/ Language: Русский / Genre:antique

Feynmann 9

Feynmann


antiqueFeynmannFeynmann 9engFeynmanncalibre 0.8.454.4.20122c8e66c1-6ddc-4687-b7f9-c058acac348d1.0

Глава 11

РАСПРОСТРАНЕНИЕ В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ

§ 1. Состояния электрона в одномерной решетке

§ 2. Состояния определенной энергии

§ 3. Состояния, зависящие от времени

§ 4. Электрон в трехмерной решетке

§ 5. Другие состояния в решетке

§ 6. Рассеяние на нерегулярностях решетки

§ 7. Захват нерегулярностями решетки

§ 8. Амплитуды рассеяния и связанные состояния

§ 1. Состояния электрона в одномерной решетке

На первый взгляд вам может показаться, что обладающий небольшой энергией электрон с превеликим трудом протискивается через твердый кристалл. Атомы в нем уложены так, что их центры отстоят один от другого лишь на несколько ангстрем, а эффективный диаметр атома при рассеянии электронов составляет примерно 1Е или около этого. Иначе говоря, атомы, если их сравнивать с промежутками между ними, очень велики, так что можно ожидать, что средний свободный пробег между столкновениями будет порядка нескольких анг­стрем, а это практически равно нулю. Следует ожидать, что электрон почти тотчас же влетит в тот или иной атом. Тем не менее перед нами самое обычное явление природы: когда решетка идеальна, электрону ничего не стоит плавно пронестись сквозь кристалл, почти как сквозь вакуум. Странный этот факт — причина того, что металлы так легко проводят электричество; кроме того, он позволил изобрести множество весьма полезных устройств. Например, благо­даря ему транзистор способен имитировать радиолампу. В радиолампе электроны движутся свободно через вакуум, в транзисторе они тоже движутся свободно, но только через кристал­лическую решетку. Механизм того, что проис­ходит в транзисторе, будет описан в этой главе; следующая глава посвящена применениям этих принципов в различных практических уст­ройствах.

Проводимость электронов в кристалле — один из примеров очень общего явления. Через кристаллы могут странствовать не только электроны, но и другие «объекты». Так, атомные возбуждения тоже могут путешествовать аналогичным способом. Явление, о котором мы сейчас будем говорить, то и дело возникает при изучении физики твердого состояния.

Мы уже неоднократно разбирали примеры систем с двумя состояниями. Представим себе на этот раз электрон, который может находиться в одном из двух положений, причем в каждом из них он оказывается в одинаковом окружении. Предположим также, что имеется определенная амплитуда перехода электрона из одного положения в другое и, естественно, такая же ампли­туда перехода обратно, в точности, как в гл. 8, § 1 (вып. 8) для молекулярного иона водорода. Тогда законы квантовой механики приводят к следующим результатам. У электрона возникнет два возможных состояния с определенной энергией, причем каждое состояние может быть описано амплитудой того, что электрон пребывает в одном из двух базисных положений. В каждом из состояний определенной энергии величины этих двух амплитуд постоянны во времени, а фазы меняются во вре­мени с одинаковой частотой. С другой стороны, если электрон сперва был в одном положении, то со временем он перейдет в другое, а еще позже вернется в первое положение. Изменения амплитуды похожи на движение двух связанных маятников.

Рассмотрим теперь идеальную кристаллическую решетку и вообразим, что в ней электрон может расположиться в неко­торой «ямке» возле определенного атома, имея определенную энергию. Допустим также, что у электрона имеется некоторая амплитуда того, что он перескочит в другую ямку, которая на­ходится неподалеку, возле другого атома. Это чем-то напоминает систему с двумя состояниями, но с добавочными осложнениями. После того как электрон достигает соседнего атома, он может перейти в совершенно новое место или вернуться в исходную позицию. Все это похоже не столько на пару связанных маят­ников, сколько на бесконечное множество маятников, связанных между собой. Это чем-то напоминает одну из тех машин (со­ставленных из длинного ряда стержней, прикрепленных к за­крученной проволоке), с помощью которых на первом курсе демонстрировалось распространение волн.

Если у вас имеется гармонический осциллятор, связанный с другим гармоническим осциллятором, который в свою оче­редь связан со следующим осциллятором, который и т.д..., и если вы создадите в одном месте какую-то нерегулярность, то она начнет распространяться, как волна по проволоке. То же самое возникает и в том случае, если вы поместите электрон возле одного из атомов в длинной их цепочке.

Как правило, задачи по механике легче всего решать на языке установившихся волн; это проще, чем анализировать послед­ствия отдельного толчка. Тогда появляется какая-то картина смещений, которая распространяется по кристаллу, как волна с заданной, фиксированной частотой. То же самое происходит с электроном, и по той же причине, потому что электрон описывается в квантовой механике похожими уравнениями.

Но нужно помнить одну вещь: амплитуда для электрона быть в данном месте это амплитуда, а не вероятность. Если бы электрон просто просачивался из одного места в другое, как вода через дырочку, то его поведение было бы совсем иным. Если бы, скажем, мы соединили два бачка с водой тоненькой трубоч­кой, по которой вода из одного бачка по капле перетекала в другой, то уровни воды выравнивались бы по экспоненте. С электроном же происходит просачивание амплитуды, а не монотонное переливание вероятностей. А одно из свойств мнимого члена (множителя i в дифференциальных уравнениях квантовой механики) — что он меняет экспоненциальное реше­ние на колебательное. И то, что после этого происходит, ничуть не походит на то, как вода перетекает из одного бачка в другой.

Теперь мы хотим квантовомеханический случай проанали­зировать количественно. Пусть имеется одномерная система, состоящая из длинной цепи атомов (фиг. 11.1,а).

Фиг. 11.1. Базисные состояния электрона в одномерной решетке.

(Кристалл, конечно, трехмерен, но физика в обоих случаях очень близка; если вы разберетесь в одномерном случае, то сможете разоб­раться и в том, что бывает в трех измерениях.) Мы хотим знать, что случится, если в эту линию атомов поместить отдельный электрон. Конечно, в реальном кристалле таких электронов мириады. Но большинство их (в непроводящем кристалле почти все) занимает в общей картине движения свое место, каждый вертится вокруг своего атома, и все оказывается совершенно установившимся. А мы хотим рассуждать о том, что будет, если внутрь поместить лишний электрон. Мы не будем думать о том, что делают прочие электроны, потому что будем считать, что на то, чтобы изменить их энергию, потребуется очень много энергии возбуждения. Мы собираемся добавить электрон и соз­дать как бы новый слабо связанный отрицательный ион. Следя за тем, что поделывает этот лишний электрон, мы делаем при­ближение, пренебрегая при этом внутренним механизмом атомов.

Ясно, что этот электрон сможет перейти к другому атому, перенося в новое место отрицательный ион. Мы предположим, что (в точности, как и в случае электрона, «прыгавшего» от протона к протону) электрон может с какой-то амплитудой «прыгать» от атома к его соседям с любой стороны.

Как же описывать такую систему? Что считать разумными базисными состояниями? Если вы вспомните, что мы делали, когда у электрона было только две возможные позиции, вы сможете догадаться. Пусть в нашей цепочке все расстояния между атомами одинаковы, и пусть мы их пронумеруем по по­рядку, как на фиг. 11.1,а. Одно базисное состояние — когда электрон находится возле атома № 6; другое базисное состоя­ние — когда электрон находится возле № 7, или возле № 8, и т. д.; n-е базисное состояние можно описать, сказав, что элект­рон находится возле атома № п. Обозначим это базисное со­стояние |n>. Из фиг. 11.1 ясно, что подразумевается под тремя базисными состояниями:

С помощью этих наших базисных состояний можно описать любое состояние |j> нашего одномерного кристалла, задав все амплитуды <n|j> того, что состояние |j> находится в одном из базисных состояний, т. е. амплитуду того, что электрон распо­ложен близ данного частного атома. Тогда состояние |j> можно записать в виде суперпозиции базисных состояний:

Кроме того, мы хотим еще предположить, что когда электрон находится близ одного из атомов, то имеется некоторая ампли­туда того, что он просочится к тому атому, что слева, или к тому, что справа. Возьмем простейший случай, когда счи­тается, что он может просочиться только к ближайшим соседям, а к следующему соседу он сможет дойти в два приема. Примем, что амплитуды того, что электрон перепрыгнет от одного атома к соседнему, равны iA/h (за единицу времени).

Изменим на время обозначения, и амплитуду <n|j>, свя­занную с n-м атомом, обозначим через Сn. Тогда (11.1) будет иметь вид

Если бы вы знали каждую из амплитуд Сn в данный момент, то, взяв квадраты их модулей, можно было бы получить вероят­ность того, что вы увидите электрон, взглянув в этот момент на атом п.

Но что сталось бы чуть позже? По аналогии с изученными нами системами с двумя состояниями мы предлагаем составить гамильтоновы уравнения для этой системы в виде уравнений такого типа:

Первый справа коэффициент Е0 физически означает энергию, которую имел бы электрон, если бы он не мог просачиваться от одного атома к другим. (Совершенно неважно, что мы назовем , Е0; мы неоднократно видели, что реально это не означает ничего, кроме выбора нуля энергии.) Следующий член представляет амплитуду в единицу времени того, что электрон из (n+1)-й ямки просочится в n-ю ямку, а последний член означает ампли­туду просачивания из (n-1)-й ямки. Как обычно, А считается постоянным (не зависящим от t).

Для полного описания поведения любого состояния |j> надо для каждой из амплитуд Сn иметь по одному уравнению типа (11.3). Поскольку мы намерены рассмотреть кристалл с очень большим количеством атомов, то допустим, что состоя­ний имеется бесконечно много, атомы тянутся без конца в обе стороны. (При конечном числе атомов придется специально обращать внимание на то, что случается на концах.) А если ко­личество N наших базисных состояний бесконечно велико, то и вся система наших гамильтоновых уравнений бесконечна! Мы напишем только часть ее:

§ 2. Состояния определенной энергии

Об электроне в решетке мы теперь уже можем узнать очень многое. Для начала попробуем отыскать состояния определен­ной энергии. Как мы видели в предыдущих главах, это означает, что надо отыскать такой случай, когда все амплитуды меняются с одной частотой, если только они вообще меняются. Мы ищем решение в виде

Комплексное число аn говорит нам о том, какова не зависящая от времени часть амплитуды того, что электроны будут об­наружены возле n-го атома. Если это пробное решение подставить для проверки в уравнения (11.4), то получим

Перед нами бесконечное число уравнений для бесконечного количества неизвестных аn! Ситуация тяжелая!

Но мы знаем, что надо только взять детерминант... нет, по­годите! Детерминанты хороши, когда уравнений два, три или четыре. Но здесь их очень много, даже бесконечно много, и вряд ли от детерминантов будет толк. Нет, лучше попробовать решать эти уравнения прямо. Во-первых, пронумеруем положения атомов; будем считать, что n-й атом находится в хn, а (n+1)-й— в хn+1. Если расстояние между атомами равно b (как на фиг. 11.1), то хn+1n+b. Взяв начало координат в атоме номер нуль, можно даже получить хn=nb. Уравнение (11.5) можно тогда переписать в виде

а уравнение (11.6) превратится в

Пользуясь тем, что xn+1=xn+b, это выражение можно также записать в виде

Это уравнение немного походит на дифференциальное. Оно говорит, что величина а(х) в точке хn связана с той же физиче­ской величиной в соседних точках хn±b. (Дифференциальное уравнение связывает значения функции в точке с ее значениями в бесконечно близких точках.) Может быть, здесь подойдут методы, которыми мы обычно пользуемся для решения диффе­ренциальных уравнений? Попробуем.

Решения линейных дифференциальных уравнений с по­стоянными коэффициентами всегда могут быть выражены через экспоненты. Попробуем и здесь то же самое; в качестве пробного решения выберем

Тогда (11.9) обратится в

Сократим на общий множитель; получим

Два последних члена равняются coskb, так что

E=E0-2Acoskb. (11.13)

Мы обнаружили, что при любом выборе постоянной k имеется решение, энергия которого дается этим уравнением. В зависи­мости от k получаются различные возможные энергии, и каж­дая k соответствует отдельному решению. Решений бесконечно много, но это и не удивительно, ведь мы исходим из беско­нечного числа базисных состояний.

Посмотрим, каков смысл этих решений. Для каждой k уравнение (11.10) дает свои а. Тогда амплитуды обращаются в

причем нужно помнить, что энергия Е также зависит от k в сог­ласии с уравнением (11.13). Множитель дает пространст­венную зависимость амплитуд. Амплитуды при переходе от атома к атому колеблются.

При этом имейте в виду, что колебания амплитуды в прост­ранстве комплексны, модуль ее вблизи любого атома один и тот же, а фаза (в данный момент) от атома к атому сдвигается на ikb. Чтобы можно было видеть, что происходит, поставим у каж­дого атома вертикальную черточку, равную вещественной части амплитуды (фиг. 11.2).

Фиг. 11.2. Изменение вещественной части Сn с хn.

Огибающая этих вертикалей (по­казанная штрихованной линией) является, конечно, косинусо­идой. Мнимая часть Сnэто тоже колеблющаяся функция, но она сдвинута по фазе на 90° , так что квадрат модуля (сумма квадратов вещественной и мнимой частей) у всех С один и тот же.

Итак, выбирая k, мы получаем стационарное состояние с определенной энергией Е. И в каждом таком состоянии элект­рону одинаково вероятно оказаться около любого из атомов, никаких преимуществ у одного атома перед другим нет. От атома к атому меняется только фаза. Фазы меняются еще и со време­нем. Из (11.14) следует, что вещественная и мнимая части распространяются по кристаллу, как волны, как веществен­ная и мнимая части выражения

Волна может двигаться либо к положительным, либо к отрица­тельным х, смотря по тому, какой знак выбран для k.

Заметьте, что мы предположили, что поставленное в нашем пробном решении (11.10) число k есть число вещественное. Теперь видно, почему в бесконечной цепочке атомов так и долж­но быть. Пусть k было бы мнимым числом —ik'. Тогда амплитуды аn менялись бы, как , что означало бы, что амплитуда растет все выше и выше, когда х возрастает, или при k' отрицательном, когда х становится большим отрицательным числом. Такой вид решения был бы вполне хорош, если бы цепочка атомов на чем-то кончалась, но в бесконечной цепи атомов это не может быть фи­зическим решением. Оно привело бы к бесконечным амплиту­дам и, стало быть, к бесконечным вероятностям, которые не могут отражать действительного положения вещей. Позже мы встретимся с примером, когда и у мнимых k есть смысл.

Соотношение (11.13) между энергией Е и волновым числом k изображено на фиг. 11.3.

Фиг. 11.3. Энергия стационарных состояний как функция параметра k.

Как следует из этого рисунка, энергия может меняться от Е0-2А при k=0 до Е0 + при k=±p//b. График начерчен для положительных А, при отрица­тельных А кривую пришлось бы перевернуть, но область изменения осталась бы прежней. Существенно то, что в некоторой области, или «полосе» энергий допустимы любые значения энергии; вне полосы энергии быть не может. Из наших пред­положений следует, что если электрон в кристалле находится в стационарном состоянии, энергия его не сможет оказаться вне этой полосы.

Согласно (11.10), меньшие k отвечают более низким энергети­ческим состояниям Е»Е0-2А. Когда k по величине растет (все равно, в положительную или отрицательную сторону), то энергия сперва растет, а потом при kp//b достигает ма­ксимума, как показано на фиг. 11.3. Для k, больших, чем p//b, энергия опять начала бы убывать. Но такие k рассматривать не стоит, они не приведут к каким-либо новым состояниям, а просто повторяют те состояния, которые уже появлялись при меньших k. Вот как в этом можно убедиться. Рассмотрим со­стояние наинизшей энергии, для которого k=0. Тогда при всех хn коэффициент а (хn) будет один и тот же [см. (11.10)1. Та же самая энергия получилась бы и при k= 2p//b. Тогда из

(11.10) следовало бы

Но, считая, что начало координат приходится на х0, можно по­ложить хn= nb, и тогда а (хn) превратится в

т. е. состояние, описываемое этими а (хn), физически ничем не будет отличаться от состояний при k=0. Оно не представляет особого решения.

В качестве другого примера возьмем k=p/4b. Веществен­ная часть а (хn) изображена на фиг. 11.4 кривой 1.

Фиг. 11.4. Пара значений к, представляющих одну и ту же физическую ситуацию. Кривая 1—для k=p/4b, кривая 2 —для k=7p/4b.

Если бы k было в семь раз больше (k=7p//4b), то вещественная часть а (хn) менялась бы так, как показано на кривой 2. (Сама коси­нусоида смысла не имеет, важны только ее значения в точках хn.

Кривые нужны просто для того, чтобы было видно, как все меняется.) Вы видите, что оба значения k во всех хn дают одинаковые амплитуды.

Вывод из всего этого состоит в том, что все возможные реше­ния нашей задачи получатся, если взять k только из некоторой ограниченной области. Мы выберем область от -p/b до +p/b (она показана на фиг. 11.3). В этой области энергия стационар­ных состояний с ростом абсолютной величины k возрастает.

