному числу атомов в единице объема. Таким образом, мы получаем
Однако нас интересует средний магнитный момент в направлении оси z. Каждый атом со спином, направленным вверх, дает в этот момент вклад, равный -m0, а со спином, направленным вниз, + m0, так что средний момент будет
Тогда М — магнитный момент единицы объема — будет равен N<m>ср. Воспользовавшись выражениями (35.15)—(35.17), получим
Это и есть квантовомеханическая формула для М в случае атомов со спином j=1/2. К счастью, ее можно записать более коротко через гиперболический тангенс:
График зависимости М он В приведен на фиг. 35.7.
Фиг. 35.7. Изменение намагниченности парамагнетика при изменении напряженности магнитного поля В.
Когда поле В становится очень большим, гиперболический тангенс приближается к единице, а М — к своему предельному значению Nm0. Таким образом, при сильных полях происходит насыщение. Нетрудно понять, почему так получается — ведь при достаточно больших полях все магнитные моменты выстраиваются в одном и том же направлении. Другими словами, при насыщении все атомы находятся в состоянии со спинами, направленными вниз, и каждый из них дает вклад в магнитный момент, равный m0.
Обычно при комнатной температуре и полях, которые можно получить (порядка 10000 гс), отношение m0B/kT равно приблизительно 0,02. Чтобы наблюдать насыщение, необходимо спуститься до очень низких температур. Для комнатной и более высоких температур обычно можно thx заменить на x и написать
Точно так же, как и в классической теории, намагниченность М оказывается пропорциональной полю В. Даже формула оказывается той же самой, за исключением того, что в ней, по-видимому, где-то потерян множитель 1/3. Но нам еще нужно связать m0 в квантовомеханической формуле с величиной m, которая появилась в классическом результате, в выражении (35.9).
В классической формуле у нас появилось m2=m·m — квадрат вектора магнитного момента, или
В предыдущей главе я уже говорил, что очень часто правильный ответ можно получить из классических вычислений с заменой J·J на j(j+1)h2. В нашем частном примере j=1/2, так что
j(j+1)h2=3/4h2.
Подставляя этот результат вместо J·J в (35.23), получаем
или, вводя величину m0, определенную соотношением (35.12), получаем
m·m=3m20.
Подставляя это вместо m2 в классическое выражение (35.9), мы действительно воспроизведем истинный квантовомеханический результат — формулу (35.22).
Квантовая теория парамагнетизма легко распространяется на атомы с любым спином j. При этом для намагниченности в слабом поле получим
где
представляет комбинацию постоянных с размерностью магнитного момента. Моменты большинства атомов приблизительно равны этой величине. Она называется магнетоном Бора. Спиновый магнитный момент электрона почти в точности равен
§ 5. Охлаждение адиабатическим размагничиванием
Парамагнетизм имеет одно весьма интересное применение. При очень низкой температуре и в сильном магнитном поле атомные магнитики выстраиваются. При этом с помощью процесса, называемого адиабатическим размагничиванием, можно получить самые низкие температуры. Возьмем какую-то парамагнитную соль, содержащую некоторое число редкоземельных атомов (например, аммиачный нитрат празеодима), и начнем охлаждать ее жидким гелием до 1—2° К в сильном магнитном поле. Тогда показатель mВ/kT будет больше единицы, скажем 2 или 3. Большинство спинов направлено вверх, и намагниченность почти достигает насыщения. Для облегчения давайте считать, что поле настолько велико, а температура так низка, что все атомы смотрят в одном направлении. Теплоизолируйте затем соль (удалив, например, жидкий гелий и создав вакуум) и выключите магнитное поле. При этом температура соли падает.
Если бы это поле вы выключили внезапно, то раскачивание и сотрясение атомов кристаллической решетки постепенно перепутало бы все спины. Некоторые из них остались бы направленными вверх, а другие повернулись бы вниз. Если никакого поля нет (и если не учитывать взаимодействия между атомными магнитами, которое привносит только небольшую ошибку), то на переворачивание магнитиков энергии не потребуется. Поэтому случайное распределение спинов установится без какого-либо изменения температуры.
Предположим, однако, что в то время как спины переворачиваются, магнитное поле еще не вполне исчезло. Тогда для переворачивания спинов против поля требуется некоторая работа, она должна затрачиваться на преодоление поля. Этот процесс отбирает энергию у теплового движения и понижает температуру. Таким образом, если сильное магнитное поле выключается не слишком быстро, температура соли будет уменьшаться. Размагничиваясь, она охлаждается. С точки зрения квантовой механики, когда поле сильно, все атомы находятся в наинизшем состоянии, так как слишком много шансов против того, чтобы они находились в высшем состоянии. Но как только напряженность поля понижается, тепловые флуктуации со все большей и большей вероятностью будут «выталкивать» атомы на высшее состояние, и когда это происходит, атом поглощает энергию DU=m0B. Таким образом, если магнитное поле выключается медленно, магнитные переходы могут отбирать энергию у тепловых колебаний кристалла, тем самым охлаждая его. Таким способом можно понизить температуру от нескольких градусов до температуры в несколько тысячных долей градуса от абсолютного нуля.
А если нам захочется охладить что-то еще сильнее? Оказывается, что здесь природа тоже была очень предусмотрительной. Я уже упоминал, что магнитные моменты есть и у атомных ядер. Наши формулы для парамагнетизма работают и в случае ядер, только надо иметь в виду, что моменты ядер приблизительно в тысячу раз меньше. (По порядку величины они равны qh/2mp , где mp — масса протона, так что они меньше в число раз, равное отношению масс протона и электрона.) Для таких магнитных моментов даже при температуре 2° К показатель mB/kT составляет всего несколько тысячных. Но если мы используем парамагнитное размагничивание и достигнем температуры нескольких тысячных градуса, то mB/kT становится порядка единицы; при столь низких температурах мы уже можем говорить о насыщении ядерного магнетизма. Это очень кстати, ибо теперь, воспользовавшись адиабатическим размагничиванием системы магнитных ядер, можно достичь еще более низких температур. Таким образом, в магнитном охлаждении возможны две стадии. Сначала мы используем диамагнитное размагничивание парамагнитных ионов и спускаемся до нескольких тысячных долей градуса. Затем мы применяем холодную парамагнитную соль для охлаждения некоторых материалов, обладающих сильным ядерным магнетизмом. И, наконец, когда мы выключаем магнитное поле, температура материалов доходит до миллионных долей градуса от абсолютного нуля, если, конечно, все было проделано достаточно тщательно.