Еще одно побочное замечание о том, с чем было бы забавно повозиться. Представьте, что электрон может не только пере­прыгивать к ближайшим соседям с амплитудой iA/h, но имеет еще возможность одним махом перепрыгивать и к следующим за ними соседям с некоторой другой амплитудой iB/h. Вы опять обнаружите, что решение можно искать в форме ап=eikx, этот тип решений является универсальным. Вы также увидите, что стационарные состояния с волновым числом k имеют энер­гию E0-2Acos kb-2Bcos2kb. Это означает, что форма кривой Е как функции k не универсальна, а зависит от тех частных до­пущений, при которых решается задача. Это не обязательно косинусоида, и она даже не обязательно симметрична относи­тельно горизонтальной оси. Но зато всегда верно, что кривая вне интервала (-p/b, p/b) повторяется, так что заботиться о других значениях k не нужно.

Посмотрим еще внимательнее на то, что происходит при малых k, когда вариации амплитуд между одним хn и соседним очень маленькие. Будем отсчитывать энергию от такого уровня, чтобы было Е0=2А; тогда минимум кривой фиг. 11.3 придется на нуль энергии. Для достаточно малых k можно написать

и энергия (11.13) превратится в

Получается, что энергия состояния пропорциональна квадрату волнового числа, описывающего пространственные вариации

амплитуд Сn.

§ 3. Состояния, зависящие от времени

В этом параграфе мы хотим подробнее обсудить поведение состояний в одномерной решетке. Если для электрона амплитуда того, что он окажется в хn, равна Сn, то вероятность найти его там будет |Сn|2. Для стационарных состояний, описанных уравнением (11.12), эта вероятность при всех хn одна и та же и со временем не меняется. Как же отобразить такое положение вещей, кото­рое грубо можно было бы описать, сказав, что электрон определенной энергии сосредоточен в определенной области, так что более вероятно найти его в каком-то одном месте, чем в другом? Этого можно добиться суперпозицией нескольких решений, похожих на (11.12), но со слегка различными значениями k и, следовательно, с различными энергиями. Тогда, по крайней мере при t=0, амплитуда Сn вследствие интерференции раз­личных слагаемых будет зависеть от местоположения, в точности так же, как получаются биения, когда имеется смесь волн раз­ной длины [см. гл. 48 (вып. 4)]. Значит, можно составить такой «волновой пакет», что в нем будет преобладать волновое число k0, но будут присутствовать и другие волновые числа, близкие к k0.

В нашей суперпозиции стационарных состояний амплитуды с разными k будут представлять состояния со слегка различ­ными энергиями и, стало быть, со слегка различными частотами; интерференционная картина суммарного Сn поэтому тоже будет меняться во времени, возникнет картина «биений». Как мы ви­дели в гл. 48 (вып. 4), пики биений [места, где (xn)|2 наи­большие] с течением времени начнут двигаться по х; скорость их движения мы назвали «групповой». Мы нашли, что эта груп­повая скорость связана с зависимостью k от частоты формулой

все это в равной мере относится и к нашему случаю. Состояние электрона, имеющее вид «скопления», т. е. состояние, для кото­рого Сn меняется в пространстве так, как у волнового пакета на фиг. 11.5, будет двигаться вдоль нашего одномерного «кристалла» с быстротой v, рапной dw/dk, где w=E/h.

Фиг. 11.5. Вещественная часть С(хn) как функция х для суперпозиции нескольких состояний с близкими энергиями.

Подстав­ляя (11.16) вместо Е, получаем

Иными словами, электроны движутся по кристаллу с быстротой, пропорциональной самому характерному k. Тогда, согласно (11.16), энергия такого электрона пропорциональна квадрату его скорости, он ведет себя подобно классической частице. Пока мы рассматриваем все в столь крупном масштабе, что никаких тонкостей строения разглядеть не можем, наша квантовомеханическая картина приводит к тем же результатам, что и клас­сическая физика.

В самом деле, если из (11.18) найти k и подставить его в (11.16), то получится

где mэфф — постоянная. Избыточная «энергия движения» элект­рона в пакете зависит от скорости в точности так же, как и у классической частицы. Постоянная mэфф, именуемая «эффектив­ной массой», дается выражением

Заметьте еще, что можно написать

Если мы решим назвать mэффv «импульсом», то этот импульс будет связан с волновым числом k так же, как и у свободной частицы.

Не забывайте, что mэфф ничего общего не имеет с реальной массой электрона. Она может быть совсем другой, хотя следует сказать, что в реальных кристаллах часто случается, что ее порядок величины оказывается примерно таким же (в 2 или, скажем, в 20 раз больше, чем масса электрона в пустом про­странстве).

Мы только что с вами раскрыли поразительную тайну — как это электрон в кристалле (например, пущенный в германий добавочный электрон) может пронестись через весь кристалл, может лететь по нему совершенно свободно, даже если ему при­ходится сталкиваться со всеми атомами. Это получается оттого, что его амплитуды, перетекая с одного атома на другой, прокладывают ему путь через кристалл. Вот отчего твердое тело может проводить электричество.

§ 4. Электрон в трехмерной решетке

Еще немного о том, как можно применить те же идеи, чтобы понять, что происходит с электроном в трех измерениях. Резуль­таты оказываются очень похожими. Пусть имеется прямоуголь­ная решетка атомов с расстояниями а, b, с в трех направлениях. (Если вам больше по душе кубическая решетка, примите все расстояния равными друг другу.) Предположим также, что ам­плитуда прыжка к соседу в направлении х есть iAx/h; ампли­туда прыжка в направлении у есть iAy/h, а амплитуда прыжка в направлении z есть iAz/h. Как же описать базисные состоя­ния? Как и в одномерном случае, одно базисное состояние — это когда электрон находится близ атома с координатами х, у, z, где (х, у, z) — одна из точек решетки. Если выбрать начало координат в одном из атомов, то все эти точки придутся на

х=nха, y=nyb и z=nzс,

где nх, ny, nzтри целых числа. Вместо того чтобы ставить при х, у и z их номера, будем просто писать х, у, z, имея в виду, что они принимают лишь такие значения, которые бывают у то­чек решетки. Итак, базисное состояние изображается символом | электрон в х, у, z>, а амплитуда того, что электрон в неко­тором состоянии |y> окажется в этом базисном состоянии, есть

С (х, у, z)=< электрон в х, у, z |y>.

Как и прежде, амплитуды С (х, у, z) могут меняться во вре­мени. При наших предположениях гамильтоновы уравнения обязаны выглядеть следующим образом:

Хоть это и выглядит громоздко, но вы сразу, конечно, поймете, откуда взялось каждое слагаемое.

Опять попробуем найти стационарное состояние, в котором все С меняются со временем одинаково. И снова решение есть экспонента

Если вы подставите это в (11.22), то увидите, что оно вполне подойдет, если только энергия Е будет связана с kx, ky и kz следующим образом:

Теперь энергия зависит от трех волновых чисел kx, ky, kz, которые, кстати, есть компоненты трехмерного вектора k.

И действительно, (11.23) можно переписать в векторных обо­значениях:

Амплитуда меняется как комплексная плоская волна, которая движется в трехмерном пространстве в направлении k с волно­вым числом k=(k2x+k2y+ k2z)1/2.

Энергия, связываемая с этими стационарными состояниями, зависит от трех компонент k сложным образом, подчиняясь уравнению (11.24). Характер изменения Е зависит от относи­тельных знаков и величин Ах,Ау и Аz. Если вся эта тройка положительна и если нас интересуют лишь маленькие k, то зависимость оказывается сравнительно простой.

Разлагая косинус, как и раньше [см. (11.16)], мы теперь придем к

В простой кубической решетке с расстоянием а между узлами следует ожидать, что и Ах, и Аy, и Аг будут все равны друг другу (скажем, равны А), так что получилось бы

или

А это как раз совпадает с (11.16). Повторяя те же рассуждения, что и тогда, мы пришли бы к заключению, что электронный пакет в трех измерениях (составленный путем суперпозиции множества состояний с почти одинаковыми энергиями) также движется на манер классической частицы, обладающей некото­рой эффективной массой.

В кристалле не с кубической, а с более низкой симметрией (или даже в кубическом кристалле, но таком, в котором состоя­ние электрона около атома несимметрично) три коэффициента Ах, Аy и Az различны. Тогда «эффективная масса» элект­рона, сосредоточенного в узкой области, зависит от направле­ния его движения. Может, например, оказаться, что у него раз­ная инерция при движении в направлении х и при движении в направлении у. (Детали такого положения вещей иногда описываются с помощью «тензора эффективной массы».)

§ 5. Другие состояния в решетке

Согласно (11.24), состояния электрона, о которых мы гово­рили, могут обладать энергиями только в некоторой энергети­ческой «полосе», простирающейся от наименьшей энергии

Е0-2яуг)

до наибольшей

E0+2(Ax+Ay+Az).

Другие энергии тоже возможны, но они принадлежат к другому классу состояний электрона. Для тех состояний, о которых говорилось раньше, мы выбирали такие базисные состояния, когда электрон в атоме кристалла находился в некотором определенном состоянии, скажем в состоянии наинизшей энергии.

Если у вас есть атом в пустом пространстве и вы добавляете к нему электрон, чтобы получился ион, то этот ион можно обра­зовать многими способами. Электрон может расположиться так, чтобы образовать состояние наинизшей энергии, или так, чтобы образовать то или иное из многих возможных «возбуж­денных состояний» иона, каждое с определенной энергией, ко­торая превосходит наинизшее значение. То же может случиться и в кристалле. Допустим, что энергия Е0, которой мы пользо­вались выше, соответствует базисным состояниям, представляю­щим собой ионы с наинизшей возможной энергией. Но можно также вообразить новую совокупность базисных состояний, в которых электрон по-иному располагается возле n-го атома: он образует одно из возбужденных состояний иона, так что энергия Е0 теперь уже становится чуть повыше. Как и раньше, имеется некоторая амплитуда А (отличная от прежней) того, что электрон перепрыгнет из своего возбужденного состояния близ одного атома в такое же возбужденное состояние подле сосед­него атома. И весь анализ проходит, как раньше; мы обнаружим полосу возможных энергий, сосредоточенных вокруг некото­рой высшей энергии. Вообще говоря, таких полос может быть много и каждая будет отвечать своему уровню возбуждения.

Мыслимы и другие возможности. Может существовать неко­торая амплитуда того, что электрон перепрыгнет из возбужден­ного положения возле одного атома в невозбужденное положе­ние близ следующего атома. (Это называется взаимодействием между полосами.) Математическая теория становится все слож­нее и сложнее по мере того, как вы принимаете во внимание все больше и больше полос и добавляете все больше и больше коэф­фициентов просачивания между различными состояниями. Ни­каких новых идей не нужно; но уравнения, как мы видели из нашего простого примера, сильно разрастаются.

Следует еще заметить, что о различных коэффициентах, та­ких, как появляющаяся в теории амплитуда А, сказать можно лишь немногое. Их, как правило, очень трудно подсчитать, и в практических случаях об этих параметрах теоретически бывает очень мало известно; в тех или иных реальных случаях приходится их значения брать из опыта.

Бывают и другие случаи, в которых вся физика и вся мате­матика почти в точности совпадают с тем, что мы обнаружили для электрона, движущегося по кристаллу, но в которых дви­жущийся «объект» совсем не тот. Представим, например, что нашим исходным кристаллом (или, лучше сказать, линейной решеткой) была цепочка нейтральных атомов, у каждого из которых связь с внешним электроном очень слаба. Теперь во­образим, что мы убрали один электрон. У какого из атомов? Пусть Сn есть амплитуда того, что электрон исчез у атома, стоящего в точке хn. Вообще говоря, имеется какая-то ампли­туда А того, что электрон от соседнего атома, скажем от (n-1)-го, перепрыгнет к n-му, оставив свой (n-1)-й атом без электрона. Это все равно, что сказать, что у «нехватки электро­на» имеется амплитуда А того, что она переберется от n-го атома к (n-1)-му. Легко видеть, что уравнения окажутся такими же, как и раньше, но, конечно, сами А не обязательно останутся прежними. Мы опять придем к тем же формулам для уровней энергии, для «волн» вероятности, которые бегут по кристаллу с групповой скоростью (11.18), для эффективной массы и т. д. Только теперь эти волны описывают поведение недостающего электрона или, как его называют, «дырки». Можно убедиться, что заряд этой частицы будет казаться положительным. В сле­дующей главе мы немного подробнее расскажем об этих дырках. Другой пример. Представим себе цепочку нейтральных атомов, один из которых был приведен в возбужденное состояние, т. е. с более высокой, чем у нормального основного состояния, энергией. Пусть Сnамплитуда того, что n-й атом возбужден. Он может взаимодействовать с соседним атомом, передавая ему свой избыток энергии и возвращаясь в основное состояние. Обозначим амплитуду этого процесса iA/h. Вы видите, что опять повторяется та же математика. Но теперь то, что движется, называется экситоном. Оно ведет себя как нейтральная «части­ца», которая движется через кристалл и несет с собой энергию возбуждения. Существование такого движения можно предпо­лагать в некоторых биологических процессах, таких, как зре­ние или фотосинтез. Была высказана догадка, что поглощение света в сетчатке создает «экситон», который движется через некоторую периодическую структуру [такую, как слои палочек, описанные в гл. 36 (вып. 3); см. там фиг. 36.5] и аккумулирует­ся на некоторых специальных станциях, где эта энергия ис­пользуется для возбуждения химической реакции.

§ 6. Рассеяние па нерегулярностях решетки

Теперь мы хотим рассмотреть одиночный электрон в не­идеальном кристалле. Наш первоначальный анализ привел к выводу, что у идеальных кристаллов и проводимость идеальна, что электроны могут скользить по кристаллу, как по вакууму, без трения. Одной из самых важных причин, способных прекратить вечное движение электрона, является несовершенство кристалла, какая-то нерегулярность в нем. Допустим, что где-то в кристалле не хватает одного атома, или предположим, что кто-то поставил на место, предназначенное для какого-то атома, совсем не тот атом, какой положено, так что в этом месте все совсем не так, как в прочих местах. Скажем, другая энергия Е0 или другая амплитуда А. Как тогда можно будет описать все происходящее?

Для определенности вернемся к одномерному случаю и до­пустим, что атом номер «нуль» — это атом «загрязнения», «примеси» и у него совсем не такая энергия Е0, как у других атомов. Обозначим эту энергию Е0+F. Что же происходит? Для электрона, который достиг атома «нуль», есть какая-то вероятность того, что он рассеется назад. Если волновой пакет, мчась по кристаллу, достигает места, где все немного иначе, то часть его будет продолжать лететь вперед, а другая отскочит назад. Анализировать такой случай, пользуясь вол­новым пакетом, очень трудно, потому что все меняется во вре­мени. С решениями в виде установившихся состояний работать много легче. Мы обратимся поэтому к стационарным состоя­ниям; мы увидим, что их можно составить из непрерывных волн, состоящих из двух частей — пробегающей и отраженной. В случае трех измерений мы бы назвали отраженную часть рас­сеянной волной, потому что она разбегалась бы во все стороны.

Исходим из системы уравнений, похожей на (11.6), за одним исключением: уравнение при n=0 не похоже на остальные. Пятерка уравнений при n=-2,-1, 0, +1 и +2 выглядит так:

Конечно, будут и другие уравнения при |n|>2. Они будут выгля­деть так же, как (11.6).

Нам полагалось бы на самом деле для общности писать разные А, в зависимости от того, прыгает ли электрон к атому «нуль» или же от атома «нуль», но главные черты того, что происходит, вы увидите уже из упрощенного примера, когда все А равны.

Уравнение (11.10) по-прежнему будет служить решением Для всех уравнений, кроме уравнения для атома «нуль» (для него оно не годится). Нам нужно другое решение; соорудим его так. Уравнение (11.10) представляет волну, бегущую в поло­жительном направлении х. Волна, бегущая в отрицательном направлении х, тоже подошла бы в качестве решения. Мы бы написали

Самое общее решение уравнения (11.6) представляло бы собой сочетание волны вперед и волны назад:

Это решение представляет комплексную волну с амплитудой а, бегущую в направлении +х, и волну с амплитудой b, бегущую в направлении -х.

Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят аn с nЈ-1, решаются форму­лой (11.29) при условии, что k оказывается связанным с Е и постоянной решетки b соотношением

E=E0-2Acoskb. (11.30)

Физический смысл этого таков: «падающая» волна с амплитудой a приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой b бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду a падающей волны равной единице. Тогда ампли­туда b будет, вообще говоря, комплексным числом.

То же самое можно сказать и о решениях аn при nі1. Коэф­фициенты могут стать иными, так что следовало бы писать

Здесь g — амплитуда волны, бегущей направо, а d — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой физический случай, когда вначале волна бежит только слева, и за рассеивателем (или атомом загрязнения) имеется только «прошедшая» волна. Будем поэтому искать решение, в котором d=0. Стало быть, мы попытаемся удовлетворить всем уравне­ниям для аn, кроме средней тройки в (11.28), с помощью сле­дующих пробных решений:

Положение, о котором идет речь, иллюстрируется фиг. 11.6.

Фиг. 11.6. Волны в одномерной решетке а одним «примесным» атомом в n=0.

Используя формулы (11.32) для а-1 и а+1, можно из сред­ней тройки уравнений (11.28) найти а0 и два коэффициента b и g. Таким образом, мы найдем полное решение. Надо решить три уравнения (полагая xn=nb):

Вспомните, что (11.30) выражает E через k. Подставьте это значение Е в уравнения и учтите, что

тогда из первого уравнения получится

a0=1+b, (11.34)

а из третьего

a0=g, (11.35)

что согласуется друг с другом только тогда, когда

g=1+b. (11.36)

Это уравнение сообщает нам, что прошедшая волна (g) — это просто исходная падающая волна (1) плюс добавочная волна (b), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.

Амплитуду b отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что

Мы получили полное решение для решетки с одним необычным

атомом.

Вас могло удивить, отчего это проходящая волна оказа­лась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что b и gчисла комплексные и что число частиц в волне (или, лучше сказать, вероятность обнаружить частицу) пропорционально квадрату модуля амплитуды. В дей­ствительности «сохранение числа электронов» будет выполнено лишь при условии

|b|2+|g|2=1. (11.38)

Попробуйте показать, что в нашем решении так оно и есть.

§ 7. Захват нерегулярностями решетки

Бывает и другой интересный случай. Он может возникнуть, когда F число отрицательное. Если энергия электрона в атоме примеси (при n=0) ниже, чем где-либо в другом месте, то электрон может оказаться захваченным этим атомом. Иначе говоря, если Е0+F ниже самого низа полосы (меньше, чем Е0-2А), тогда электрон может оказаться «пойманным» в со­стояние с Е<Е0-2А. Из всего того, что мы делали до сих пор, такое решение не могло получиться. Но это решение можно получить, если в пробном решении (11.15) разрешить k прини­мать мнимые значения. Положим k = ix. Для n<0 и для n>0 у нас опять будут разные решения. Для n>0 допустимое решение могло бы иметь вид

В экспоненте мы выбрали плюс; иначе амплитуда при больших отрицательных n стала бы бесконечно большой. Точно так же допустимое решение для n>0 имело бы вид

Если подставить эти пробные решения в (11.28), то они удов­летворят всем уравнениям, кроме средней тройки, при условии, что

А раз сумма этих двух экспонент всегда больше 2, то эта энергия оказывается за пределами (ниже) обычной полосы. Это-то мы и искали. Оставшейся тройке уравнений (11.28) удастся удовлетворить, если взять с = с' и если к выбрать так, чтобы

Сопоставив это уравнение с (11.41), найдем энергию захвачен­ного электрона

Захваченный электрон обладает одной-единственной энергией (а не целой полосой); она расположена несколько ниже полосы проводимости.

Заметьте, что амплитуды (11.39) и (11.40) не утверждают, что пойманный электрон сидит прямо в атоме примеси. Вероят­ность обнаружить его у одного из соседних атомов дается квад­ратом этих амплитуд. Изменение ее показано столбиками на фиг. 11.7 (при каком-то наборе параметров).

Фиг. 11.7. Относительные вероятности обнаружить захваченный электрон в атом­ных узлах поблизости от примесного ато­ма — ловушки.

С наибольшей вероятностью электрон можно встретить близ атома примеси. Для соседних атомов вероятность спадает экспоненциально по мере удаления от атома примеси. Это новый пример «проникно­вения через барьер». С точки зрения классической физики элек­трону не хватило бы энергии, чтобы удалиться от энергетиче­ской «дырки» близ центра захвата. Но квантовомеханически он может куда-то недалеко просочиться.

§ 8. Амплитуды рассеяния и связанные состояния

Наш последний пример может быть использован, чтобы проиллюстрировать одну вещь, которая в наши дни очень полезна для физики частиц высокой энергии. Речь идет о связи между амплитудами рассеяния и связанными состояниями. Положим, мы открыли (при помощи опытов и теоретического анализа), как пионы рассеиваются на протонах. Затем откры­вается новая частица и кому-то хочется узнать, не является ли она просто комбинацией из пиона и протона, объединенных в одно связанное состояние (по аналогии с тем, как электрон, будучи связан с протоном, образует атом водорода)? Под связанным состоянием мы подразумеваем комбинацию, энергия которой ниже, чем у пары свободных частиц.

Существует общая теория, согласно которой, если ампли­туду рассеяния проэкстраполировать (или, на математическом языке, «аналитически продолжить») на энергии вне разрешен­ной зоны, то при такой энергии, при которой амплитуда стано­вится бесконечной, возникнет связанное состояние. Физическая причина этого такова. Связанное состояние — это когда имеют­ся только волны, стоящие близ некоторой точки; это состояние не порождается никакой начальной волной, оно просто сущест­вует само по себе. Относительная пропорция между так называе­мыми «рассеянными», или созданными, волнами и волнами, «посылаемыми внутрь», равна бесконечности. Эту идею мы мо­жем проверить на нашем примере. Выразим нашу рассеянную амплитуду (11.37) прямо через энергию Е рассеявшейся частицы (а не через k). Уравнение (11.30) можно переписать в виде

поэтому рассеянная амплитуда равна

Из вывода формулы следует, что применять ее можно только для реальных состояний — для тех, энергия которых попадает в энергетическую полосу, Е=Е0+2А. Но представьте, что мы об этом забыли и расширили нашу формулу на «нефизические» области энергии, где | Е-Е0|>2A. Для этих нефизических областей можно написать

Тогда «амплитуда рассеяния» (что бы это выражение ни зна­чило) равна

Теперь задаем вопрос: существует ли такая энергия Е, при которой b становится бесконечным (т. е. при которой выраже­ние для b имеет «полюс»)? Да, существует, если только F отри­цательно; тогда знаменатель (11.45) обратится в нуль при

т. е. при

При знаке минус получается как раз то, что мы получили в (11.43) для энергии захваченного электрона.

А как быть со знаком плюс? Он приводит к энергии выше разрешенной полосы энергий. И действительно, существует другое связанное состояние, которое мы пропустили, решая (11.28). Найти энергию и амплитуды аn для этого связанного состояния вам предоставляется самим.

Одним из ключей (причем самых надежных) к разгадке экспе­риментальных наблюдений над новыми странными частицами служит это соотношение между законом рассеяния и связан­ными состояниями.

* Знак корня, который здесь следовало поставить, это технический вопрос, связанный с допустимыми знаками к в (11.39) и (11.40). Мы не будем здесь вдаваться в подробности.

* Только не старайтесь сделать пакет чересчур узким.

Г л а в a 12 ПОЛУПРОВОДНИКИ

§ 1. Электроны и дырки в полупроводниках

§ 2. Примесные полупроводники

§ 3. Эффект Холла

§ 4. Переходы между полупроводни­ками

§ 5. Выпрямление на полупровод­никовом переходе

§ 6. Транзистор

§ 1. Электроны и дырки в полупроводниках

Одним из самых замечательных и волную­щих открытий последних лет явилось приме­нение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупро­водников привело к открытию их полезных свойств и ко множеству практических приме­нений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.

Полупроводников известно немало, но мы ограничимся теми, которые больше всего при­меняются сегодня в технике. К тому же они и изучены лучше других, так что разобравшись в них, мы до какой-то степени поймем и многие другие. Наиболее широко применяемые в на­стоящее время полупроводниковые вещества это кремний и германий. Эти элементы кристал­лизуются в решетке алмазного типа — в такой кубической структуре, в которой атомы обла­дают четверной (тетраэдральной) связью со своими ближайшими соседями. При очень низ­ких температурах (вблизи абсолютного нуля) они являются изоляторами, хотя при комнатной температуре они немного проводят электричество. Это не металлы; их называют полупроводниками.

Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реаль­ной решетки кремния или германия уравнения были бы дру­гими. Но все существенное может стать ясным уже из резуль­татов для прямоугольной решетки.

Как мы видели в гл. И, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)1 формулой

Разные A это амплитуды прыжков в направлениях х, у и z, а а, b, с — это постоянные решетки (интервалы между узлами) в этих направлениях.

Для энергий возле дна зоны формулу (12.1) можно прибли­зительно записать так:

(см. гл. 11, § 4).

Если нас интересует движение электрона в некотором опре­деленном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно напи­сать

где a — некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1).

Фиг. 12.1. Энергетическая диаг­рамма для электрона в кристалле изолятора.

Такой график мы будем называть «энергетиче­ской диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).

Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного опре­деленного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка пере­прыгивает от атома а к атому b, в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)

Математика для дырки такая же, как для добавочного элект­рона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд Ах, Ay и Аz. У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обна­ружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только раз­ницей, что в некубических кристаллах масса зависит от направ­ления движения. Итак, дырка напоминает частицу с положи­тельным зарядом, движущуюся сквозь кристалл. Заряд ча­стицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сто­рону, то на самом деле это в обратную сторону движутся электроны.

Если в нейтральный кристалл поместить несколько электро­нов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны нач­нут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется ме­таллический электрод, перейти на него, оставив кристалл нейт­ральным.

Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если при­ложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и про­исходит, когда их нейтрализуют электроны с металлического электрода.

Электроны и дырки могут оказаться в кристалле одновре­менно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны назы­вают отрицательными носителями, а дырки — положитель­ными носителями.

До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон—дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.

Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S),— это энергия Е-, показанная на фиг. 12.2.

Фиг. 12.2, Энергия Е, требуемая для «рождения» свободного

электрона.

Это некоторая энергия,

превышающая Е-мин. Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S',— это энергия Е+ (фиг. 12.3), которая на какую-то долю выше, чем Е (=Е+мин).

Фиг. 12.3. Энергия Е+ , тре­буемая для «рождения» дырки в состоянии S'.

А чтобы создать пару в со­стояниях S и S', потребуется просто энергия Е-+Е+.

Образование пар — это, как мы увидим позже, очень частый процесс, и многие люди предпочитают поме­щать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два гра­фика.

Фиг. 12.4. Энергетические диаграммы для электрона и дырки.

Преимущества такого графика в том, что энергия Eпары-+ , требуемая для образования пары (электрона в S и дырки в S ), дается попросту расстоянием по вертикали между S и S', как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энерге­тической шириной, или шириной щели, и равняется

е-мин+E+мин.

Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диа­граммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электро­нов и дырок.

Фиг. 12.5. Диаграмма энер­гетических уровней для электронов и дырок.

Как создается пара электрон—дырка? Есть несколько спо­собов. Например, световые фотоны (или рентгеновские лучи)

могут поглотиться и обра­зовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интен­сивности света. Если при­жать к торцам кристалла два электрода и прило­жить «смещающее» напря­жение, то электроны и дырки притянутся к элек­тродам. Ток в цепи будет пропорционален силе све­та. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон — дырка могут образоваться также части­цами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон — дырка. Подобные явления сотнями и тыся­чами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разы­грывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчи­ков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при ком­натных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки

I могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупро­водников разумных размеров (порядка сантиметра) можно по­лучать большой чистоты.

До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон — дырка. Энергией пару может снаб­дить тепловая энергия кристалла. Тепловые колебания кристал­ла могут передавать паре свою энергию, вызывая «самопроиз­вольное» рождение пар.

Вероятность (в единицу времени) того, что энергия, дости­гающая величины энергетической щели Eщели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр(-Ещеяи/kТ), где Т—температура, а kпостоянная Больц­мана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положи­тельные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.

Если количество электронов в единице объема есть Nn (n означает негативных, или отрицательных, носителей), а плот­ность положительных (позитивных) носителей Np, то вероят­ность того, что за единицу времени электрон с дыркой встре­тятся и проаннигилируют, пропорциональна произведению NnNp. При равновесии эта скорость должна равняться ско­рости, с какой образуются пары. Стало быть, при равновесии произведение NnNp должно равняться произведению некото­рой постоянной на больцмановский множитель

Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.

Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, Nn = Nр. Значит, каждое из этих чисел должно с температурой меняться как. Изменение мно­гих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от тем­пературы. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.

При комнатной температуре kТ составляет около 1/40 эв. При таких температурах уже есть достаточно дырок и электро­нов чтобы обеспечить заметную проводимость, тогда как, ска­жем, при 30°К (одной десятой комнатной температуры) прово­димость незаметна. Ширина щели у алмаза равна 6—7 эв, по­этому при комнатной температуре алмаз — хороший изолятор.

§ 2. Примесные полупроводники

До сих пор мы говорили только о двух путях введения доба­вочных электронов в кристаллическую решетку, которая во всем остальном совершенно идеальна. Один путь — это впрыс­нуть электрон от внешнего источника, а другой — выбить связанный электрон из нейтрального атома, сотворив одновре­менно и электрон и дырку. Но можно внедрить электроны в зону проводимости кристалла совершенно иным способом. Представим себе кристалл германия, в котором один из атомов германия заменен атомом мышьяка. У атомов германия валент­ность равна 4, и кристаллическая структура контролируется четырьмя валентными электронами. А у мышьяка валентность равна 5. И вот оказывается, что отдельный атом мышьяка в состоянии засесть в решетке германия (потому что габариты у него как раз такие, как надо), но при этом он будет вынужден действовать как четырехвалентный атом, тратя четыре валент­ных электрона из своего запаса на создание кристаллических связей и отбрасывая пятый. Этот лишний электрон привязан к нему очень слабо — энергия связи менее 1/10 эв. При комнат­ной температуре электрон с легкостью раздобудет такую не­большую энергию у тепловой энергии кристалла и отправится на свой страх и риск блуждать по решетке на правах свобод­ного электрона. Примесный атом наподобие мышьяка назы­вается донорным узлом, потому что он может снабдить кристалл отрицательным носителем. Если кристалл германия выращи­вается из расплава, куда было добавлено небольшое количество мышьяка, то мышьяковые донорские пункты распределятся по всему кристаллу и у кристалла появится определенная плот­ность внедренных отрицательных носителей.

Могло бы показаться, что малейшее электрическое поле, приложенное к кристаллу, смело бы эти носители прочь. Но этого не случится, ведь каждый атом мышьяка в теле кристалла заряжен положительно. Чтобы весь кристалл оставался нейт­ральным, средняя плотность отрицательных носителей — элект­ронов — должна быть равна плотности донорных узлов. Если вы приложите к граням этого кристалла два электрода и подключите их к батарейке, пойдет ток; но если с одного конца уносятся электроны-носители, то на другой конец должны по­ступать свежие электроны проводимости, так что средняя плотность электронов проводимости остается все время пример­но равной плотности донорных узлов.

Поскольку донорные узлы заряжены положительно, у них должно наблюдаться стремление перехватывать некоторые из электронов проводимости, когда последние блуждают по кри­сталлу. Поэтому донорный узел должен действовать как раз как та ловушка, о которой мы говорили в предыдущем пара­графе. Но если энергия захвата достаточно мала (как у мышья­ка, например), то общее число захваченных в какой-то момент носителей должно составлять лишь малую часть их общего числа. Для полного понимания поведения полупроводников этот захват, конечно, следует иметь в виду. Однако мы в даль­нейшем будем считать, что энергия захвата настолько низка, а температура так высока, что на донорных узлах нет элект­ронов. Конечно, это всего-навсего приближение.

Можно также внедрить в кристалл германия атом примеси с валентностью 3, скажем атом алюминия. Этот атом пытается выдать себя за объект с валентностью 4, воруя добавочный элект­рон у соседей. Он может украсть электрон у одного из соседних атомов германия и оказаться в конце концов отрицательно заряженным атомом с эффективной валентностью 4. Конечно, когда он стащит у атома германия электрон, там остается дырка; и эта дырка начинает блуждать по кристаллу на правах положительного носителя. Атом примеси, который способен таким путем образовать дырку, называется акцептором от корня «акцепт» — принимать. Если кристалл германия или кристалл кремния выращен из расплава, в который была добав­лена небольшая присадка алюминия, то в кристалле окажется определенная плотность дырок, которые действуют как поло­жительные носители.

Когда к полупроводнику добавлена донорная или акцептор­ная примесь, мы говорим о «примесном» полупроводнике.

Когда кристалл германия с некоторым количеством внедрен­ной донорной примеси находится при комнатной температуре, то электроны проводимости поставляются как донорными узлами, так и путем рождения электронно-дырочных пар за счет тепловой энергии. Естественно, электроны от обоих источников вполне эквивалентны друг другу, и в игру статистических про­цессов, ведущих к равновесию, входит их полное число Nn. Если температура не слишком низкая, то число отрицательных носи­телей, поставляемых атомами донорной примеси, примерно равно количеству имеющихся атомов примеси. При равновесии уравнение (12.4) еще обязано соблюдаться; произведение NnNp при данной температуре есть вполне определенное число.