§ 6. Ядерный магнитный резонанс
Я уже говорил, что атомный парамагнетизм очень слаб и что ядерный магнетизм в тысячу раз слабее его. Но все же с помощью явления, называемого «ядерным магнитным резонансом», наблюдать его относительно легко. Предположим, что мы взяли такое вещество, как вода, у которого все электронные спины в точности компенсируют друг друга, так что их полный магнитный момент равен нулю. У таких молекул все же останется очень-очень слабый магнитный момент благодаря наличию магнитного момента у ядер водорода. Предположим, что мы поместили небольшой образец воды в магнитное поле В. Поскольку спин протонов (входящих в атом водорода) равен 1/2, то у них возможны два энергетических состояния. Если вода находится в тепловом равновесии, то протонов в нижнем энергетическом состоянии, моменты которых направлены параллельно полю, будет немного больше. Поэтому каждая единица объема обладает очень маленьким магнитным моментом. А поскольку протонный момент составляет только одну тысячную долю атомного момента, то намагниченность, которая ведет себя как m2 [см. уравнение (35.22)], будет в миллион раз слабее обычной атомной парамагнитной намагниченности. (Вот почему мы должны выбирать материал, у которого отсутствует атомный парамагнетизм.) После того как мы подставим все величины, окажется, что разность между числом протонов со спином, направленным вверх, и спином, направленным вниз, составляет всего несколько единиц на 108, так что эффект и в самом деле очень мал! Однако его можно наблюдать следующим образом.
Предположим, что мы поместили ампулу с водой внутрь небольшой катушки, которая создает слабое горизонтальное осциллирующее магнитное поле. Если это поле осциллирует с частотой wp, то оно вызовет переходы между двумя энергетическими состояниями точно так же, как это было в опытах Раби, которые мы описывали в § 3. Когда протон «сваливается» с верхнего энергетического состояния на нижнее, он отдает энергию mzB, которая, как мы видели, равна hwp. Если же он переходит с нижнего состояния на верхнее, то будет отбирать энергию hwp у катушки. А поскольку в нижнем состоянии имеется немного больше протонов, чем в верхнем, то из катушки будет поглощаться энергия. И хотя эффект весьма мал, с помощью чувствительного электронного усилителя можно наблюдать даже столь малое поглощение энергии.
Как и в эксперименте Раби с молекулярными пучками, поглощение энергии будет заметно только тогда, когда осциллирующее поле находится в резонансе, т. е. когда
Часто удобнее искать резонанс, изменяя В и оставляя постоянной w. Очевидно, что поглощение энергии происходит, когда
Типичная установка, применяемая при изучении ядерного магнитного резонанса, показана на фиг. 35.8.
Фиг. 35.8. Схема аппаратуры для изучения ядерного магнитного резонанса.
Между полюсами большого электромагнита помещена небольшая катушка, питаемая высокочастотным генератором. Вокруг наконечников полюсов магнитов намотаны две вспомогательные катушки, питаемые током с частотой 60 гц, так что магнитное поле немного «колеблется» вокруг своего среднего значения. Для примера скажу вам, что ток главного магнита создает поле в 5000 гс, а вспомогательные катушки изменяют его на ±1 гс. Если генератор настроен на частоту 21,2 Мгц, то протонный резонанс будет происходить всякий раз, когда поле проходит через 5000 гс [используйте соотношение (34.13) для протона с величиной g=5,58].
Схема генератора устроена так, что дает на выход дополнительный сигнал, пропорциональный изменению мощности, поглощенной из генератора, а этот сигнал подается после усиления на вертикально отклоняющие пластины осциллографа. В горизонтальном направлении луч пробегает один раз за каждый период изменения дополнительного вспомогательного поля. (Впрочем, чаще горизонтальная развертка делается пропорциональной частоте вспомогательного поля.)
До того как внутрь высокочастотной катушки мы поместим ампулу с водой, мощность, отдаваемая генератором, имеет какую-то величину. (Она не изменяется с изменением магнитного поля.) Но как только внутрь катушки мы поместим небольшую ампулу с водой, на экране осциллографа появляется сигнал (см. фиг. 35.8). Мы непосредственно видим график мощности, поглощаемой протонами!
На практике трудно установить, когда основной магнит создает поле точно 5000 гс. Ток в главном магните обычно подбирают, изменяя его постепенно до тех пор, пока на экране не появится резонансный сигнал. Оказывается, на сегодняшний день это наиболее удобный способ точного измерения напряженности магнитного поля, Разумеется, кто-то должен был когда-то точно измерить магнитное поле и частоту и определить величину g для протона. Однако сейчас, после того как это уже сделано, протонную резонансную аппаратуру типа той, что изображена на рисунке, можно использовать как «протонный резонансный магнитометр».
Несколько слов о форме сигнала. Если бы мы очень медленно изменяли магнитное поле, то можно было бы ожидать, что мы увидим нормальную резонансную кривую. Поглощение энергии достигло бы максимума, когда частота генератора была бы в точности равна wp. Небольшое поглощение происходило бы, конечно, и при близлежащих частотах, так как не все протоны находятся в точности в одинаковом поле, а различные поля означают несколько отличные резонансные частоты.
Но так ли все это? Должны ли мы на самом деле видеть при резонансной частоте какой-то сигнал? Не следует ли ожидать, что высокочастотное поле выравнивает населенность обоих состояний, так что, за исключением первого момента, никакого сигнала не будет, когда вода помещается внутрь поля? Не совсем так, поскольку хотя мы и стараемся выровнять обе населенности, тепловое движение со своей стороны старается сохранить равновесные значения, присущие данной температуре Т. Если мы находимся точно в резонансе, то мощность, поглощенная ядрами, в точности равна мощности, теряемой на тепловое движение. Однако «тепловой контакт» между системой протонных магнитных моментов и атомным движением довольно слабый. Каждый протон относительно изолирован в центре электронного облака. Таким образом, чистая вода дает слишком слабый резонансный сигнал, чтобы его можно было заметить. Для увеличения поглощения необходимо улучшить «тепловой контакт». Это обычно делается путем добавления в воду небольшого количества окиси железа. Атомы железа — совсем как маленькие магнитики, и когда они прыгают туда и сюда в своем «тепловом танце», то создают слабенькое прыгающее магнитное поле, которое действует на протоны. Эти изменяющиеся доля «связывают» протонные магнитные моменты с атомными колебаниями и стремятся восстановить тепловое равновесие. Именно из-за этого взаимодействия протоны в состояниях с большой энергией теряют свою энергию и снова становятся способными к поглощению энергии генератора.
На практике же сигнал на выходе ядерной резонансной аппаратуры не похож на обычную резонансную кривую. Обычно это более сложный сигнал с осцилляциями, похожими на те, что изображены на фиг. 35.8. Такая форма сигнала обусловлена изменяющимися полями. Объяснять ее следовало бы с точки зрения квантовой механики, однако можно показать, что объяснение таких экспериментов при помощи представлений классической физики, как мы их использовали выше, тоже дает правильный ответ. С точки зрения классической физики мы бы сказали, что когда мы попадаем в резонанс, то синхронно начинаем раскачивать множество прецессирующих ядерных магнитиков. В результате мы их заставляем прецессировать все вместе. А вращаясь все вместе, эти маленькие магнитики создают в катушке индуцированную э.д.с. с частотой, равной wp . Но поскольку со временем магнитное поле увеличивается, то увеличивается и частота прецессии, поэтому наведенное напряжение вскоре приобретает частоту, большую, чем частота генератора. Так как при этом наведенная э.д.с. попеременно попадает то в фазу, то в противофазу с переменным внешним полем, «поглощенная» мощность становится попеременно то положительной, то отрицательной. Таким образом, на экране мы видим запись биений между частотой протона и частотой генератора. Из-за того что частоты не всех протонов в точности одинаковы (разные протоны находятся в нескольких различных полях), а возможно, и в результате возмущений, вносимых атомами железа, находящимися в воде, свободно прецессирующие моменты скоро выбиваются из фазы и сигналы биений исчезают.