Это означает, что добавление донорной примеси, которое увели­чивает число Nn, вызывает такое уменьшение количества Np положительных носителей, что NnNp не изменяется. Если кон­центрация примеси достаточно высока, то число Nn отрицатель­ных носителей определяется количеством донорных узлов и почти не зависит от температуры — все изменения в экспоненте происходят за счет Nр, даже если оно много меньше Nn. В чи­стом в других отношениях кристалле с небольшой концентра­цией донорной примеси будут преобладать отрицательные носи­тели; такой материал называется полупроводником «n-типа».

Если в кристаллической решетке добавлена примесь акцеп­торного типа, то кое-какие из новых дырок, блуждая, начнут аннигилировать с некоторыми свободными электронами, соз­даваемыми тепловыми флуктуациями. Это будет продолжаться до тех пор, пока не выполнится уравнение (12.4). В равновес­ных условиях количество положительных носителей возрастает, а количество отрицательных убывает, поддерживая произведе­ние постоянным. Материал с избытком положительных носите­лей называется полупроводником «p-типа».

Если к полупроводниковому кристаллу приложить пару электродов и присоединить их к источнику разницы потенциа­лов, то внутри кристалла появится электрическое поле. Оно вынудит двигаться положительные и отрицательные носители, и потечет электрический ток. Посмотрим сперва, что прои­зойдет в материале n-типа, в котором имеется подавляющее большинство отрицательных носителей. В таком материале дырками можно пренебречь; они очень слабо скажутся на токе, потому что их мало. В идеальном кристалле при конечной тем­пературе (а особенно в кристалле с примесями) электроны пере­мещаются не совсем беспрепятственно. С ними беспрерывно происходят столкновения, которые сбивают их с намеченного ими пути, т. е. меняют их импульс. Эти столкновения — те самые рассеяния, о которых мы толковали в предыдущей главе и которые происходят на неровностях кристаллической решетки. В материале re-типа главной причиной рассеяния служат те самые донорные узлы, которые поставляют носителей. Раз у электронов проводимости энергия на донорных узлах немного иная, то волны вероятности обязаны на этом месте рассеиваться. Но даже в идеально чистом кристалле бывают (при ненулевой температуре) нерегулярности решетки, вызванные тепловыми колебаниями. С классической точки зрения можно говорить, что атомы не выстроены точно в правильную решетку, а в любое мгновение немного сдвинуты со своих мест по причине тепловых колебаний. Энергия Е0, связывавшаяся по теории, изложенной в гл. 11, с каждой точкой решетки, чуть-чуть меняется от одного места к другому, так что волны амплитуды вероятности не передаются идеально, а каким-то неправильным образом рассеиваются. И при очень высоких температурах или для очень чистых веществ такое рассеяние может стать очень важным, но в большинстве примесных полупроводников, применяемых в практических устройствах, рассеяние происходит только за счет атомов примеси. Мы сейчас оценим величину электриче­ской проводимости в таких веществах.

Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, кото­рые обычно движутся случайным образом, имея при этом теп­ловую энергию, начнут в среднем повышать свою скорость дрей­фа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типич­ными тепловыми скоростями очень мала, так что можно, прики­дывая величину тока, принять, что от столкновения к столкно­вению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен qn. Сила, действующая на носитель в электрическом поле x, будет равна qnx. В гл. 43, §3 (вып. 4) мы как раз подсчиты­вали среднюю скорость дрейфа в таких условиях и нашли, что она равна Ft/m, где F сила, действующая на заряд; t — среднее время свободного пробега между столкновениями, а m— масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим mn. В этом приближении средняя скорость дрейфа будет равна

Зная скорость дрейфа, можно найти ток. Плотность электриче­ского тока j равна просто числу носителей в единице объема, Nn, умноженному на среднюю скорость дрейфа и на заряд носи­телей. Поэтому плотность тока равна

Мы видим, что плотность тока пропорциональна электриче­скому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и x, или проводимость s, равен

Для материалов n-типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей Nn определяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, tn, регулируется главным образом плотностью атомов примеси, а она, ясное дело, от тем­пературы не зависит.

Те же рассуждения можно приложить к веществу p-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количе­ство отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из

Для очень чистых веществ Nр и Nn примерно равны. Они будут меньше, чем у материалов с примесями, так что и прово­димость будет меньше. Кроме того, они будут резко меняться с температурой (по закону), так что проводи­мость с температурой может меняться чрезвычайно быстро.

§ 3. Эффект Холла

Конечно, это очень странно, что в веществе, где единствен­ными более или менее свободными объектами являются элект­роны, электрический ток вызывается дырками, которые ведут себя как положительные частицы. Мы хотим поэтому описать опыт, который довольно явно свидетельствует, что знак носи­теля электрического тока может быть положительным. Пусть имеется брусок, изготовленный из полупроводящего вещества (или из металла), и мы прикладываем к нему электрическое поле, чтобы вызвать ток в каком-то направлении, скажем в го­ризонтальном (фиг. 12.6).

Фиг. 12.6. Эффект Холла возникает при действии магнитных сил на носи­тели.

Сверху и снизу указаны знаки заряда при положительных и отрицательных (в скобках) носителях.

Пусть мы также приложили к бруску магнитное поле под прямым углом к току, скажем, чтобы оно уходило в плоскость чертежа. Движущиеся носители будут испытывать действие магнитной силы q(vXВ). А так как средняя скорость дрейфа направлена либо направо, либо на­лево (смотря по тому, каков знак заряда носителя), то дейст­вующая на носители средняя магнитная сила будет направлена либо вверх, либо вниз. Впрочем, нет! При выбранных нами направлениях тока и магнитного поля магнитная сила, дейст­вующая на движущийся заряд, всегда будет направлена вверх. Положительные заряды, движущиеся в направлении j (направо), подвергнутся действию силы, направленной вверх. А если ток переносится отрицательными зарядами, то они будут двигаться влево (при том же знаке тока проводимости) и также испыты­вают действие силы, направленной кверху. Но после установ­ления тока никакого движения носителей вверх не будет, по­тому что ток может течь только слева направо. Вначале не­сколько зарядов могут потечь вверх, образовав вдоль верхнего края полупроводника поверхностную плотность заряда и оста­вив равную по величине и обратную по знаку поверхностную плотность заряда на нижней грани кристалла. Заряды на верх­ней и нижней поверхностях будут накапливаться до тех пор, пока электрические силы, с которыми они действуют на движу­щиеся заряды, в точности погасят (в среднем) действие магнит­ной силы, и установившийся ток пойдет по горизонтали. Заряды на верхней и нижней поверхностях создадут по вертикали попе­рек кристалла разность потенциалов, которую можно измерить высокоомным вольтметром (фиг. 12.7).

Фиг. 12.7. Измерение эффекта Холла.

Знак разности потенциа­лов, отмечаемый вольтметром, будет зависеть от знака носите­лей зарядов, ответственных за ток.

Когда впервые ставились эти опыты, считалось, что знак разности потенциалов окажется отрицательным, как и поло­жено отрицательным электронам проводимости. Поэтому все были очень удивлены, обнаружив, что у некоторых веществ знак разности потенциалов совсем не тот. Дело выглядело так, словно носитель тока — частица с положительным знаком. Из наших рассуждений о примесных полупроводниках ясно, что полупроводник n-типа обязан вызывать знак разности потен­циалов, свойственный отрицательным носителям, а полупро­водник p-типа должен вызывать разность потенциалов противо­положного знака, поскольку ток создается положительно заря­женными дырками.

Открытие аномального знака разности потенциалов в эффек­те Холла сначала было сделано не в полупроводнике, а в ме­талле. Считалось, что уж в металлах-то проводимостью всегда занимаются электроны, и вдруг оказалось, что у бериллия знак разности потенциалов не тот. Теперь ясно, что в металлах, как и в полупроводниках, при некоторых обстоятельствах «объектами», ответственными за проводимость, оказываются дырки. Хотя в конечном счете в кристалле движутся электроны, тем не менее соотношение между импульсом и энергией и отклик на внешнее поле в точности такие, каких следовало бы ожидать, если бы электрический ток осуществлялся положительными частицами.

Поглядим, нельзя ли качественно оценить, какая разность потенциалов может быть получена при эффекте Холла. Если ток через вольтметр (см. фиг. 12.7) пренебрежимо мал, то заряды внутри полупроводника должны двигаться слева направо и вертикальная магнитная сила должна в точности гаситься вертикальным электрическим полем, которое мы обозначим x (индекс означает «поперечный»). Чтобы это электрическое поле уничтожало магнитные силы, должно быть

Припоминая связь между скоростью дрейфа и плотностью электрического тока, приведенную в (12.6), получаем

Разность потенциалов между верхом и низом кристалла равна, естественно, этой самой напряженности электрического поля, умноженной на высоту кристалла. Напряженность электриче­ского поля в кристалле x пропорциональна плотности тока и напряженности магнитного поля. Множитель пропорциональ­ности 1/qN называется коэффициентом Холла и обычно изобра­жается символом RH. Коэффициент Холла зависит просто от плотности носителей при условии, что носители одного знака находятся в явном большинстве. Поэтому измерение эффекта Холла дает удобный способ опытным путем определять плот­ность носителей в полупроводнике.

§ 4. Переходы между полупроводниками

Теперь мы хотим выяснить, что получится, если взять два куска германия или кремния с неодинаковыми внутренними характеристиками, скажем с разным количеством примеси, и приложить их друг к другу, чтобы возник «переход». Начнем с того, что именуется pn-переходом, когда с одной стороны границы стоит германий p-типа, а с другой — германий n-типа (фиг. 12.8).

Фиг. 12.8. pn-переход.

Практически не очень удобно прикладывать друг к другу два разных куска германия и добиваться однородности контакта между ними на атомном уровне. Вместо этого переходы делают из одного кристалла, обработанного в разных концах по-разному. Один из приемов состоит в том, чтобы после того, как из расплава была выращена половинка кристалла, добавить в оставшийся расплав подходящую присадку. Другой способ — это нанести на поверхность немного примесного элемента и затем подогреть кристалл, чтобы часть атомов примеси продиффундировала в тело кристалла. У сделанных такими способами переходов нет резкой границы, хотя сами границы могут быть сделаны очень тонкими — до 10-4 см. Для наших рассуждений мы вообразим идеальный случай, когда эти две области кристалла с разными свойствами резко разграничены. В n-области pn-перехода имеются свободные электроны, которые могут переходить с места на место, а также фиксиро­ванные донорные узлы, которые уравновешивают полный электрический заряд. В p-области имеются свободные дырки, тоже переходящие с места на место, и равное количество отри­цательных акцепторных узлов, гасящих полный заряд. Но в дей­ствительности такое описание положения вещей годится лишь до тех пор, пока между материалами не осуществлен контакт. Как только материалы соединятся, положение на границе из­менится. Теперь, достигнув границы в материале n-типа, элект­роны не отразятся обратно, как это было бы на свободной по­верхности, а смогут прямо перейти в материал p-типа. Часть электронов из материала n-типа поэтому будет стремиться про­скользнуть в материал p-типа, где электронов меньше. Но так длиться без конца не может, потому что по мере того, как в n-области будут теряться электроны, ее заряд начнет стано­виться все более положительным, пока не возникнет электри­ческое напряжение, которое затормозит диффузию электронов в p-область. Подобным же образом положительные но­сители из материала p-типа смогут проскальзывать через переход в материал n-типа, оставляя позади себя избы­ток отрицательного заряда. В условиях равновесия пол­ный ток диффузии должен будет равняться нулю. Это произойдет благодаря возни­кновению электрических полей, которые установятся таким образом, чтобы возвращать положительные носители обратно в p-область.

Оба описанных нами процесса диффузии продолжаются одно­временно, и оба, как видите, действуют в таком направлении, чтобы материал n-типа зарядить положительно, а материал p-типа — отрицательно. Вследствие конечной проводимости полупроводящих материалов изменение потенциала между p-областью и n-областью произойдет в сравнительно узком участке близ границы; в основной же массе каждой области потенциал будет однороден. Проведем перпендикулярно гра­нице ось х. Тогда электрический потенциал будет меняться с х так, как показано на фиг. 12.9,б.

Фиг. 12,9. Электрический по­тенциал и плотности носителей в полупроводниковом переходе без смещающего напряжения.

На фиг. 12.9,в показано ожи­даемое изменение плотности Nn n-носителей и плотности Np p-носителей. Вдали от перехода плотности носителей Np и Nn должны быть попросту равны той равновесной плотности, кото­рой положено устанавливаться в определенном бруске того же материала при той же температуре. (Фиг. 12.9 вычерчена для перехода, в котором в материале p-типа примеси больше, чем в материале n-типа.) Из-за перепада потенциала на переходе положительным носителям приходится взбираться на потен­циальный холм, чтобы попасть в p-область. Это означает, что в условиях равновесия в материале re-типа будет меньше поло­жительных носителей, чем в материале p-типа. Можно ожидать (вспомните законы статистической механики), что отношение количеств носителей p-типа в обеих областях будет даваться уравнением

Произведение qpV в числителе показателя экспоненты — это как раз та энергия, которая требуется, чтобы пронести заряд qp сквозь разность потенциалов V.

Точно такое же уравнение существует и для плотностей но­сителей n-типа:

Если мы знаем равновесные плотности в каждом из двух мате­риалов, то любое из этих уравнений даст нам разность потен­циалов на переходе.

Заметьте, что для того, чтобы (12.10) и (12.11) давали оди­наковые значения разности потенциалов V, произведение NpNn должно быть в p-области и в n-области одним и тем же.

Фаг. 12.11. Распределение по­тенциала вдоль транзистора, если не приложено напряжение.

(Вспомните, что qn=-qp.) Но мы еще раньше видели, что это произведение зависит только от температуры и от ширины энергетической щели кристалла. Если обе части кристалла находятся при одинаковой температуре, оба уравнения будут совместны, давая одинаковое значение разности потенциалов.

Но раз между двумя сторонами перехода имеется разность потенциалов, то это напоминает батарейку. Если соединить re-область с p-областью проволочкой, может по ней пойдет ток? Это будет замечательно, ведь тогда ток будет идти без остановки, не истощая материала, и мы будем обладать бесконечным источ­ником энергии в нарушение второго закона термодинамики! Но если вы действительно соедините p-область с n-областью проводами, никакого тока не будет. И легко понять почему.

Возьмем сперва проводничок из материала без примесей. Если подсоединить его к re-области, получится переход, на котором возникнет разность потенциалов. Пусть, скажем, она составит половину всей разности потенциалов между p- и n-областями. А когда мы подведем нашу чистую проволоку к p-области пере­хода, то там снова, на новом переходе, возникнет разность по­тенциалов, опять равная половине падения потенциала на pn-переходе. Во всех переходах разности потенциалов так приладятся друг к другу, что никакой ток в схеме не пойдет. И какой бы вы проволокой ни начали соединять обе стороны pn-перехода, у вас всегда выйдет два новых перехода, и до тех пор, пока температура всех переходов одинакова, скачки по­тенциалов на переходах будут компенсировать друг друга и тока не будет. Оказывается, однако (если вы рассчитаете все детали), что если у части переходов температура отличается от температуры других частей, то ток пойдет. Этот ток будет нагревать одни переходы и охлаждать другие, и тепловая энер­гия будет превращаться в электрическую. Это явление опреде­ляет собой действие термопар, применяемых для измерения температуры, и термоэлектрических генераторов. То же явле­ние используется и в небольших холодильниках.

Но если мы не в состоянии измерять разность потенциалов между двумя сторонами pn-перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действитель­но существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, кото­рое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p-область, а электрон — в n-область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.

Обсуждая свойства полупроводникового перехода, мы пред­полагали, что дырки и электроны действуют более или менее независимо, если не считать того, что они как-то все же приходят в тепловое равновесие. Когда мы говорили о токе, получающемся при освещении перехода светом, то предполагали, что электрон или дырка, образующиеся в области перехода, прежде чем анни­гилировать с носителем противоположной полярности, успеют попасть в само тело кристалла. В непосредственной близости от перехода, где плотности носителей обоих знаков примерно одинаковы, аннигиляция пар электрон — дырка (называемая часто «рекомбинацией») — очень важный эффект, и его следует принимать во внимание при детальном анализе полупроводни­кового перехода.

Мы предполагали, что дырка или электрон, образуемые в области перехода, имеют хороший шанс еще до рекомбинации попасть в основное тело кристалла. Типичное время, требую­щееся электрону или дырке для того, чтобы найти противопо­ложного партнера и аннигилировать, для типичных полупро­водниковых материалов колеблется между 10-3 и 10-7 сек. Кста­ти, это время много больше времени среднего свободного пробега t между столкновениями с узлами рассеяния в кри­сталле,— того времени, которым мы пользовались при анализе проводимости. В типичном pn-переходе время, требуемое на то, чтобы смести в тело кристалла электрон или дырку, воз­никшую в области перехода, намного меньше времени рекомби­нации. Поэтому большинство пар вливается во внешний ток.

§ 5. Выпрямление на полупроводниковом переходе

Теперь мы покажем, как получается, что pn-переход дей­ствует как выпрямитель. Если мы к переходу приложим напря­жение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпря­мится». Посмотрим еще раз, что получается в условиях равно­весия, описанных кривыми фиг. 12.9. В материале p-типа имеет­ся высокая концентрация Np положительных носителей. Эти носители повсюду диффундируют, и некоторое их количество каждую секунду приближается к переходу. Этот ток положи­тельных носителей, достигающих перехода, пропорционален Np. Большая часть их, однако, разворачивается обратно, не будучи в состоянии взять высокий потенциальный холм у пере­хода, и только доля их проходит дальше. Имеется также ток положительных носителей, приближающихся к пе­реходу с другой стороны. Этот ток тоже пропорционален плот­ности положительных носителей в n-области, но здесь плотность носителей намного ниже плотности в p-области. Когда положи­тельные носители приближаются из n-области к переходу, они обнаруживают перед собой холм с отрицательным склоном и сходу соскальзывают под гору, на p-сторону перехода. Обо­значим этот ток I0. В условиях равновесия токи в обе стороны одинаковы. Значит, можно ожидать, что будет выполняться следующее соотношение:

Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.

Допустим, однако, что мы снизили напряжение на n-стороне перехода на величину DV — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V, а V-DV. У тока положительных носителей из p-области в n-область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I1; имеем

Этот ток превосходит ток I0 в раз. Значит, между I1 и I0 существует следующая связь:

Ток из p-области при приложении внешнего напряжения DV растет по экспоненте. А ток положительных носителей из n-области остается постоянным, пока DV не слишком велико.

Достигая барьера, эти носители по-прежнему будут видеть перед собой идущий под гору потенциал и будут все скатываться в p-область. (Если DV больше естественной разности потенциа­лов V, положение может измениться, но что случается при таких высоких напряжениях, мы рассматривать не будем.) В итоге ток положительных носителей I, текущий через переход, будет определяться разницей токов в обе стороны:

Дырочный ток I течет в n-область. Там дырки диффундируют в самую глубь n-области и могут, вообще говоря, аннигилиро­вать на основной массе отрицательных носителей электронов. Убыль электронов, теряемых при этой аннигиляции, воспол­няется током электронов из внешнего контакта материала n-типа.

Когда DV=0, то и ток в (12.14) равен нулю. Если DV положительна, ток с напряжением резко растет, а если DV отрицательна, знак тока меняется, но экспоненциальный член вскоре становится пренебрежимо малым, и отрицательный ток никогда не превышает I0 — величины, которая, по нашему предположению, очень мала. Этот обратный ток I0 ограничен той слабой плотностью, которой обладают неосновные носители в n-области перехода.

Если вы проведете в точности тот же анализ для тока отри­цательных носителей, текущего через переход, сперва без внешней разности потенциалов, а после с небольшой приложен­ной извне разностью потенциалов DV, то для суммарного электронного тока вы опять получите уравнение, похожее на (12.14). Поскольку полный ток есть сумма токов носите­лей обоего рода, то (12.14) применимо и к полному току, если только отождествить I0 с максимальным током, кото­рый может течь при переме­не знака напряжения.

Вольтамперная характеристика (12.14) показана на фиг. 12.10.

Фиг. 12.10. Зависимость тока через переход от приложенного к нему напряжения.

Она демонстрирует нам типичное поведение кристаллических диодов, подобных тем, которые применяются в современных вычислительных машинах. Нужно только заметить, что (12.14) справедливо лишь при невысоких напряжениях. При напряже­ниях, сравнимых с естественной внутренней разностью потен­циалов V (или превышающих ее), в игру входят новые явления и ток уже не подчиняется столь простому уравнению.

Быть может, вы вспомните, что в точности такое же уравне­ние мы получили, говоря о «механическом выпрямителе» — храповике и собачке [см. гл. 46 (вып. 4)]. Мы получали те же уравнения, потому что лежащие в их основе физические про­цессы весьма схожи.

§ 6. Транзистор

Пожалуй, самым важным применением полупроводников является изобретение транзистора. Состоит он из двух полу­проводниковых переходов, расположенных вплотную друг к другу, и работа его частично опирается на те же принципы, которые мы только что описывали, говоря о полупроводниковом диоде — выпрямляющем переходе. Предположим, что мы изго­товили из германия небольшой брусочек, составленный из трех участков: p-область, n-область и опять p-область (фиг. 12.11,а). Такое сочетание именуется pnp-транзистором. Ведут себя эти переходы в транзисторе примерно так же, как описывалось в предыдущем параграфе. В частности, в каждом переходе должен наблюдаться перепад потенциала — падение потенци­ала из n-области в каждую из p-областей. Если внутренние свой­ства обеих p-областей одинаковы, то потенциал вдоль брусочка меняется так, как показано на фиг. 12.11,б.

Теперь представьте себе, что каждая из трех областей под­ключена к источнику внешнего напряжения (фиг. 12.12,а). Будем относить все напряжения к контакту, присоединенному к левой p-области, так что на этом контакте потенциал будет равен нулю.

Фиг. 12.12. Распределение потенциала в работающем транзисторе.

Этот контакт мы назовем эмиттером; n-область называется базой, или основанием, к ней подведен слабый отри­цательный потенциал; правая p-область называется коллекто­ром, к ней подведен намного больший отрицательный потенциал. В таких условиях потенциал будет меняться вдоль кристалла так, как показано на фиг. 12.12,б.

Посмотрим сначала, что происходит с положительными носителями, потому что именно их поведение в первую очередь управляет работой pnp-транзистора. Раз потенциал эмит­тера более положителен, нежели потенциал базы, то из эмит­тера в базу пойдет ток положительных носителей. Ток этот до­вольно велик, потому что перед нами переход, работающий при «подталкивающем напряжении» (что отвечает правой половине кривой на фиг. 12.10). При таких условиях положительные но­сители, или дырки, будут «эмиттироваться» из p-области в n-область. Может показаться, что этот ток вытечет из n-области через контакт Б. Но здесь-то и таится секрет транзи­стора. Эта n-область делается очень узкой, толщиной обычно в 10-3 см, а то и уже, намного уже, чем ее поперечные размеры. Следовательно, у дырок, попавших в га-область, имеется очень большой шанс успеть продиффундировать через всю область до следующего перехода, прежде чем они аннигилируют с элект­ронами re-области. А когда они подойдут к правой границе n-области, они обнаружат перед собой крутой спуск с потен­циального холма и сходу ссыплются в правую p-область. Эта сторона кристалла называется коллектором, потому что он собирает дырки после того, как они проскользнут через n-область. В типичном транзисторе почти весь дырочный ток, вы­шедший из эмиттера и попавший на базу, собирается в области коллектора, и только жалкие остатки (доли процента) вклю­чаются в суммарный ток с электрода базы. Сумма токов из базы и коллектора, естественно, равна току через эмиттер.

Теперь представим себе, что получится, если мы будем слегка менять потенциал Vб контакта. Поскольку мы находимся на сравнительно крутой части кривой фиг. 12.10, легкие изменения потенциала Vб довольно значительно отразятся на токе эмиттера IЭ. А напряжение на коллекторе VK намного более отрицательно, чем напряжение на электроде базы, и эти слабые изменения потенциала не скажутся заметно на крутом потенциальном холме между базой и коллектором. Большинство положительных носителей, испущенных в n-область, по-прежнему будут попадать в коллектор. Итак, изме­нениям потенциала электрода базы будут отвечать изме­нения тока через коллектор IK. Существенно, однако, что ток через базу IБ все время будет составлять лишь небольшую часть тока через коллектор. Транзистор — это усилитель; не­большой ток Iб, проходящий через электрод базы, приведет к сильному току (раз в 100 сильней, а то и больше) через коллек­торный электрод.

А как же обстоит дело с электронами — с отрицательными носителями, которыми мы до сих пор пренебрегали? Заметьте, во-первых, что между базой и коллектором мы не ожидаем сколько-нибудь заметного тока электронов. При столь большом отрицательном напряжении на коллекторе электронам из базы пришлось бы карабкаться на очень высокий потенциальный холм, и вероятность этого очень мала. Ток электронов на кол­лектор очень слаб.

Но, с другой стороны, электроны с базы могут переходить в область эмиттера. Можно ожидать, что электронный ток в этом направлении будет сравним с дырочным током от эмиттера к базе. Такой электронный ток пользы не приносит, даже на­оборот, потому что он увеличивает полный ток через базу, нужный для того, чтобы ток дырок к коллектору имел данную величину. Поэтому транзистор устраивается так, чтобы ток электронов к эмиттеру свести до самой малости. Электронный ток пропорционален Nn (базы)—плотности отрицательных носи­телей в веществе базы, тогда как дырочный ток от эмиттера зависит от Np (эмиттера)—плотности положительных носителей в области эмиттера. Сравнительно небольшим добавлением примеси в материал n-типа Nn (базы) может быть сделано много меньше, чем Np (эмиттера). (Кроме того, сильно помогает очень малая толщина базы, потому что выметание дырок из этой области в коллектор заметно увеличивает средний дырочный ток от эмиттера к базе, не затрагивая электронного тока.) В итоге ток электронов через переход эмиттер — база может быть сделан много слабее тока дырок, так что электроны в ра­боте pnp-транзистора заметной роли не играют. Токи в основном определяются движением дырок, и транзистор иг­рает роль усилителя.

Можно также сделать транзистор, поменяв на фиг. 12.11 местами материалы p-типа и n-типа. Тогда получится так назы­ваемый npn-транзистор. В таком транзисторе основной ток — это ток электронов, текущий от эмиттера к базе, а от­туда — в коллектор. Разумеется, все рассуждения, которые мы проводили для pnp-транзистора, в равной мере приме­нимы и к npn-транзистору, если только переменить знаки потенциалов электродов.

*Во многих книжках эта же энергетическая диаграмма истолковывает­ся иначе. Шкалу энергий относят только к электронам. Вместо того чтобы думать об энергии дырки, говорят о той энергии, которую имел бы элект­рон, если бы он заполнил дырку. Эта энергия меньше, нежели энергия сво­бодного электрона, причем как раз на ту величину, которая показана на фиг. 12.5. При такой интерпретации шкалы энергий ширина энергетиче­ской щели — это наименьшая энергия, которой нужно снабдить элект­рон, чтобы перевести его из связанного состояния в зону проводимости.

Литература: Ч. Киттель, Введение в фи­зику твердого тела, М.—Л., 1958, гл. 13, 14, 18.

Главa 13

ПРИБЛИЖЕНИЕ НЕЗАВИСИМЫХ ЧАСТИЦ

§ 1. Спиновые волн

§ 2. Две спиновые волны

§ 3. Независимые частицы

§ 4. Молекула бензола

§ 5. Еще немного органической химии

§ 6. Другие приме­нения прибли­жения

§ 1. Спиновые волны

В гл. 11 мы разработали теорию распро­странения электрона или любой другой «частицы», например атомного возбуждения, вдоль кристаллической решетки. В предыдущей главе мы эту теорию применили к полупроводникам. Но хотя электронов у нас всегда было много, мы тем не менее неизменно пренебрегали каким-либо взаимодействием между ними. Это, конеч­но, было не более чем приближение, и мы сейчас постараемся глубже разобраться в самой мысли о том, что взаимодействием между элект­ронами разрешается пренебрегать. Мы к тому же воспользуемся возможностью продемонстри­ровать новые применения теории распростране­ния частиц. Поскольку мы по-прежнему будем продолжать пренебрегать взаимодействием меж­ду частицами, то фактически в этой главе будет очень мало нового, разве что новые при­ложения. Однако первый пример, который мы хотим рассмотреть,— это пример, в котором есть возможность совершенно точно выписать правильные уравнения для случая, когда «частиц» больше чем одна. Из них мы сможем увидеть, как делается приближение пренебре­жения взаимодействием. Впрочем, мы не будем слишком тщательно анализировать эту про­блему.

В качестве первого примера рассмотрим «спиновую волну» в ферромагнитном кристалле.

Теории ферромагнетизма мы касались в гл.36 (вып. 7). При нулевой температуре все спины электронов, которые дают вклад в магнетизм всего ферромагнитного кристалла, параллельны между собой. Между спинами существует энер­гия взаимодействия, которая ниже всего тогда, когда все спины направлены вниз. Но при ненулевой темпера­туре имеется какая-то вероятность того, что часть спинов перевернется. Эту вероятность тогда мы приближенно под­считывали. На этот раз мы разовьем квантовомеханическую теорию явления, чтобы знать, что делать, если нужно будет решить задачу точнее. Но мы все еще будем прибегать к идеали­зации; будем считать, что электроны расположены вблизи ато­мов, а спины взаимодействуют только со своими соседями.

Рассмотрим такую модель: пусть в каждом атоме все элект­роны, кроме одного, спарены, и весь магнитный эффект обязан тому, что в каждом атоме остается один неспаренный электрон со спином 1/2. Вообразим еще, что эти электроны расположены в тех самых узлах решетки, где находятся атомы. Модель в об­щих чертах отвечает металлическому никелю.

Кроме того, допустим, что любая пара вращающихся со­седей-электронов взаимодействует друг с другом и что каж­дое такое взаимодействие добавляет в энергию системы по сла­гаемому;

Здесь s представляют собой спины, а суммирование идет по всем парам соседей-электронов. Мы уже говорили о по­добной энергии взаимодействия, рассматривая сверхтонкое расщепление водорода, вызываемое взаимодействием магнитных моментов электрона и протона в атоме водорода. Тогда мы выра­жали это в виде Аsе·sр. На этот раз для данной пары, скажем для электронов из атома № 4 и из атома № 5, гамильтониан имеет вид —Ks4·s5. Каждая такая пара дает по одному слагае­мому, а весь гамильтониан (как это бывает и с классическими энергиями) есть сумма таких слагаемых для каждой взаимо­действующей пары. Энергия написана с множителем —К, так что положительное К отвечает ферромагнетизму, т. е. тому слу­чаю, когда наинизшая энергия получается при параллельности соседних спинов. В реальном кристалле могут появиться и другие слагаемые — взаимодействие с соседом через одного и т. д., но на нашем уровне такие усложнения нам не пона­добятся.

Располагая гамильтонианом (13.1), мы обладаем и полным описанием ферромагнетика (в рамках нашего приближения), так что из него должны получиться все магнитные свойства. Кроме того, из него же должны получаться и термодинамические свойства при намагничивании. Если мы сможем определить все уровни энергии, то можно будет найти и свойства кристалла при температуре Т, основываясь на том, что для системы вероят­ность оказаться в данном состоянии с энергией Е пропорцио­нальна . Эта задача никогда не была решена до конца.

Некоторые задачи мы сможем разобрать на простом примере, когда все атомы лежат на одной прямой — случай одномерной решетки. Все эти представления вы потом легко сможете распро­странить на трехмерную решетку. Возле каждого атома имеется электрон; у него есть два возможных состояния — либо спином вверх, либо вниз, и вся система описывается перечислением на­правлений спинов. В качестве гамильтониана системы возьмем оператор энергии взаимодействия. Интерпретируя спиновые векторы (13.1) как сигма-операторы, или сигма-матрицы, мы напишем для линейной решетки

В этом уравнении для удобства написан множитель А/2 (так что некоторые из дальнейших уравнений в точности совпадут с уравнениями из гл. 11).

Каково же наинизшее состояние системы? Состояние наинизшей энергии это то состояние, когда все спины параллельны, скажем все глядят вверх. Это состояние можно обозначить ! ... + + + + ...>, или|осн.), чтобы подчеркнуть, что оно «ос­новное», наинизшее. Энергию этого состояния легко себе пред­ставить. Можно, например, расписать все сигма-векторы через s^х, s^у и s^г, аккуратно подсчитать, каков вклад каждого из них в энергию основного состояния, и все затем сложить. Путь, однако, можно сильно сократить. В гл. 10, § 2 (вып. 8) мы ви­дели, что s^i·s^j может быть выражено через спин-обменный опе­ратор Паули:

где оператор р^ijспин-°бм обменивает спины i-го и j-го электронов. После этой подстановки гамильтониан обращается в

Теперь уже легко подсчитать, что происходит в различных со­стояниях. Например, если и i и j смотрят вверх, то обмен спи­нами ничего не меняет, так что P^ij, действуя на состояние, опять приводят к тому же состоянию, т. е. оно равнозначно умножению на +1. Выражение Р^ij -1/2 просто равно 1/2. (В дальнейшем слова «спин-обм» над Р мы писать не будем.)

В основном состоянии все спины направлены вверх; значит, обмен любой парой спинов приводит опять к исходному состоя­нию. Основное состояние является стационарным. Если подейст­вовать на него гамильтонианом, получится опять то же состоя­ние, умноженное на сумму чисел —(А/2), по одному на каждую пару спинов. Иначе говоря, энергия системы в основном состоя­нии составляет по —А/2 на атом.

Теперь подсчитаем энергии некоторых возбужденных состоя­ний. Удобно будет отсчитывать энергии от основного состояния, т. е. в качестве нулевой энергии выбрать энергию основного состояния. Этого можно добиться, добавив к каждому слагаемо­му в гамильтониане по энергии А/2. Тогда 1/2 в (13.4) просто заменится единицей. Наш новый гамильтониан будет равен

При таком гамильтониане энергия низшего состояния равна нулю; спин-обменный оператор равнозначен умножению на единицу (для основного состояния), что сокращается с единицей в каждом слагаемом.