Эти явления магнитного резонанса используются во многих методах как орудие выяснения новых свойств вещества — особенно в химии и в физике. Я не говорю уже о том, что число магнитных моментов ядра говорит нам кое-что и о его структуре. В химии многое можно узнать из структуры (или формы) резонансов. Благодаря магнитным полям, создаваемым близлежащими ядрами, точная частота ядерного резонанса для данного частного атома немного сдвигается; величина этого сдвига зависит от окружения, в котором он находится. Измерение этих сдвигов помогает определить, какой атом находится рядом с каким, и проливает свет на детали структуры молекул. Столь же важен и электронный спиновый резонанс свободных радикалов. Такие радикалы, обычно крайне неустойчивые, часто появляются на промежуточных этапах ряда химических реакций. Измерение электронного спинового резонанса служит очень чувствительным индикатором при обнаружении свободных радикалов и часто дает ключ к пониманию механизма некоторых химических реакций.
* Обычные пары натрия в основном моноатомны, хотя изредка там и встречаются молекулы Na2.
Глава 36
ФЕРРОМАГНЕТИЗМ
§ 1.Токи намагничивания
§ 2.Поле Н
§ 3. Кривая намагннчивання
§ 4.Индуктивность с железным сердечником
§ 5.Электромагниты
§ 6.Спонтанная намагниченность
Повторить: гл. 10 (вып. 5)«Диэлектрики»
гл. 17 (вып. 6) «Законы индукции»
§ 1. Токи намагничивания
В этой главе мы поговорим о некоторых материалах, в которых полный эффект магнитных моментов проявляется во много раз сильнее, чем в случае парамагнетизма или диамагнетизма. Это явление называется ферромагнетизмом. В парамагнитных и диамагнитных материалах при помещении их во внешнее магнитное поле возникает обычно настолько слабый наведенный индуцированный магнитный момент, что нам не приходится думать о добавочных магнитных полях, создаваемых этими магнитными моментами. Другое дело магнитные моменты ферромагнитных материалов, которые создаются приложенным магнитным полем. Они очень велики и оказывают существенное воздействие на сами поля. Эти индуцированные магнитные моменты так огромны, что они вносят главный вклад в наблюдаемые поля. Поэтому нам следует позаботиться о математической теории больших индуцированных магнитных моментов. Это, разумеется, чисто формальный вопрос. Физическая проблема состоит в том, почему магнитные моменты столь велики и как они «устроены». Но к этому вопросу мы подойдем немного позже.
Нахождение магнитных полей в ферромагнитных материалах несколько напоминает задачу о нахождении электрических полей в диэлектриках. Помните, сначала мы описывали внутренние свойства диэлектрика через векторное поле Р — дипольный момент единицы объема. Затем мы сообразили, что эффект этой поляризации эквивалентен плотности заряда rпол, определяемой дивергенцией Р;
rпол= -С·Р. (36.1)
Полный же заряд в любой ситуации можно записать в виде суммы этого поляризационного заряда и всех других зарядов, плотность которых мы обозначим через rдр. Тогда уравнения Максвелла, которые связывают дивергенцию Е с плотностью зарядов, примут вид:
или
Затем мы можем перебросить поляризационную часть заряда в левую сторону уравнения и получить
С· (e0Е+Р)=rдр. (36.2)
Этот новый закон говорит, что дивергенция величины (e0 Е+Р) равна плотности других зарядов.
Совместная запись Е и Р, как это сделано в уравнении (36.2), полезна, разумеется, только когда мы знаем какие-то соотношения между ними. Мы видели, что теория, связывающая наведенный электрический дипольный момент с полем,— вещь довольно сложная и ее на самом деле можно применять только в относительно простых случаях, но и то только как приближение. Я хочу напомнить вам об одном приближении.
Фиг. 36.1. Электрическое поле в полости в диэлектрике зависит от формы полости.
Чтобы найти наведенный дипольный момент атома внутри диэлектрика, необходимо знать электрическое поле, которое действует на отдельный атом. В свое время мы использовали приближение, пригодное во многих случаях; было предположено, что на атом действует поле, которое было бы в центре небольшой полости, оставшейся после удаления этого атома (считая, что дипольные моменты всех других соседних атомов при этом не изменяются). Вспомните также, что электрическое поле в полости внутри поляризованного диэлектрика зависит от формы этой полости. Эти результаты мы подытожили на фиг. 36.1. В тонкой дискообразной полости, перпендикулярной направлению поляризации, электрическое поле, как было показано с помощью закона Гаусса, имеет вид
Еполость=Едиэл+P/e0 (дискообразная полость). С другой стороны, используя равенство нулю ротора, мы нашли, что электрическое поле внутри и вне иглообразной полости одно и то же:
Еполость= Едиэл (иглообразная полость).
Наконец, мы обнаружили, что величина электрического поля внутри сферической полости лежит между этими двумя значениями:
Еполость=Едиэл+1/3P/e0 (сферическая полость). (36.3)
Это и было то поле, которым мы пользовались, рассуждая о том, что происходит с атомами внутри поляризованного диэлектрика.
Попробуем обсудить аналогичную задачу в случае магнетизма. Легче всего и короче просто сказать, что М — магнитный момент единицы объема (намагниченность) — в точности аналогичен Р — электрическому дипольному моменту единицы объема (поляризация) и что, следовательно, отрицательная дивергенция М эквивалентна «плотности магнитных зарядов» rm, что бы это ни означало. Но беда в том, что в физическом мире не существует такой штуки, как «магнитный заряд». Как мы знаем, дивергенция В всегда равна нулю. Это, однако, не помешает нам провести искусственную аналогию и написать
СM=-rm, (38.4)
но нужно понимать, что rm— величина чисто математическая. Затем мы можем все делать полностью аналогично электростатике и использовать все старые электростатические уравнения. К этому часто прибегают. Когда-то такая аналогия считалась даже правильной. Ученые верили, что rm представляет плотность «магнитных полюсов». Однако сейчас нам известно, что намагничивание материала происходит за счет токов, циркулирующих внутри атомов, т. е. либо вращения электронов, либо движения их в атоме. Следовательно, с физической точки зрения лучше описывать намагничивание только при помощи реальных атомных токов, а не вводить плотность каких-то мистических «магнитных зарядов». Эти токи иногда называются еще «амперовскими», ибо Ампер первый предположил, что магнетизм вещества происходит за счет циркуляции атомных токов.
Микроскопические плотности токов в намагниченном веществе, разумеется, очень сложны. Их величина зависит от местоположения в атоме: в некоторых местах они велики, в других — малы, в одной части они текут в одну сторону, а в другой — в противоположную (точно так же, как микроскопическое электрическое поле, которое внутри диэлектрика в высшей степени неоднородно). Однако во многих практических задачах нас интересуют только поля вне вещества или средние магнитные поля внутри него, причем под средним мы имеем в виду усреднение по очень многим атомам. В таких макроскопических задачах магнитное состояние вещества удобно описывать через намагниченность М — средний магнитный момент единицы объема. Я расскажу сейчас, как атомные токи в намагниченном веществе вырастают до макроскопических токов, которые связаны с М.
Разобьем плотность тока j, которая является реальным источником магнитных полей, на разные части; одна из них описывает циркулирующие токи атомных магнитиков, а остальные — другие возможные токи. Обычно удобнее делить токи на три части. В гл. 32 мы делали различие между токами, свободно текущими по проводникам, и токами, обусловленными движением связанных зарядов в диэлектрике то туда, то сюда. В гл. 32, §2, мы писали
j=jпол+ jдр,
причем величина jпол представляла токи от движения связанных зарядов в диэлектриках, a jдp — все другие токи. Пойдем дальше. Я хочу из jр выделить часть jмar, которая описывает усредненные токи внутри намагниченных материалов, и дополнительный член, который мы будем называть jnpов и который будет описывать все остальное. Он, вообще говоря, относится к токам в проводниках, но может описывать и другие токи, например токи зарядов, движущихся свободно через пустое пространство. Таким образом, полную плотность тока мы будем писать в виде
j =jпол+jмaг+jnpoв. (36.5)
Разумеется, именно этот ток входит в уравнение Максвелла с ротором В;
Теперь мы должны связать ток jмaг с величиной вектора намагниченности М. Чтобы вы представляли, к чему мы стремимся, скажу, что должен получиться такой результат:
jмaг=СXM. (36.7)
Если в магнитном материале нам всюду задан вектор намагниченности М, то плотность циркуляционного тока определяется ротором М. Посмотрим, можно ли понять, почему так происходит.
Сначала возьмем цилиндрический стержень, равномерно намагниченный параллельно его оси. Мы знаем, что физически такая равномерная намагниченность означает на самом деле однородную повсюду внутри материала плотность атомных циркулирующих токов. Попытаемся представить себе, как выглядят эти реальные токи в поперечном сечении стержня. Мы ожидаем увидеть токи, напоминающие изображенные на фиг.36.2.
Фиг. 36.2. Схематическая диаграмма циркулирующих атомных токов в поперечном сечении железного стержня, намагниченного в направлении оси z.
Каждый атомный ток течет по кругу, образуя крохотную цепь, причем все циркулирующие токи текут в одном и том же направлении. Каким же тогда будет эффективный ток? В большей части стержня он, конечно, не дает вообще никакого эффекта, ибо рядом с каждым током есть другой ток, текущий в противоположном направлении. Если представить себе небольшую поверхность, показанную на фиг. 36.2 линией АВ, которая, однако, чуть-чуть толще отдельного атома, то полный ток через такую поверхность должен быть равен нулю. Внутри материала никакого тока нет. Однако обратите внимание, что на поверхности материала атомные токи не компенсируются соседними токами, текущими в другом направлении. Поэтому по поверхности все время в одном направлении вокруг стержня течет ток. Теперь вам понятно, почему я утверждал, что равномерно намагниченный стержень эквивалентен соленоиду с текущим по нему электрическим током.
Как же эта точка зрения согласуется с выражением (36.7)? Прежде всего намагниченность М внутри материала постоянна, так что все ее производные равны нулю. Это согласуется с нашей геометрической картиной. Однако М на поверхности на самом деле не постоянна, она постоянна вплоть до поверхности, а затем неожиданно падает до нуля. Таким образом, непосредственно на поверхности возникает громадный градиент, который в соответствии с выражением (36.7) даст огромную плотность тока. Предположим, что мы наблюдаем за тем, что происходит вблизи точки С на фиг. 36.2. Если выбрать направления осей х и у так, как это показано на фигуре, то намагниченность М будет направлена по оси z. Выписывая компоненты уравнения (36.7), мы получаем
Хотя производная dMz/dy в точке С равна нулю, производная dMz/dx будет большой и положительной. Выражение (36.7) говорит, что в отрицательном направлении оси у течет ток огромной плотности. Это согласуется с нашим представлением о поверхностном токе, текущем вокруг цилиндра.
Теперь мы можем найти плотность тока в более сложном случае, когда намагниченность в материале меняется от точки к точке. Качественно нетрудно понять, что если в двух соседних областях намагниченность различная, то полной компенсации циркулирующих токов не происходит, поэтому полный ток внутри материала не равен нулю. Именно этот эффект мы и хотим получить количественно.
Прежде всего вспомните, что в гл. 14, § 5 (вып. 5), мы выяснили, что циркулирующий ток I создает магнитный момент
m=IА, (36.9)
где А— площадь, ограниченная контуром тока (фиг. 36.3).
Фиг. 36.3. Дипольный момент m кон тура тока равен IA.
Рассмотрим маленький прямоугольный кубик внутри намагниченного материала (фиг. 36.4).
Фиг. 36.4. Небольшой намагниченный кубик эквивалентен циркулирующему поверхностному току.
Пусть кубик будет так мал, что намагниченность внутри него можно считать однородной. Если компонента намагниченности этого кубика в направлении оси z равна Мz, то полный эффект будет таким, как будто по вертикальным граням течет поверхностный ток. Величину этого тока мы можем найти из равенства (36.9). Полный магнитный момент кубика равен произведению намагниченности на объем:
m=Mz(abc),
откуда, вспоминая, что площадь равна ас, получаем
I=Мzb.
Другими словами, на каждой из вертикальных поверхностей величина тока на единицу длины по вертикали равна Мz.
Представьте теперь два таких маленьких кубика, расположенных рядом друг с другом (фиг. 36.5).
Фиг. 36.5. Если намагниченность двух соседних кубиков различна, то на их границе течет поверхностный ток.
Кубик 2 несколько смещен по отношению к кубику 1, поэтому его вертикальная компонента намагниченности будет немного другой, скажем Mz+DМz. Теперь полный ток на поверхности между этими двумя кубиками будет слагаться из двух частей. По кубику 1 в положительном направлении по оси у течет ток I1, а по кубику 2 в отрицательном направлении течет ток I2. Полный поверхностный ток в положительном направлении оси у будет равен сумме
I=I1-I2=Мzb-(Мz+DМz)b=-DMzb.
Величину DМг можно записать в виде произведения производной от Mz по х на смещение кубика 2 относительно кубика 1, которое как раз равно а:
DMz=(дMz /дx)а. Тогда ток, текущий между двумя кубиками, будет равен
I=(-дMz/дx)ab.
Чтобы связать ток I со средней объемной плотностью тока j, необходимо понять, что этот ток на самом деле размазан по некоторой области поперечного сечения. Если мы вообразим, что такими маленькими кубиками заполнен весь объем материала, то за такое сечение (перпендикулярное оси х) может быть выбрана боковая грань одного из кубиков. Теперь вы видите, что площадь, связанная с током, как раз равна площади ab одной из фронтальных граней. В результате получаем
Наконец-то у нас начинает получаться ротор М.