Для описания состояний, отличных от основного, нам пона­добится своя совокупность базисных состояний. Удобно подойти к делу так: сгруппировать состояния в соответствии с тем, у скольких электронов спин направлен вниз: у одного ли, у двух и т. д. Конечно, состояний, когда один спин направлен вниз, очень много: он может быть опрокинут, скажем, у атома № 4 или у № 5, или у № 6... И можно, конечно, в качестве базисных состояний выбрать именно такие состояния, обозначив их |4>, |5>, | 6>, ... Однако для дальнейшего удобнее, если мы будем отмечать «из ряда вон выходящий атом» (тот, у которого спин направлен вниз) его координатой х. Иначе говоря, мы опре­делим состояние | х5> как такое, в котором все электроны вра­щаются спинами вверх, и один только (тот, что возле атома в точке х5) вращается спином вниз (фиг. 13.1).

Фиг. 13.1. Базисное состояние |x5> системы спинов, расположенных по одной линии.

Все спины направлены вверх, а тот, что в х5, перевернут.

Вообще, |хn> будет обозначать состояние с одним перевернутым спином, рас­положенным в координате хn n-го атома.

Как же действует гамильтониан (13.5) на состояние |x5>? Один из членов гамильтониана это, скажем, — А (Р^7,8-1). Оператор P^7,8 обменивает спинами два соседних атома № 7 и № 8. Но в состоянии |x5> они оба направлены вверх, так что ничего не меняется; Р^7,8 равнозначно умножению на единицу:

Отсюда следует

Стало быть, все члены гамильтониана, кроме тех, куда вхо­дит атом № 5, дадут нуль. Операция P^4,5, действуя на со­стояние |x5>, обменивает спинами атом № 4 (со спином вверх) и атом № 5 (со спином вниз). В результате появляется со­стояние, в котором все спины смотрят вверх, кроме атома в точке 4. Иначе говоря,

Точно так же

Значит, изо всего гамильтониана выживут только члены

Действуя на |x5>, они дадут соответственно

В итоге

Когда гамильтониан действует на состояние |x5>, то возни­кает некоторая амплитуда оказаться в состояниях | x4> и |х6>. Это просто означает, что существует определенная амплитуда того, что направленный книзу спин перепрыгнет к соседнему атому. Значит, из-за взаимодействия между спинами, если вна­чале один спин был направлен вниз, имеется некоторая ве­роятность того, что позднее вместо него вниз будет смотреть другой. При действии на состояние | хn> гамильтониан дает

Заметьте, в частности, что если взять полную систему состоя­ний только с одним спином-«перевертышем», то они будут перемешиваться только между собой. Гамильтониан никогда не перемешает эти состояния с другими, в которых спинов-«перевертышей» больше. Пока вы только обмениваетесь спинами, вы никогда не сможете изменить общего количества перевертышей. Удобно будет использовать для гамильтониана матричное обозначение, скажем,

уравнение (13.7) эквивалентно следующему:

Каковы же теперь уровни энергии для состояний с одним перевернутым спином? Пусть, как обычно, Сn — амплитуда того, что некоторое состояние |y> находится в состоянии |xn>. Если мы хотим, чтобы |y> было состоянием с определенной энергией, то все Сn обязаны одинаково меняться со временем, а именно по правилу

Подставим это пробное решение в наше обычное уравнение Гамильтона

используя в качестве матричных элементов (13.8). Мы, конечно, получим бесконечное количество уравнений, но все их можно будет записать в виде

Перед нами опять в точности та же задача, что и в гл. 11, только там, где раньше стояло Е0, теперь стоит 2А. Решения отвечают амплитудам Сn (амплитудам с перевернутым спином), которые распространяются вдоль решетки с константой распростране­ния k и энергией

Е=2A(1-coskb), (13.12)

где b — постоянная решетки.

Решения с определенной энергией отвечают «волнам» перево­рота спина, называемым «спиновыми волнами». И для каждой длины волны имеется соответствующая энергия. Для больших длин волн (малых k) эта энергия меняется по закону

Е=Аb2k2. (13.13)

Как и прежде, мы можем теперь взять локализованный волно­вой пакет (содержащий, однако, только длинные волны), кото­рый соответствует тому, что электрон-«перевертыш» окажется в такой-то части решетки. Этот перевернутый спин будет вести себя как «частица». Так как ее энергия связана с k формулой (13.13), то эффективная масса «частицы» будет равна

Такие «частицы» иногда именуют «магнонами».

§ 2. Две спиновые волны

Теперь мы хотели бы выяснить, что происходит, когда име­ется пара перевернутых спинов. Опять начнем с выбора системы базисных состояний. Выберем такие состояния, когда спины перевернуты в каких-то двух местах (так, как на фиг. 13.2).

Фиг. 13.2. Состояния с двумя переверну­тыми спинами.

Эти состояния можно, скажем, отмечать x-координатами тех двух узлов решетки, в которых оказались электроны с пе­ревернутым спином. То, что на рисунке, можно обозначить |х2, х5>. В общем случае базисные состояния будут |хn, хm> — дважды бесконечная совокупность! При таком способе описания состояние | x4, х9> и состояние | х9, x4> совпадают, потому что каждое из них просто говорит, что в точках 4 и 9 спин перевер­нут; порядок их не имеет значения. Не имеет также смысла состояние | x4, х4>такого просто быть не может. Любое со­стояние |y> мы можем описать, задав амплитуды того, что оно обнаружится в одном из базисных состояний.

Итак, Сm,n=<хmn|y> теперь означает амплитуду того, что система в состоянии |y> окажется в состоянии, когда у электронов, стоящих вблизи m-го и n-го атомов, спины смотрят вниз. Сложности, которые теперь возникнут, будут связаны не с усложнением идей,— это будут просто усложнения в бухгалтерии. (Одна из сложностей квантовой механики как раз и состоит в громоздкости бухгалтерии. Чем больше спинов перевернется, тем сложнее станут обозначения, тем больше будет индексов, тем страшнее будут выглядеть уравнения; но сами идеи вовсе не обязательно должны усложниться.)

Уравнения движения спиновой системы — это дифферен­циальные уравнения для Сn,m:

Пусть нам опять нужно найти стационарные состояния. Как обычно, производные по времени обратятся в Е, умноженное на амплитуду, a Cm,n, заменятся коэффициентами аm,n. Затем надо аккуратно рассчитать влияние Н на состояние с перевернутыми спинами т и п. Это сделать нетрудно. Представьте на минуту, что т далеко от n, так что не нужно думать, что будет, если ... и т. д. Обменная операция, производимая в точке хn, передвинет перевернутый спин либо к (n+1)-му, либо к (n-1)-му атому, так что имеется ненулевая амплитуда того, что теперешнее состояние получилось из состояния m, хn+1>, и амплитуда того, что оно произошло из состояния m, хn-1>. Но передви­нуться мог и второй спин, так что не исключена и какая-то амплитуда того, что Сm,n питается от Сm+1,n или от Сm-1,n. Все эти эффекты должны быть одинаковы. Окончательный вид гамильтонова уравнения для Сm.n таков:

Это уравнение пригодно всегда, за исключением двух слу­чаев. При m=n уравнения вообще нет, а при m=n±1 пара членов в (13.16) должна пропасть. Этими исключениями мы пренебрежем. Мы просто будем игнорировать тот факт, что не­которые из этих уравнений слегка меняются. Ведь как-никак кристалл считается бесконечным и слагаемых в гамильтониане бесчисленно много; пренебрежение некоторым их числом вряд ли сильно на чем-то скажется. Итак, в первом грубом прибли­жении давайте позабудем об изменениях уравнений. Иными сло­вами, допустим, что (13.16) верно при всех m и n, даже когда m и n стоят по соседству. Это самое существенное в нашем прибли­жении.

Теперь уже решение отыскать нетрудно. Мы немедленно по­лучаем

где

а

Поразмыслим минутку о том, что было бы, если бы у нас были две независимые, отдельные спиновые волны (как в пре­дыдущем параграфе), соответствующие k=k1 и k=k2; их энер­гии из (13.12) имели бы вид

и

Заметьте, что энергия Е в (13.19) является как раз их суммой:

Иными словами, наше решение можно толковать следующим образом. Имеются две частицы, т. е. пара спиновых волн, одна из которых обладает импульсом, описываемым числом k1 a другая — числом k2; энергия системы равна сумме энергий этих двух объектов. Обе частицы действуют совершенно независи­мо. Вот и все, что в этом есть — и ничего больше.

Конечно, мы сделали некоторые приближения, но в данный момент мы не будем обсуждать точность нашего ответа. Вы, однако, чувствуете, что в кристаллах разумного размера с миллиардами атомов и, стало быть, с миллиардами слагаемых в гамильтониане большой ошибки от пренебрежения немногими слагаемыми не выйдет. Если бы, конечно, перевернутых спинов стало так много, что их плотность была бы заметной, то при­шлось бы позаботиться и о поправках.

(Интересно, что в случае, когда перевернутых спинов только два, можно написать и точное решение. Но результат особой важности не представляет. Просто интересно, что в этом случае уравнения можно решить точно. Решение таково:

с энергией

и с волновыми числами kc и k, связанными с k1 и k2 формулами

k1= kc-k, k2=kc+k. (13.22)

В этом решении отражено и «взаимодействие» пары спинов. Оно описывает тот факт, что когда спины сближаются, возникает какая-то вероятность их рассеяния. Поведение спинов очень по­хоже на взаимодействие частиц. Но подробная теория их рас­сеяния выходит за пределы того, о чем мы здесь собрались го­ворить.)

§ 3. Независимые частицы

В предыдущем параграфе мы написали гамильтониан (13.15) для двухчастичной системы. Затем, пользуясь приближением, эквивалентным пренебрежению каким-либо «взаимодействием» между двумя частицами, мы нашли стационарные состояния, описываемые формулами (13.17) и (13.18). Это состояние по­просту есть произведение двух одночастичных состояний. Но решение, которое мы написали для аm,n [формула (13.18)], на самом деле удовлетворить нас не может. Мы с самого начала подчеркивали, что состояние | х9, x4> не отличается от состоя­ния |x4, x9), что порядок хm и хn неважен. Вообще говоря, алгеб­раическое выражение для амплитуды Сm,n не должно меняться от перестановки значений хm и хn, потому что она не изменяет состояния. В любом случае она будет представлять амплитуду того, что спин, направленный вниз, обнаружится в хm и в хn.

Но обратите внимание, что (13.18) несимметрично по хm и хn, поскольку k1 и k2, вообще говоря, различны.

Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока не­трудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:

И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет ре­шением системы и будет обладать по-прежнему энергией, давае­мой (13.19). Решение, которое нужно выбрать по требованиям симметрии,—просто сумма (13.18) и (13.23):

Теперь при данных k1 и k2 амплитуда Сm,n не зависит от того, в каком порядке мы берем хm и хn; если мы случайно поставим хm и хn в обратном порядке, мы получим ту же амплитуду. И на­ше толкование уравнения (13.24) на языке «магнонов» тоже ста­нет иным. Уже нельзя говорить, что уравнение представляет одну частицу с волновым числом k1 и другую частицу с волновым числом k2. Амплитуда (13.24) представляет одно состояние с двумя частицами (магнонами). Состояние характеризуется дву­мя волновыми числами k1 и k2. Наше решение выглядит как со­ставное состояние одной частицы с импульсом р1= k1/h и дру­гой частицы с импульсом р2=k2/h, но в этом состоянии нельзя сказать, где какая частица.

В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рас­сказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождест­венные бозе-частицы. Все амплитуды обязаны быть симметрич­ны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен хm и хn просто изменил бы знак аm,n, а это не в счет, это не имеет значения. Но ведь об­мен хm с хn ничего не меняет — все электроны кристалла оста­нутся там же, где и были, так что даже для перемены знака нет, казалось бы, никакого повода. Но это, конечно, плохой ар­гумент.

Наше обсуждение имело двойную цель: во-первых, расска­зать вам кое-что о спиновых волнах; во-вторых, продемонстри­ровать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия — сложением. Почему сложением — легко понять. Энергия — это коэффициент при t в мнимом пока­зателе экспоненты; она пропорциональна частоте. Если пара объектов что-то совершает, один с амплитудой , а другой . с амплитудой , и если амплитуда того, что обе эти вещи произойдут вместе, является произведением отдельных ампли­туд, то в произведении появится единственная частота, равная сумме двух частот. Энергия, отвечающая произведению ампли­туд, есть сумма обеих энергий.

Нам понадобилось довольно долго говорить, чтобы сообщить очень простую вещь: когда вы не учитываете взаимодействия между частицами, вы вправе рассматривать каждую частицу независимо. Они могут отдельно существовать во всевозможных состояниях, в которых они пребывали бы и порознь, и давать тот же вклад в энергию, какой давали бы порознь. Однако сле­дует помнить, что если частицы тождественны, то они могут вести себя как бозе- или ферми-частицы в зависимости от за­дачи. Например, пара электронов, добавленная к кристаллу, ведет себя как ферми-частицы. Обмен местоположениями двух электронов приводит к перемене знака амплитуды. В уравне­нии, соответствующем (13.24), между двумя слагаемыми стоит знак минус. Как следствие этого: две ферми-частицы не могут пребывать в точности в одних и тех же условиях — с одинако­выми спинами и одинаковыми k. Амплитуда такого состояния нуль.

§ 4. Молекула бензола

Хотя квантовая механика снабжает нас основными закона­ми, определяющими строение молекул, эти законы, однако, удается точно применить лишь к самым простым соединениям. Поэтому химики разработали различные приближенные спосо­бы расчета некоторых из свойств сложных молекул. Мы хотим здесь рассказать, как химики-органики применяют приближе­ние независимых частиц. Начнем с молекулы бензола. Мы ее рассматривали с другой точки зрения в гл. 8 (вып. 8). Тогда мы воспользовались приближенным представлением молекулы в виде системы с двумя состояниями, базисные состояния которой показаны на фиг. 13.3. Имеется кольцо из шести углеродов, к каждому из которых приделано по водороду. По принятой схеме валентных связей необходимо допустить, что между поло­виной атомов углерода имеются двойные связи и что в низших энергетических условиях воз­никают две возможности, по­казанные на рисунке. Но, кроме этого, имеются и еще другие, более высокоэнерге­тические состояния. Когда мы в гл. 8 говорили о моле­куле бензола, мы пользова­лись только двумя состоя­ниями, а прочие забыли. И мы обнаружили, что энергия основного состояния молекулы не совпадала с энергией ни одного из нарисованных состояний; нет, она была ниже на величину, пропорциональную амплитуде переброса из одного такого состояния в другое.

А теперь мы хотим взглянуть на ту же молекулу с совершен­но иной точки зрения, применяя приближение другого рода. Обе точки зрения приведут нас к разным ответам, но когда мы усовершенствуем оба приближения, то придем к истине — к правильному описанию бензола.

Однако если не позаботиться об этих усовершенствованиях (что обычно и делают), то не нужно удивляться, что эти описа­ния не сойдутся. Мы по крайней мере покажем, что при новой точке зрения низшая энергия молекулы бензола оказывается ниже, чем у любой из структур с тремя двойными связями (см. фиг. 13.3).

Фиг. 13.3. Два базисных состоя­ния молекулы бензола, исполь­зовавшиеся в гл. 8.

Рассмотрим следующую картину. Представим себе шесть ато­мов водорода, связанных только одиночными связями (фиг. 13.4).

Фиг. 13.4. Бензольное кольцо, из которого убрали шесть электронов.

Мы убрали шесть электронов (поскольку каждая связь обоз­начает пару электронов), так что перед нами шестикратно ионизованная молекула бензола. Теперь посмотрим, что слу­чится, когда мы поодиночке вернем в молекулу всю шестерку электронов, считая, что каждый из них может свободно двигать­ся вокруг кольца. Допустим также, что все связи, показанные на фиг. 13.4, заполнены и не нуждаются в дальнейшем рассмотре­нии. Что происходит, когда мы возвращаем молекулярному иону его электрон? Он, конечно, может расположиться в любом из шести мест на кольце, соответствующих шести базисным со­стояниям. И у него будет некоторая амплитуда (скажем А) того, что он перейдет с одного места на другое. При анализе стационарных состояний обнаружатся несколько возможных уровней энергии. Это только при одном электроне.

Добавим еще один электрон. И сделаем теперь самое стран­ное предположение: то, что делает один электрон, не сказывается на том, что делает другой. На самом деле они, конечно, будут взаимодействовать; они отталкивают друг друга с помо­щью кулоновых сил, и, кроме того, их энергия, когда они по­падают в одно место, должна заметно отличаться от удвоенной энергии, когда они туда попадают поодиночке. Конечно, приб­лижение независимых частиц незаконно, когда мест только шесть, особенно когда в них хотят поместить шестерку электро­нов. Но, несмотря на это, химики-органики сумели многому научиться, делая именно такое приближение.