Но в выражении для jy должно быть еще одно слагаемое, связанное с изменением x-компоненты намагниченности с изменением z. Этот вклад в j происходит от поверхности между двумя маленькими кубиками, поставленными друг на друга (фиг. 36.6).
Фиг. 36.6. Два кубика, расположенных один над другим, тоже могут давать вклад в jy.
Воспользовавшись только что проведенными рассуждениями, мы можем показать, что эта поверхность будет давать в величину jy вклад, равный dMx/dz. Только эти поверхности и будут давать вклад в y-компоненту тока, так что полная плотность тока в направлении оси у получается равной
Определяя токи на остальных гранях куба или используя тот факт, что направление оси z было выбрано совершенно произвольно, мы можем прийти к заключению, что вектор плотности тока действительно определяется выражением .
j=СXM.
Итак, если вы решили описывать магнитное состояние вещества через средний магнитный момент единицы объема М, то оказывается, что циркулирующие атомные токи эквивалентны средней плотности тока в веществе, определяемой выражением (36.7). Если же материал обладает вдобавок еще диэлектрическими свойствами, то в нем может возникнуть и поляризационный ток jпол=dP/dt. А если материал к тому же и проводник, то в нем может течь и ток проводимости jпров. Таким образом, полный ток можно записать как
J = Jпрoв+СXM+дP/дt; (36.10)
§ 2. Поле Н
Теперь можно подставить выражение для тока (36.10) в уравнение Максвелла. Мы получаем
Слагаемое с М можно перенести в левую часть:
Как мы уже отмечали в гл. 32, иногда удобно записывать (Е+Р/e0) как новое векторное поле D/e0. Точно так же удобно (В-М/e0с2) записывать в виде единого векторного поля. Такое поле мы обозначим через Н, т. е.
H=В-M/(e0c2). (36.12)
После этого уравнение (36.11) принимает вид
e0c2СXH=jnpов+дD/дt. (36.13)
Выглядит оно просто, но вся его сложность теперь скрыта в буквах D и Н.
Хочу предостеречь вас. Большинство людей, которые применяют систему СИ, пользуются другим определением Н. Называя свое поле через Н' (они, конечно, не пишут штриха), они определяют его как
Н'=e0с2В-М. (36.14)
(Кроме того, величину e0с2 они обычно записывают в виде l/m0, так что появляется еще одна постоянная, за которой все время нужно следить!) При таком определении уравнение (36.13) будет выглядеть еще проще:
СXH' = jnpoв+дD/дt. (36.15)
Но трудность здесь заключается в том, что такое определение, во-первых, не согласуется с определением, принятым теми, кто не пользуется системой СИ, и, во-вторых, поля Н' и В измеряются в различных единицах. Я думаю, что Н удобнее измерять в тех же единицах, что и В, а не в единицах М, как Н'. Но если вы собираетесь стать инженером и проектировать трансформаторы, магниты и т. п., то будьте внимательны. Вы столкнетесь со множеством книг, где в качестве определения Н используется уравнение (36.14), а не (36.12), а в других книгах, особенно в справочниках о магнитных материалах, связь между В и Н такая же, как и у нас. Нужно быть внимательным и понимать, какое где использовано соглашение.
Одна из примет, указывающих нам на соглашение,— это единицы измерения. Напомним, что в системе СИ величина В, а следовательно, и наше Н измеряются в единицах вб/м2 (1 вб/м2=10 000 гс). Магнитный же момент (т. е. произведение тока на площадь) в той же системе СИ измеряется в единицах а·м2. Тогда намагниченность М имеет размерность а/м. Размерность Н' та же, что и размерность М. Нетрудно видеть, что это согласуется с уравнением (36.15), поскольку у имеет размерность обратной длины.
Те, кто работает с электромагнитами, привыкли измерять поле Н (определенное как Н') в ампер-витках/метр, имея при этом в виду витки провода в обмотке. Но «виток» ведь фактически величина безразмерная, и она не должна вас смущать. Поскольку наше Н равно H'/e0c2, то, если вы пользуетесь системой СИ, Н (в вб/м) равно произведению 4p·10-7 на Н'(в а/м). Может быть, более удобно помнить, что Н (в гс) равно 0,0126 H' (в а/м).
Здесь есть еще одна ужасная вещь. Многие люди, использующие наше определение Н, решили назвать единицы измерения Н и В по-разному! И даже несмотря на одинаковую размерность, они называют единицу В гауссом, а единицу Н — эрстедом (конечно, в честь Гаусса и Эрстеда). Таким образом, во многих книгах вы найдете графики зависимости В в гауссах от Н в эрстедах. На самом деле это одна и та же единица, равная 10-4 единиц СИ. Эту неразбериху в магнитных единицах мы увековечили в табл. 36.1.
Таблица 36.1 · ЕДИНИЦЫ МАГНИТНЫХ ВЕЛИЧИН
§ 3. Кривая намагничивания
Рассмотрим теперь некоторые простые случаи, когда магнитное поле остается постоянным или изменения поля настолько медленны, что можно пренебречь dD/dt по сравнению с jnpoв. В этом случае поля подчиняются уравнениям
СXB=0, (36.16)
СXH=jпров/e0c2, (36.17)
H=B-M/e0c2. (36.18)
Предположим, что у нас есть железный тор с намотанной на него медной проволокой, как это показано на фиг. 36.7, а.
Фиг. 36.7. Железный тор, обмотанный витками изолированного провода (а), и его поперечное сечение (б). Показаны силовые линии.
Пусть по проводу течет ток I. Каково при этом магнитное поле? Оно будет сосредоточено главным образом внутри железа, причем там (см. фиг. 36.7, б) силовые линии должны быть круговыми. Вследствие постоянства потока В его дивергенция равна нулю, и уравнение (36.16) удовлетворяется автоматически. Запишем затем уравнение (36.17) в другой форме, проинтегрировав его по замкнутому контуру Г, показанному на фиг. 36.7, б. Из теоремы Стокса мы получаем
где интеграл от j берется по поверхности S, ограниченной контуром Г. Каждый виток обмотки пересекает эту поверхность один раз, поэтому каждый виток дает в интеграл вклад, равный I, а поскольку всего витков N штук, то интеграл будет равен NI. Из симметрии нашей задачи видно, что В одинаково на всем контуре Г, если, конечно, намагниченность, а следовательно, и поле Н тоже постоянны на контуре Г. Уравнение (36.19) при таких условиях принимает вид
где l—длина кривой Г. Таким образом,
Именно из-за того что в задачах подобного типа поле Н прямо пропорционально намагничивающему току, оно иногда называется намагничивающим.
Единственное, что нам теперь требуется,— это уравнение, связывающее Н с В. Однако такого уравнения просто не существует! У нас есть, конечно, уравнение (36.18), но от него мало проку, ибо в ферромагнитных материалах типа железа оно не дает прямой связи между М и В. Намагниченность М зависит от всей предыдущей истории данного образца железа, а не только от того, каково поле В в данный момент и как оно изменялось раньше.