Прежде чем подробно рассчитывать молекулу бензола, возь­мем пример попроще — молекулу этилена. В нее входят только два атома углерода и по паре атомов водорода с каждой сторо­ны (фиг. 13.5).

Фиг. 13.5. Молекула этилена.

У молекулы есть одна «лишняя» связь между двумя атомами углерода, в которую входят два электрона. Уберем один из этих электронов; что мы получим? То, что оста­нется, можно будет рассматривать как систему с двумя состоя­ниями: оставшийся электрон может находиться либо возле од­ного атома, либо возле другого. И, как у всякой системы с двумя состояниями, допустимые энергии отдельного электрона могут быть равны либо Е0-А, либо Е0(фиг. 13.6).

Фиг. 13.6. Возможные уровни энергии «лиш­них» электронов в молекуле этилена.

Добавим теперь второй электрон. Все очень хорошо: электро­нов у нас два — первый можно поставить в нижнее состояние, а второй в верхнее, не так ли? Не совсем,— мы о чем-то забыли. Ведь каждое из со­стояний на самом деле двойное. Когда мы говорим, что допустимо состояние с энер­гией Е0-А, то в действительности там их пара. В одно и тоже состояние могут по­пасть два электрона, один со спином, направленным вверх, другой — вниз (но не больше, из-за прин­ципа запрета). Так что на самом деле имеются два возможных состояния с энергией Е0-А. Можно начертить диаграмму (фиг. 13.7), которая показывает и уровни энергии, и их насе­ленность.

Фиг. 13.7. В добавочной связи молекулы этилена два электрона (один со спином вверх, другой — вниз) могут занять низший уровень энергии.

В состоянии наименьшей энергии оба электрона будут в наинизшем состоянии с противоположными спинами. Энергия «лишней» связи в молекуле этилена поэтому равна 20-А), если пренебречь взаимодействием между двумя электронами. Теперь вернемся к бензолу. У каждого из двух состояний на фиг. 13.3 есть три двойные связи. И каждая из них очень похожа на связь в этилене и дает вклад в энергию 20-А), где теперь Е0уже энергия, необходимая, чтобы поместить электрон в бензоле на нужное место, а А — амплитуда пере­броса его в соседнее место. Значит, энергия должна быть равна примерно 60-А). Но когда мы раньше изучали бензол, то пришли к выводу, что его энергия ниже энергии структуры с тремя двойными связями. Посмотрим, получится ли теперь, с нашей новой точки зрения, энергия бензола ниже, чем у трех двойных связей.

Начинаем с шестикратно ионизо­ванного бензольного кольца. Добавляем один электрон. Теперь у нас система с шестью состояниями. Мы пока еще не решали таких систем, но знаем, что нужно делать. Можно написать шесть уравнений для шести амплитуд и т. д. Но не лучше ли сберечь свои силы, ведь мы уже ре­шили эту задачу, исследуя электрон в бесконечной цепочке атомов. Конечно, бензол — не бесконечная цепочка, шесть мест для атомов в нем расположены по кругу. Но представьте, что мы разняли кольцо в цепь и пронумеровали атомы вдоль цепи числами от 1 до 6. В бесконечной линии следующее место имело бы номер 7, но если мы условимся, что оно совпадает с местом номер 1 и т. д., то все окажется в точности похожим на бензольное кольцо. Иными словами, мы можем взять реше­ние для бесконечной линии с добавочным требованием, чтобы решение было периодичным с периодом длиной в шесть атомов. Согласно гл. 11, электрон на прямой обладает состояниями определенной энергии, когда амплитуда того, что он окажется в некотором месте хn, равна . При каждом k энер­гия равна

E=E0-2Acoskb. (13.25)

Теперь из этих решений нам нужно оставить только такие, которые через каждые 6 атомов повторяются. Разберем сперва общий случай, когда в кольце N атомов. Если решение должно иметь период в N атомных расстояний, то eikbN должна быть равна единице, или kbN должна быть кратна 2p. Если s — любое це­лое число, то наше условие имеет вид

kbN=2ps. (13.26)

Мы раньше видели, что нет смысла брать k вне пределов ±p/b. Это означает, что мы получим все мыслимые состояния, беря значения s в пределах ±N/2.

Стало быть, мы приходим к тому, что у N-атомного кольца имеется N состояний определенной энергии и их волновые числа ks даются числами

ks=2ps/Nb. (13.27)

Каждое состояние имеет энергию (13.25). Получается линейча­тый спектр возможных уровней энергий. Спектр для бензола (N=6) показан на фиг. 13.8, б. (Числа в скобках указывают число различных состояний с одинаковой энергией.)

Есть наглядный способ изобразить эти шесть уровней энер­гии. Он показан на фиг. 13.8, а. Вообразим круг с центром на одном уровне с Е0 и с радиусом 2А. Если мы отложим, начиная снизу, шесть равных дуг (под углами, считая от нижней точки, ksb = 2ps/N, или 2ps/6 для бензола), то высоты точек круга будут решениями (13.25). Шесть точек представляют шесть возможных состояний. Низший уровень энергии придется на Е0-; дальше идут два состояния с одинаковой энергией Е0-А и т. д. Это возможные состояния одного электрона. Если электронов не один, а больше, то в каждое состояние может попасть по два электрона с противоположными спинами.

У молекулы бензола надо здесь разместить шесть электро­нов. Если состояние основное, то они должны попасть в наи­низшие возможные энергетические состояния — пара в s=0, пара в s=+1 и пара в s =-1. Согласно приближению неза­висимых частиц, энергия основного состояния равна

Она действительно оказывается меньше, чем у трех отдельных двойных связей,— на 2А.

Сравнив энергию бензола с энергией этилена, можно опреде­лить А. Эта величина оказывается равной 0,8 эв, или в едини­цах, которые нравятся химикам, 18 ккал/моль.

Этим описанием можно воспользоваться, чтобы вычислить или понять другие свойства бензола. Например, глядя на фиг. 13.8, можно разобраться в возбуждении бензола светом.

Фиг. 13.8. Уровни энергии в кольце, в котором для электрона приготовлены шесть свободных мест (на­пример, в бензольном).

Что бы произошло, если бы мы попытались возбудить один из электронов? Он мог бы передвинуться к одному из незанятых высших состояний. Наинизшей энергией возбуждения оказался бы переход от наивысшего заполненного уровня к наинизшему пустому. Эта энергия равна 2A. Бензол будет поглощать свет с частотой v=2A/h. Кроме того, будет наблюдаться также по­глощение фотонов с энергиями ЗА и 4A. Нечего и говорить, что спектр поглощения бензола был измерен, и картина спектраль­ных линий оказалась более или менее правильной, если не счи­тать того, что наинизшие переходы наблюдаются в ультрафио­лете; и чтобы удовлетворить всем данным, пришлось бы взять величину А около 1,4—2,4 эв. Иначе говоря, численное значе­ние А вдвое-втрое выше, чем предсказывается энергией хими­ческой связи.

Как же поступает химик в таких случаях? Он анализирует множество молекул сходного типа и выводит какие-то эмпири­ческие правила. Он учит, например: для расчета энергии связи берите вот такое-то и такое-то значение А, а для получения при­ближенно верного спектра поглощения возьмите другое значе­ние A. Вам может показаться, что это звучит слегка абсурдно. И впрямь, в ушах физика, который пытается объяснить всю при­роду из первоначальных принципов, это звучит довольно дико. Но перед химиком задача другая. Он обязан заранее догадаться, что произойдет с молекулами, которых до сих пор не было или которые до конца не поняты. Ему нужен ряд эмпирических пра­вил и ему совершенно все равно, откуда они возьмутся. Так что теорией он пользуется совсем не так, как физик. Он берет урав­нения, в которых отразился свет истины, а потом вынужден менять в них константы, делая эмпирические поправки.

В случае бензола основная причина несогласия лежит в нашем предположении, что электроны независимы; теория, из которой мы исходили, на самом деле незаконна. Тем не менее на нее падает какой-то отблеск истины, потому что результаты, по-видимому, идут в правильном направлении. При помощи таких уравнений плюс некоторые эмпирические правила (со множеством исключений) химик-органик прокладывает свой путь через чащу тех сложнейших вещей, которые он решился изучать. (Не забывайте, что в действительности причина, по которой физику удается выводить что-то из основных принципов, состоит в том, что он выбирает только простые задачи. Он ни­когда не решает задач с 42 или даже с 6 электронами. До сих пор он смог рассчитать с приличной точностью только атом водо­рода да атом гелия.)

§ 5. Еще немного органической химии

Можно ли применить все эти идеи для изучения других молекул? Рассмотрим такую молекулу, как бутадиен (1,3); она показана на фиг. 13.9 с помощью обычной картины валентных связей.

Фиг. 13.9. Изображение с по­мощью валентных связей молекулы бутадиена (1,3).

Мы можем опять затеять те же игры с лишней четверкой электронов, отвечающей двум двойным связям. Если ее убрать, то остается четыре атома углерода по одной линии. А как рас­считывать такую линию, вы уже знаете. «Но позвольте,— скажете вы,—я ведь только знаю, как решать бесконечную ли­нию». Однако решения для бесконечной линии включают также и решения для конечной. Следите. Пусть N — число атомов на прямой; пронумеруем их 1, 2, ..., N (фиг. 13.10).

Фиг. 13.10. Отрезок прямой с N молекулами.

В уравне­нии для амплитуды в точке 1 у вас не появится член для пере­хода из точки 0. Точно так же уравнение для точки N будет отличаться от того, которым мы пользовались для бесконечной прямой, потому что никакого вклада точки N+1 не будет. Но представьте, что мы придумали решение для бесконечной прямой со следующим свойством: амплитуда оказаться вблизи атома 0 есть нуль и амплитуда оказаться вблизи атома N+1 тоже нуль. Тогда система уравнений для всех точек от 1 до N на конечной линии также будет удовлетворяться. Казалось бы, таких решений не бывает, ибо все наши решения имеют вид и обладают всюду одинаковой абсолютной величиной. Но вспомните, что энергия зависит только от абсолютной вели­чины k, так что другим в равной мере законным решением было бы. И то же справедливо для любой суперпозиции этих двух решений. Вычитая их, мы получим решение sin kxn, а оно удовлетворяет требованию, чтобы амплитуда при х=0 была нулем. И оно все еще соответствует энергии Е0-coskb. Далее, подходящим выбором величины k можно также добиться, чтобы амплитуда в xN+1 была тоже нулем. Для этого нужно, чтобы (N+1)kb было кратным p, т. е. чтобы

где s — целое число между 1 и N. (Берутся только положительные k, потому что каждое решение содержит и +k, и -k; перемена знака k опять дает то же состояние.) Для молекулы бутадиена N=4, так что имеется четверка состояний с

Уровни энергии можно теперь представить, пользуясь кру­говой диаграммой, похожей на бензольную. На сей раз возьмем полукруг, деленный на пять равных частей (фиг. 13.11).

Фиг. 13.11. Энергетические уровни бутадиена.

Точка внизу отвечает s=0, что не дает какого-либо состояния. То же самое справедливо для точки наверху, отвечающей s=N+1. Оставшиеся четыре точки дают четверку разрешенных энергий. Имеется четыре стационарных состояния, чего и следовало ожидать, судя по четырем базисным состояниям. В круговой диаграмме углы равны p/5, или 36°. Наинизшая энергия оказы­вается равной Е01,618A. (Каких только чудес не бывает в математике! Золотое сечение греков дает нам наинизшее энер­гетическое состояние молекулы бутадиена, как это следует из

нашей теории!)

Теперь уже ясно, как меняется энергия молекулы бутадиена, когда в нее вводят четверку электронов. Эта четверка заполнит два нижних уровня — каждый будет заполнен парой электро­нов с противоположными спинами. Полная энергия будет равна

Это выглядит вполне разумно. Энергия чуть пониже, чем просто у двух двойных связей, но связь не так сильна, как в бензоле. Во всяком случае, именно так химик анализирует некоторые ор­ганические молекулы.

Но в его распоряжении есть не только энергии, но и ампли­туды вероятности. Зная амплитуды для каждого состояния и зная, какие состояния заполнены, он может сообщить нам, какова вероятность нахождения электрона в каком-нибудь месте молекулы. Те места, где пребывание электрона более вероятно, вступают в игру при таких химических замеще­ниях, которые требуют, чтобы электрон обслуживал и другую группу атомов. Другие же места молекулы участвуют в таких замещениях, при которых молекула имеет тенденцию передать системе еще один электрон.

Подобные же идеи могут помочь нам получить правильное представление даже о таких сложных молекулах, как хлоро­филл, один из вариантов которого показан на фиг. 13.12.

Фиг. 13.12. Молекула хлоро­филла.

Обра­тите внимание, что двойные и одиночные связи образуют длинное замкнутое кольцо с двадцатью интервалами.

Лишние электроны двойных связей могут бегать по этому кольцу. При помощи метода независимых частиц можно получить всю совокупность энергетических уровней. От пе­реходов между этими уровнями возникают сильные линии поглощения, которые лежат в видимой части спектра и при­дают этой молекуле ее густой цвет. И другие сложные мо­лекулы, такие, как ксантофилл, от которого листья по­лучают красную окраску, можно изучить таким же точно способом.

В органической химии при работе с подобного рода теорией использу­ют еще одну идею. Она, пожалуй, самая удачная из всех (или по крайней мере в определенном смы­сле самая точная). Она отвечает на такой вопрос: в каких случаях получается особенно прочная химическая связь? Ответ очень интере­сен. Возьмем вначале для примера бензол и представим ряд со­бытий, которые произойдут, если мы начнем с шестикратно иони­зованной молекулы и примемся добавлять новые и новые электроны. Тогда нужно будет говорить о различных ионах бензола — отрицательных и положительных. Изобразим энер­гию иона (или нейтральной молекулы) как функцию числа элек­тронов. Если мы примем Е0=0 (мы не знаем, чему равно E0), то получим кривую, показанную на фиг. 13.13.

Фиг. 18.13. Сумма всех энергий электронов, ког­да нижние состояния на фиг. 13.8 заполнены n электронами (принято E0=0).

Для первых двух электронов наклон функции постоянен — это прямая линия. Затем для каждой очередной группы электронов он воз­растает, меняясь скачком от одной группы к другой. Наклон изменяется тогда, когда заканчивается заполнение системы уровней с одной энергией и очередному электрону приходится переходить к очередной более высокой системе уровней.

В действительности истинная энергия иона бензола совер­шенно непохожа на фиг. 13.13 из-за взаимодействий электронов и из-за электростатических энергий, которыми мы пренебрегли. Эти поправки, однако, меняются с n довольно плавно. Даже если бы их все учесть, на окончательной энергетической кривой все равно остались бы изломы при таких и, при которых как раз заполняются отдельные уровни энергии.

Рассмотрим теперь очень гладкую кривую, на которой в среднем укладываются все точки (фиг. 13.14).

Фиг. 13.14. Точки с фиг. 13.13 и плавная кривая. Молекулы с n=2, 6, 10 устойчивее остальных.

Можно сказать, что точки над этой кривой обладают энергией «выше чем нор­мальной», а точки под нею «ниже чем нормальной». И в общем случае следует ожидать, что у конфигураций с «ниже чем нор­мальной» энергией средняя устойчивость окажется повышенной. Обратите внимание, что конфигурации, которые значительно ниже кривой, всегда оказываются в конце одного из прямоли­нейных отрезков, а именно там, где электронов как раз хватает на то, чтобы заполнить «энергетическую оболочку», как ее на­зывают. Это очень точное предсказание теории. Молекулы и ионы особо устойчивы (по сравнению с прочими подобными кон­фигурациями), когда имеющиеся у них в наличии электроны как раз заполняют энергетическую оболочку.

Эта теория объяснила и предсказала некоторые весьма нео­бычные химические факты. Вот очень простой пример. Возьмем кольцо из трех атомов. Почти невозможно поверить, что химик сможет из трех атомов составить кольцо и сделать его устой­чивым. Но это было сделано. Энергетический круг для трех электронов показан на фиг. 13.15.

Фиг. 13.15. Энергетиче­ская диаграмма для кольца из трех атомов.

Если поместить в нижнее состояние два электрона, то пойдут в дело только два из трех требуемых электронов. Третий электрон придется поместить на более высокий уровень. Отсюда следует, что молекула не будет слишком устойчивой. Зато двухэлектронная структура обязана быть устойчивой. И действительно, оказывается, что нейтраль­ную молекулу трифенилциклопропанила сделать очень трудно, но зато сравнительно легко соорудить положительный ион, по­казанный на фиг. 13.16.

Фиг. 13.16. Катион трифенилииклопропанила.

Правда, кольцо из трех атомов никогда не бывает легко сделать, потому что, когда связи в органической молекуле образуют равносторонний треугольник, всегда появ­ляются большие напряжения. Чтобы соединение было устой­чиво, структуру нужно как-то стабилизировать. Оказывается, что, если поставить по углам три бензольных кольца, можно сделать положительный ион. (Отчего нужно добавлять бензоль­ные кольца, непонятно.)