Впрочем, еще не все потеряно. В некоторых простых случаях мы все же можем найти решение. Если взять ненамагниченное железо, скажем, отожженное при высокой температуре, то для такого простого тела, как тор, магнитная предыстория всего железа будет одной и той же. Затем из экспериментальных измерений мы можем кое-что сказать относительно М, а следовательно, и о связи между В и Н. Из уравнения (36.20) видно, что поле В внутри тора равно произведению некоторой постоянной на величину тока в обмотке I. А поле В можно измерить интегрированием по времени э.д.с. в намагничивающей обмотке, изображенной на рисунке (или в дополнительной обмотке, намотанной поверх нее). Эта э.д.с. равна скорости изменения потока В, так что интеграл от э.д.с. по времени равен произведению В на площадь поперечного сечения тора.
На фиг. 36.8 показано соотношение между В и Н, наблюдаемое в сердечнике из мягкого железа.
Фиг. 36.8. Типичная кривая намагничивания и петля гистерезиса мягкого железа.
Когда ток включается в первый раз, увеличение В с Н происходит по кривой а. Обратите внимание на различие масштабов по осям В и Н; вначале, чтобы получить большое В, необходимо относительно малое Н. Почему же в случае железа поле В намного больше, чем было бы без него? Да потому, что возникает большая намагниченность М, эквивалентная большому поверхностному току в железе, а поле определяется суммой этого тока и тока проводимости в обмотке. А почему намагниченность М оказывается такой большой, мы обсудим позднее.
При больших значениях Н кривая намагничивания «выравнивается». Мы говорим, что железо насыщается. В масштабах нашей фигуры кривая становится горизонтальной, на самом же деле намагниченность продолжает слабо расти: для больших полей В становится равным Н и намагниченность М уже не увеличивается. Кстати, если бы сердечник был сделан из немагнитного материала, то намагниченность М была бы равна нулю, а В было бы равно для всех полей Н.
Прежде всего заметим, что кривая а на фиг. 36.8, так называемая кривая намагничивания,— в высшей степени нелинейна. Впрочем, положение здесь гораздо сложнее. Если после достижения насыщения мы уменьшим ток в катушке и вернем Н снова к нулю, магнитное поле В будет падать по кривой b. Когда Н достигнет нуля, В еще не будет нулем. Даже после выключения намагничивающего тока магнитное поле в железе остается: железо становится постоянно намагниченным. Если теперь включить в катушке ток в обратном направлении, то кривая В—Н пойдет дальше по ветви b до тех пор, пока железо не намагнитится до насыщения в противоположном направлении. При дальнейшем уменьшении тока до нуля В пойдет по кривой с. Когда мы меняем ток от большой положительной до большой отрицательной величины, кривая В—Н будет идти вверх и вниз очень близко к ветвям b и c. Если же, однако, Н менять каким-то произвольным образом, то возникнут более сложные кривые, которые, вообще говоря, будут лежать между кривыми b и c. Кривая, полученная повторными изменениями полей, называется петлей гистерезиса.
Вы видите, что невозможно написать функциональное соотношение типа В=f(Н), так как В в любой момент зависит не только от Н в тот же момент, но и от всей предыстории материала. Естественно, что намагниченность и петли гистерезиса для разных веществ различны. Форма кривых критически зависит от химического состава материала, а также от деталей технологии его приготовления и последующей физической обработки. В следующей главе мы обсудим физическое объяснение некоторых из этих сложностей.
§ 4. Индуктивность с железным сердечником
Одно из наиболее важных применений магнитные материалы находят в электрических устройствах, например трансформаторах, электрических моторах и т. п. Объясняется это прежде всего тем, что с помощью железа можно контролировать поведение магнитного поля, а также при данном электрическом токе получать значительно большие поля. Например, типичное «тороидальное» индуктивное устройство во многом напоминает то, что изображено на фиг. 36.7. При большой индуктивности мы можем сделать устройство гораздо меньшего объема и затратить намного меньше меди, чем в эквивалентном устройстве с «воздушным сердечником». Поэтому при большой индуктивности мы добиваемся гораздо меньшего сопротивления обмотки, так что устройство более близко к «идеальному», особенно при низких частотах. Нетрудно качественно проследить, как работает такое устройство. Если в обмотке течет ток I, то создаваемое внутри поле Н, как это видно из уравнения (36.20), пропорционально току I. Напряжение V на выводах связано с магнитным полем В. Если пренебречь сопротивлением обмотки, то напряжение V будет пропорционально dB/dt. Индуктивность L, которая равна отношению V к dI/dt (см. гл. 17, § 7, вып. 6), зависит, таким образом, от связи между В и Н в железе. Поскольку В гораздо больше Н, то это во много раз увеличивает индуктивность, как будто малый ток в катушке, который обычно дает слабое магнитное поле, заставляет выстраиваться маленькие магнитики, сидящие в железе, и создает «магнитный» ток, который в огромное число раз больше внешнего тока в обмотке. Все происходит так, как будто в катушке возникает ток, намного больший, чем на самом деле. Когда мы меняем направление тока, все маленькие магнитики переворачиваются, внутренние токи потекут в другом направлении и наведенная э.д.с. получается гораздо больше, чем без железа. Если мы хотим вычислить индуктивность, то это можно сделать, вычисляя энергию наподобие того, как описано в гл. 17, § 8. Скорость, с которой энергия отдается источником тока, равна IV. Напряжение V равно площади поперечного сечения сердечника А, умноженной на N и на dB/dt. А согласно выражению (36.20), I=(e0c2l/N)H. Таким образом,
Интегрируя по времени, получаем
Заметьте, что 1А равно объему тора, поэтому плотность энергии и=U/(Объем магнитного материала), как мы показали, равна
Здесь выявляется одно интересное обстоятельство. Когда в обмотке течет переменный ток, то В в железе «ходит» по петле гистерезиса. А поскольку В — неоднозначная функция Я,
то интеграл ∫HdB по замкнутому циклу равен не нулю, а площади, заключенной внутри петли гистерезиса. Таким образом, за каждый цикл источник тока отдает некоторую энергию, равную площади петли гистерезиса. Это есть потери из электромагнитного цикла; энергия уходит на нагревание железа. Такие потери называются гистерезисными. Чтобы они были поменьше, петлю гистерезиса желательно сделать как можно уже. Один из способов уменьшить площадь петли — это максимально уменьшить поле в каждом цикле. Для меньших максимальных полей мы получаем гистерезисную кривую, подобную изображенной на фиг. 36.9.
Фиг. 36.9. Петля гистерезиса, не достигающая насыщения.
Кроме того, применяются особые материалы с очень узкой петлей. Чтобы получить это свойство, специально создано так называемое трансформаторное железо, которое представляет сплав железа с небольшой примесью кремния.
Когда петля гистерезиса очень мала, соотношение В и Н приближенно можно представлять в виде линейного уравнения. Обычно пишут
В=mН. (36.23)
Здесь постоянная m вовсе не магнитный момент, с которым мы встречались раньше. Она называется магнитной проницаемостью. (Иногда ее называют также относительной проницаемостью.) Типичная проницаемость обычных сортов железа равна нескольким тысячам. Однако существуют специальные сплавы, типа так называемого «супермаллоя», проницаемость которых может быть порядка миллиона.
Если в уравнении (36.21) мы воспользуемся приближением В=mН, то энергию индуктивности, имеющей форму тора, можно записать как
так что плотность энергии приближенно равна
Теперь мы можем выражение для энергии (36.24) положить равным энергии индуктивности LI2/2 и найти L. Получается
А воспользовавшись выражением (36.20) для отношения H/I, находим
Таким образом, индуктивность пропорциональна m. Если вам нужна индуктивность для таких устройств, как звуковые усилители, то желательно иметь материал, у которого связь между В и Н достаточно линейна. [Вы, должно быть, помните, что в гл. 50 (вып. 4) мы говорили о генерации гармоник в нелинейных системах.] Для таких задач уравнение (36.23) будет очень хорошим приближением. С другой стороны, если нужно генерировать гармоники, то используют индуктивности, ведущие себя в высшей степени нелинейно. При этом вы должны пользоваться сложной кривой Н—В и применять при вычислениях графические или численные методы.
В обычных «трансформаторах» на одном и том же торе, или сердечнике, из магнитного материала намотаны две катушки. (В больших трансформаторах сердечник для удобства делается прямоугольным.) При этом изменение тока в «первичной» обмотке вызывает изменение поля в сердечнике, которое индуцируется э.д.с. во «вторичной» обмотке. Поскольку поток через каждый виток обеих обмоток один и тот же, то величина отношения э.д.с. в этих двух обмотках такая же, как отношение числа витков в каждой из них. Напряжение, приложенное к первичной обмотке, преобразуется во вторичной в напряжение другой величины. А поскольку для создания требуемых изменений магнитного поля необходим определенный полный ток, то алгебраическая сумма токов в двух обмотках должна оставаться постоянной и равной требуемому «намагничивающему» току. При изменении напряжения изменяется и сила тока в обмотках, т. е. вместе с преобразованием напряжения происходит и преобразование тока.
§ 5. Электромагниты
Поговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электромагнит стандартной формы, изображенный на фиг. 36.10.
Фиг. 36.10. Электромагнит.
Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?
Если ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем считать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг. 36.11,а.
Фиг. 36.11. Поперечное сечение электромагнита.
Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянстве потока В через любое поперечное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма меняется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.
Поле В в зазоре будет по величине тем же самым. Это следует из уравнений (36.16). Представьте себе замкнутую поверхность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В1 величину поля в зазоре, а через B2 — величину поля в железе, мы видим, что
B1A1-В2А2=0,
а поскольку А1=А2, то отсюда следует, что В1=В2.
Посмотрим теперь на Н. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,6). Как и прежде, правая часть равна NI— произведению числа витков на ток. Однако теперь Н в железе и в воздухе будет различным. Обозначая через Н2 поле в железе, а через l2 — Длину пути по окружности ярма, мы видим, что эта часть кривой дает вклад в интеграл H2l2. Если же поле в зазоре равно Н1, а ширина его l1, то вклад зазора оказывается равным H1l1. Таким образом, получаем
Но это еще не все. Нам известно еще, что намагниченность в воздушной щели пренебрежимо мала, так что B1=H1. А так как B1=B2, то уравнение (36.26) принимает вид
Остаются еще два неизвестных. Чтобы найти В2 и H2, необходимо еще одно соотношение, которое связывает В с H в железе.
Если можно приближенно считать, что B2=mH2, то уравнение разрешается алгебраически. Рассмотрим более общий случай, для которого кривая намагничивания железа имеет вид, изображенный на фиг. 36.8. Единственное, что нам нужно,— это найти совместное решение этого функционального соотношения с уравнением (36.27). Его можно найти, строя зависимость (36.27) на одном графике с кривой намагничивания, как это сделано на фиг. 36.12. Точки, где эти кривые пересекутся, и будут нашими решениями.
Для данного тока I уравнение (36.27) описывается прямой линией, обозначенной I>0 на фиг. 36.12. Эта линия пересекает ось Н (B2=0) в точке H2=NI/e0c2l2 и имеет наклон -l2/l1 Различные величины токов приводят просто к горизонтальному сдвигу этой линии. Из фиг. 36.12 мы видим, что при данном токе существует несколько различных решений, зависящих от того, каким образом вы получили их.
Фиг. 36.12. Определение поля в электромагните.
Если вы только что построили магнит и включили ток /, то поле B2 (которое равно B1) будет иметь величину, определяемую точкой а. Если вы сначала увеличили ток до очень большой величины, а затем понизили до I, то значение поля будет определяться точкой b. А если, увеличивая ток от большого отрицательного значения, вы дошли до /, то поле определяется точкой с. Поле в зазоре зависит от того, как вы поступали в прошлом.
Если ток в магните равен нулю, то соотношение между В2 и H2 в уравнении (36.27) изображается кривой, обозначенной I=0 на фиг. 36.12. Здесь опять возможны различные решения. Если вы первоначально «насытили» железо, то в магните может сохраниться значительное остаточное поле, определяемое точкой d. Вы можете снять обмотку и получить постоянный магнит. Нетрудно понять, что для хорошего постоянного магнита необходим материал с широкой петлей гистерезиса. Такую очень широкую петлю имеют специальные сплавы, подобные Алнико V.
§ 6. Спонтанная намагниченность
Обратимся теперь к вопросу, почему в ферромагнитных материалах даже малые магнитные поля приводят к такой большой намагниченности. Намагниченность ферромагнитных материалов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент m каждого электрона равен произведению q/2m на g-фактор и момент количества движения J. Для отдельного электрона при отсутствии чисто орбитального движения g=2, а компонента J в любом направлении, скажем, в направлении оси z, равна ±h/2, так что компонента m в направлении оси z будет
mz=gh/2m=0,928·10-23 а/м2. (36.28)
В атоме железа вклад в ферромагнетизм фактически дают только два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон. (Все рассуждения нетрудно затем распространить и на железо.)
Все дело в том, что точно так же, как и в описанных нами парамагнитных материалах, атомные магнитики в присутствии внешнего магнитного поля В стремятся выстроиться по полю, но их сбивает тепловое движение. В предыдущей главе мы выяснили, что равновесие между силами магнитного поля, старающимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что средний магнитный момент единицы объема в направлении В оказывается равным
где под Ва мы подразумеваем поле, действующее на атом, а под kT — тепловую (больцмановскую) энергию. В теории парамагнетизма мы в качестве Ва использовали само поле В, пренебрегая при этом частью поля, действующего на каждый атом со стороны соседнего. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля Ва, действующего на индивидуальный атом, брать среднее поле в железе. Вместо этого нам следует поступить так же, как это делалось в случае диэлектрика: нам нужно найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сложить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но подобно тому как мы поступали в случае диэлектрика, сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).
Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула
похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:
Эти два набора уравнений можно считать аналогичными, если мы чисто математически сопоставим
Это то же самое, что и
Другими словами, если уравнения ферромагнетизма записать как
то они будут похожи на уравнения электростатики.
В прошлом это чисто алгебраическое соответствие доставило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убедились, физически фундаментальными полями являются Е и В, а поле Н — понятие производное. Таким образом, хотя уравнения и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одинаковые уравнения имеют одинаковые решения.
Теперь можно воспользоваться нашими предыдущими результатами о полях внутри полости различной формы в диэлектриках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:
Но поскольку в нашей полости М равна нулю, то мы получаем
С другой стороны, для дискообразной полости, перпендикулярной М,
что в нашем случае превращается в
или в величинах В:
Наконец, для сферической полости аналогия с уравнением (36.3) дала бы
Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.
Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения С·B=0. (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину — вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как V X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.
При нахождении равновесной намагниченности из уравнения (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем
В приближении сферической полости коэффициент Я следует взять равным 1/3, но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возьмем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы подставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:
Однако это уравнение невозможно решить точно, так что мы будем делать это графически.
Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде
где Мнас — намагниченность насыщения, т. е. Nm, a x — величина mBa/kT. Зависимость М/Мнас от х показана на фиг. 36.13 (кривая а).
Фиг. 36.13. Графическое решение уравнений (36.37) и (36.38),
Воспользовавшись еще уравнением (36.36) для Ва, можно записать х как функцию от М:
Эта формула определяет линейную зависимость между М/Мнас и х при любой величине Н. Прямая пересекается с осью х в точке x=mH/kT, и наклон ее равен e0с2kT/mlКМнас. Для любого частного значения Н это будет прямая, подобная прямой b на фиг. 36.13. Пересечение кривых а и о дает нам решение для М/Мнас. Итак, задача решена.
Посмотрим теперь, годны ли эти решения при различных обстоятельствах. Начнем с H=0. Здесь представляются две возможности, показанные кривыми b1 и b2 на фиг. 36.14.
Фиг. 36.14. Определение намагниченности при Н=0.
Обратите внимание, что наклон прямой (36.38) пропорционален абсолютной температуре Т. Таким образом, при высоких температурах получится прямая, подобная b1 Решением будет только М/Мнас=0. Иначе говоря, когда намагничивающее поле Я равно нулю, намагниченность тоже равна нулю. При низких температурах мы получили бы линию типа b2 и стали возможны два решения для М/Мнас: одно М/Мнас=0, а другое М/Мнас порядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариации в окрестности указанных решений.
В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный постоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).
Если мы отправимся от высоких температур и начнем двигаться вниз, то при некой критической температуре, называемой температурой Кюри Тc, неожиданно проявляется ферромагнитное поведение. Эта температура соответствует на фиг. 36.14 линии b3, касательной к кривой а, наклон которой равен единице. Так что температура Кюри определяется из равенства
При желании уравнение (36.38) можно записать в более простом виде через Тc:
Что же получается для малых намагничивающих полей Н? Из фиг. 36.14 нетрудно понять, что получится, если нашу прямую линию сдвинуть немного направо. В случае низкой температуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересечения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически можем приближенно заменить прямой линией а с единичным наклоном и написать
Теперь можно разрешить уравнение относительно М/Мнас:
Мы получаем закон, несколько напоминающий закон для парамагнетизма:
Отличие состоит, в частности, в том, что мы получили намагниченность как функцию Н, с учетом взаимодействия атомных магнитиков, однако главное то, что намагниченность обратно пропорциональна разности температур Т и Тс, а не просто абсолютной температуре Т. Пренебрежение взаимодействием между соседними атомами соответствует l=0, что, согласно уравнению (36.39), означает Тс=0. Результат при этом получится в точности таким же, как и в гл. 35.
Нашу теоретическую картину можно сверить с экспериментальными данными для никеля. На опыте обнаружено, что ферромагнитные свойства никеля исчезают, когда температура поднимается выше 631° К. Это значение можно сравнить со значением Тс, вычисленным из равенства (36.39). Вспоминая, что Mнас=mN, мы получаем
Из плотности и атомного веса никеля находим
N=9,1·1028м-3. А вычисление m, из уравнения (36.28) и подстановка l=1/3 дает
Tс=0,24°K.
Различие с экспериментом примерно в 2600 раз! Наша теория ферромагнетизма полностью провалилась!
Можно попытаться «подправить» нашу теорию, как это сделал Вейсс, предположив, что по каким-то неизвестным причинам К равно не 1/3, а (2600) ·1/3, т. е. около 900. Оказывается, что подобная величина получается и для других ферромагнитных материалов типа железа. Вернемся к уравнению (36.36) и попробуем понять, что это может означать? Мы видим, что большая величина Я означает, что Ва (локальное поле, действующее на атом) должно быть больше, много больше, чем мы думали. Фактически, записывая Н = В-M/e0c2, мы получили
В соответствии с нашей первоначальной идеей, когда мы принимали l=1/3, локальная намагниченность М уменьшает эффективное поле Ва на величину — 2М/Зe0. Даже если бы наша модель сферической полости была не очень хороша, мы все равно ожидали бы некоторого уменьшения. Вместо того чтобы объяснить явление ферромагнетизма, мы вынуждены считать, что намагниченность увеличивает локальное поле в огромное число раз: в тысячу и даже больше. По-видимому, не существует какого-то разумного способа для создания действующего на атом поля такой ужасной величины, ни даже поля нужного знака! Ясно, что наша «магнитная» теория ферромагнетизма потерпела досадный провал. Мы вынуждены заключить, что в ферромагнетизме мы имеем дело с какими-то немагнитными взаимодействиями между вращающимися электронами соседних атомов. Это взаимодействие должно порождать у соседних спинов сильную тенденцию к выстраиванию в одном направлении. Мы увидим позднее, что это взаимодействие связано с квантовой механикой и принципом запрета Паули. И, наконец, посмотрим, что происходит при низких температурах, когда Т<Tс. Мы видели, что даже при Н=0 в этом случае должна существовать спонтанная намагниченность, определяемая пересечением кривых а и b2 на фиг. 36.14. Если мы, изменяя наклон линии b2, будем находить М для различных температур, то получим теоретическую кривую, показанную на фиг. 36.15.
Фиг. 36.15. Зависимость спонтанной намагниченности никеля от температуры.
Для всех ферромагнитных материалов, атомные моменты которых обусловлены одним электроном, эта кривая должна быть одной и той же. Для других материалов подобные кривые могут отличаться лишь немного.
В пределе, когда Т стремится к абсолютному нулю, М стремится к Mнac. При увеличении температуры намагниченность уменьшается, падая до нуля при температуре Кюри. Точками на фиг. 36.15 показаны экспериментальные данные для никеля. Они довольно хорошо ложатся на теоретическую кривую. Хотя мы и не понимаем лежащего в основе механизма, но общие свойства теории, по-видимому, все же правильны.
Но в нашей попытке понять ферромагнетизм есть еще одна неприятная несогласованность, которая должна нас заботить. Мы нашли, что выше некоторой температуры материа