Подобным же образом можно также проанализировать и пятиугольное кольцо. Если вы начертите энергетическую диа­грамму, то качественно сможете убедиться, что шестиэлектронная структура должна быть особо устойчива, так что такая мо­лекула должна быть устойчивее всего в виде отрицательного иона. И вот кольцо из пяти атомов действительно хорошо из­вестно, легко сооружается и действует всегда как отрицательный ион. Подобным же образом вы легко убедитесь, что кольцо из 4 и 8 атомов не очень интересно, а кольцо из 14 или 10 (как и кольцо из 6) должно быть особенно устойчиво в форме нейт­рального объекта.

§ 6. Другие применения приближения

Есть два других сходных случая, на которых мы остано­вимся лишь вкратце. Говоря о строении атома, можно считать, что электрон заполняет последовательные оболочки. Теорию движения электрона Шредингера удается с легкостью разра­ботать лишь для отдельного электрона, движущегося в «цент­ральном» поле — поле, зависящем только от расстояния от точки. Но как же тогда разобраться в том, что происходит в атоме, в котором 22 электрона?! Один из путей — воспользо­ваться приближением независимых частиц. Сперва вы подсчиты­ваете, что происходит с одним электроном. Получаете сколько-то там уровней энергии. Помещаете электрон в нижнее энерге­тическое состояние. В грубой модели вы продолжаете игнори­ровать взаимодействия электронов и продолжаете заполнять последовательные оболочки, но еще лучшие ответы получатся, если учесть (хотя бы приближенно) влияние электрического заряда электрона. Добавляя электрон, каждый раз вычис­ляйте амплитуду того, что он будет обнаружен в различных местах, и затем с ее помощью прикидывайте вид сферически симметричного распределения заряда. Поле этого распределе­ния (совместно с полем положительного ядра и всех предыдущих электронов) используйте для расчета состояний, доступ­ных очередному электрону. Таким путем вы можете получить вполне разумные оценки энергий нейтрального атома и раз­личных ионизованных состояний. Вы увидите, что и здесь имеются энергетические оболочки, так же как у электронов в кольцевой молекуле. При не совсем заполненной оболочке атом иногда охотнее присоединяет к себе один или несколько элект­ронов, а иногда охотнее их теряет, чтобы прийти в устойчивое состояние, когда оболочка заполнена.

Эта теория объясняет механизм, лежащий в основе самых фундаментальных химических свойств, проявляющихся в пе­риодической таблице элементов. Инертные газы — это те эле­менты, у которых как раз закончилось заполнение оболочки, и их особенно трудно заставить вступать в реакцию. (В действи­тельности, конечно, некоторые из них реагируют, например, с фтором или с кислородом, но в таких соединениях связь очень слаба; так называемые инертные газы инертны лишь отчасти.) Атом, у которого на один электрон больше или на один меньше, чем у инертного газа, легко теряет или присоединяет этот элект­рон, чтобы оказаться в особо устойчивых (низкоэнергетических) условиях, какие возникают от того, что оболочка заполнена до конца,— они являются очень активными химическими элемен­тами с валентностью +1 и -1.

В ядерной физике можно встретиться с другим подобным случаем. В атомном ядре протоны и нейтроны очень сильно взаимодействуют друг с другом. Но и при этом модель незави­симых частиц опять полезна для анализа структуры ядра. Сперва было открыто экспериментально, что ядра особо устой­чивы, если в них содержится определенное число нейтронов — а именно 2, 8, 20, 28, 50, 82. Ядра, содержащие в таком же коли­честве протоны, тоже особенно устойчивы. Поскольку вначале объяснения этим числам не было, их назвали «магическими числами» ядерной физики. Хорошо известно, что нейтроны и протоны друг с другом сильно взаимодействуют; поэтому люди были чрезвычайно поражены, когда выяснилось, что модель независимых частиц предсказывает оболочечное строение ядра, причем сами собой возникают несколько первых магических чисел. Модель эта предполагала, что каждый нуклон (протон или нейтрон) движется в центральном потенциальном поле, создаваемом средним влиянием всех прочих нуклонов. Однако модели не удавалось верно предсказать другие магические чис­ла. Но затем Мария Майер и независимо Йенсен с сотрудника­ми открыли, что, принимая модель независимых частиц и до­бавляя только поправку на так называемое «спин-орбитальное взаимодействие», можно в этой усовершенствованной модели получить все магические числа. (Спин-орбитальное взаимодей­ствие приводит к тому, что энергия нуклона оказывается ниже, если его спин направлен туда же, куда направлен его орбиталь­ный момент количества движения в ядре.) Теория дает даже больше — ее картина так называемой «оболочечной структуры» ядра позволяет предсказывать некоторые характеристики ядер и ядерных реакций.

Приближение независимых частиц оказалось полезным для широкого круга явлений — от физики твердого тела до химии, от биологии до ядерной физики. Такое приближение часто очень грубо, но оно в состоянии помочь нам понять, отчего бывают особо устойчивые условия — отчего возникают оболочки. Но поскольку оно опускает всю сложность взаимодействий между индивидуальными частицами, нас не должно удивлять, что часто ему не удается правильно предсказать многие важные детали.

* Отношение сторон прямоугольника, который можно разбить на квадрат и на подобный ему прямоугольник.

* Когда имеется пара состояний (с разными распределениями ам­плитуд) с той же энергией, мы говорим, что эта пара состояний «вырож­дена». Заметьте, что энергией E0-А могут обладать четыре электрона.

* Могло бы показаться, что при четном N есть N+1 состояний. Это не так, ибо s = ±.N/2 дают одно и то же состояние.

* Квазичастицы обсуждаемого типа могут действовать и как бозе-и как ферми-частицы; и, как и у свободных частиц, частицы с целым спином суть бозоны, с полуцелым—фермионы. «Магнон» символизирует, что электрон со спином, направленным вверх, перевертывается вниз. Спин меняется на единицу. Значит, у магнона спин целый и он — бозон.

* Основное состояние здесь на самом деле «вырождено». Существуют и другие состояния с той же энергией, например, когда все спины смотрят вниз или в любую другую сторону. Но наложение самого слабого внешнего поля в направлении z снабдит все эти состояния различной энергией, и истинным основным состоянием окажется как раз то, которое мы выбрали.

Главa 14

ЗАВИСИМОСТЬ АМПЛИТУД ОТ МЕСТА

§ 1. Как меняются амплитуды вдоль прямой

§ 2. Волновая функция

§ 3. Состояния с определенным импульсом

§ 4. Нормировка состояний с определенной координатой х

§ 5. Уравнение Шредингера

§ 6. Квантованные уровни энергии

§ 1. Как меняются амплитуды вдоль прямой

Выясним теперь, как в квантовой механике амплитуды вероятности меняются в простран­стве. В некоторых предыдущих главах у вас могло возникнуть смутное чувство, что кое о чем мы умалчиваем. Например, когда мы тол­ковали о молекуле аммиака, мы решили описы­вать ее через два базисных состояния. За одно из них мы выбрали случай, когда атом азота находится «выше» плоскости трех атомов во­дорода, а в качестве другого базисного состояния выбрали такие условия, когда атом азота стоит «ниже» плоскости трех атомов водорода. Почему же мы выбрали именно эту пару состоя­ний? Почему бы не считать, что атом азота мо­жет оказаться либо на расстоянии 2Е от плос­кости трех атомов водорода, либо на расстоянии 3Е, а может, и 4Е. Ведь атом азота может зани­мать множество положений. Или, когда шла речь о молекулярном ионе водорода, в котором имеется электрон, распределенный между двумя протонами, мы тоже вообразили два базисных состояния. Одно — когда электрон находится по соседству с протоном № 1, и другое, когда он пребывает в окрестностях протона № 2. Ясно, что многие детали мы упустили. Электрон ведь находится не точно у самого протона № 2, а только в его окрестностях. Он может оказаться и где-то повыше протона, и где-то пониже, и где-то слева, и где-то справа.

Мы намеренно избегали уточнения таких деталей. Мы говорили, что нас интересуют только определенные стороны проблемы, и вооб­ражали, что если уж электрон находится по­близости от протона № 1, то он принимает некоторое довольно определенное положение.

На самом деле в этих условиях вероятность обнаружить элект­рон обладает каким-то определенным распределением в про­странстве вблизи протона. Но нас такие детали не заботили. Можно представить дело и иначе. Когда мы рассматривали молекулярный ион водорода, то избрали приближенный под­ход, описывая положение вещей на языке двух базисных со­стояний. В действительности же таких состояний уйма. Электрон может попасть вблизи протона в свое наинизшее, или основное, состояние, но имеется еще и множество возбужденных состояний. В каждом из них электрон как-то по-особому распре­делен вблизи протона. Эти возбужденные состояния мы игно­рировали, говоря, что нас интересуют лишь условия при наи­низшей энергии. Но как раз они-то, эти возбужденные состоя­ния, и приводят к тому, что возможны различные распределе­ния электрона вокруг протона. Если мы хотим детально описать молекулярный ион водорода, то следует принять во внимание и эти прочие допустимые базисные состояния. Это можно сделать многими способами, и один из них — детальнее рассмотреть состояния, когда расположение электрона в пространстве опи­сывается более тщательно.

Мы уже достаточно подготовлены, чтобы заняться более трудоемкой процедурой, которая позволит нам обстоятельнее го­ворить о местоположении электрона, задавая амплитуду вероят­ности того, что он будет обнаружен в каком угодно месте в данной ситуации. Эта более полная теория позволит подкре­пить те приближения, которыми мы раньше пользовались. Наши прежние уравнения в каком-то смысле смогут быть вы­ведены как своего рода приближения к более полной теории. Вас может удивить, почему мы не начали прямо с более полной теории и не делали приближений по мере движения вперед. Но мы считали, что, отправившись от приближения двух состояний и постепенно подходя к более полной теории, вам будет легче достичь понимания всей механики квантовой ме­ханики. Наш подход, по-видимому, противоположен тому, ко­торый вы найдете во многих книгах.

Когда мы обратимся к теме этой главы, вы заметите, что мы нарушаем правило, которому в прошлом неизменно следовали. Какой бы темы мы ни касались, мы всегда пытались более или менее полно представить вам физику дела, указывая как можно полнее, куда ведут эти идеи. Мы стремились наряду с описанием общих следствий теории представить и некоторые характерные детали, чтобы вам было ясно, куда ведет эта теория. А теперь нам придется нарушить это правило. Мы расскажем об ампли­тудах вероятности пребывания электрона где-то в пространстве и продемонстрируем вам дифференциальные уравнения, которым они удовлетворяют. Но у нас не будет времени углубиться и обсудить многие очевидные выводы, следующие из теории.

Более того, нам даже не удастся связать эту теорию с некоторы­ми приближенными формулировками, к которым мы раньше прибегали, скажем, когда изучали молекулу водорода или молекулу аммиака. На этот раз придется бросить дело на пол­пути, не окончив его. Курс наш близится к концу, и хочешь не хочешь, придется обойтись одним только введением в общие представления. Мы укажем связь с тем, о чем говорилось рань­ше, и, кроме того, некоторые другие подходы к задачам кванто­вой механики. Надеемся, что этих представлений вам хватит, чтобы потом двинуться самостоятельно и уже по книгам узнать многие выводы из приведенных здесь уравнений. Все-таки нужно оставить кое-что и на будущее.

Вспомним еще раз, что нам известно о том, как электрон может продвигаться вдоль линии атомов. Когда электрон может с какой-то амплитудой перепрыгивать от одного атома к сосед­нему, то имеются состояния определенной энергии, в которых амплитуда вероятности обнаружить электрон распределяется вдоль решетки в виде бегущей волны. Для длинных волн (малых значений волнового числа К) энергия состояния пропорциональ­на квадрату волнового числа. Для кристаллической решетки с постоянной b, в которой амплитуда того, что электрон в еди­ницу времени перепрыгнет от одного атома к следующему, равна iA/h, энергия состояния связана с k (при малых kb) фор­мулой

E=Ak2b2 (14.1)

(см. гл. 11, § 1). Мы видели также, что группы таких волн с близкими энергиями образуют волновой пакет, который ведет себя как классическая частица с массой mэфф:

Раз волны амплитуды вероятности в кристалле ведут себя как частицы, то естественно ожидать, что общее квантовомеханическое описание частицы выявит такое же волновое поведение, какое мы наблюдали в решетке. Предположим, мы взяли одно­мерную решетку и вообразили, что постоянная решетки b стано­вится все меньше и меньше. В пределе получилось бы, что элект­рон может оказаться в любой точке линии. Нам пришлось бы перейти к непрерывному распределению амплитуд вероятности. У электрона появилась бы амплитуда оказаться в любом месте линии. Таков был бы один из путей описания движения электро­нов в вакууме. Иными словами, если мы вообразим, что все пространство можно пронумеровать бесконечным числом очень тесно расположенных точек, и сможем вывести уравнения, связывающие между собой амплитуды в одной точке с амплитудами в соседних, то получим квантовомеханические законы движения электрона в пространстве.

Начнем с того, что напомним некоторые общие принципы квантовой механики. Пусть имеется частица, которая может в квантовомеханической системе существовать в разных усло­виях. Любые заданные условия, в которых может быть обна­ружен электрон, мы называем «состоянием» и отмечаем их при помощи вектора состояния, скажем |j>. В каких-то других условиях и метка будет другая, скажем вектор состояния |y>. Затем мы вводим идею о базисных состояниях. Мы говорим, что имеется совокупность состояний | 1 >, | 2>, | 3>, | 4> и т. д., обладающая следующими свойствами. Во-первых, все эти со­стояния совершенно различны — мы говорим, что они ортого­нальны. Под этим мы понимаем, что для любой пары базисных состояний | i> и |j> равна нулю амплитуда <i|j> того, что электрон, будучи в состоянии | j>, окажется также и в состоя­нии <i| , если только, конечно, |i> и |j> не обозначают одного и того же состояния. Все это символически представляется

так:

<i|j>=dij (14.3)

Вспомните, что dij=0, если i и j различны, и dij=1, если i и j одинаковые числа.

Далее, базисные состояния |i> обязаны быть полной сово­купностью, так чтобы любое состояние могло быть выражено на их языке. Иначе говоря, любое состояние |j> может быть полностью описано заданием всех амплитуд <i|j> того, что частица в состоянии |j> обнаружится также в состоянии |i>. Вектор состояния |j> представляется суммой базисных со­стояний, умноженных каждое на коэффициент, являющийся амплитудой того, что состояние |j> находится также в состоя­нии |i>:

Наконец, если рассмотреть любые два состояния |j> и |y>, то амплитуду того, что состояние |y> окажется также в состоянии |j>, можно найти, проецируя сперва состояние |y> на базисные состояния, а затем каждое из базисных со­стояний — на состояние |j>. Это записывается так:

Суммирование, конечно, проводится по всей совокупности ба­зисных состояний | i>.

В гл. 11, когда мы рассчитывали, что бывает с электроном, помещенным в линейную цепочку атомов, вы выбрали совокуп­ность базисных состояний, в которых электрон был расположен близ того или иного из атомов цепочки. Базисное состояние |n> представляло электрон, локализованный (расположенный) возле атома номер п. (Конечно, неважно, обозначать ли наши базисные состояния |n> или |i>.) Чуть позже мы нашли, что базисные состояния удобнее метить координатой атома, а не номером атома в цепочке. Состояние | хn> — это просто другой способ записи состояния |n>. Тогда, следуя общему правилу, любое состояние |y> можно описать заданием того, что электрон в состоянии |y> находится также в одном из состояний |хn>. Для удобства мы решили обозначать эти амплитуды символом

Cn=<xn|y>. (14.6)

Поскольку базисные состояния связаны с местоположением электрона на линии, то амплитуду Сn можно рассматривать как функцию координаты х и писать ее в виде С(хn). Амплитуды С(хn) будут в общем случае меняться во времени и поэтому суть также функции от t, но мы не будем отмечать эту зависи­мость явно.

Кроме того, в гл. 11 мы предположили, что амплитуды С(хn) обязаны меняться во времени так, как положено по гамильтонову уравнению (11.3). В нашем новом обозначении это уравне­ние имеет вид

Два последних слагаемых в правой части представляют такой процесс, когда электрон, находившийся возле атома (n+1) или возле атома (n-1), окажется возле атома (n).

Мы нашли, что (14.7) имеет решения, отвечающие состоя­ниям определенной энергии. Мы записывали их в виде

У состояний с низкой энергией длины волн велики (k мало) и энергия связана с k формулой

или, если выбрать нуль энергии так, чтобы было 0-2А)=0, то энергия дается формулой (14.1).

Посмотрим, что бы произошло, если бы мы позволили рас­стоянию b между атомами решетки стремиться к нулю, сохра­няя волновое число постоянным. Если бы больше ничего не случилось, то последнее слагаемое в (14.9) обратилось бы просто в нуль, и никакой физики бы не осталось. Но предположим, что А и b вместе изменяются так, что при стремлении b к нулю произведение Ab2 поддерживается постоянным: с помощью (14.2) мы запишем Аb2 в виде постоянной h2/2mэфф. При этом (14.9) не изменится, но что произойдет с дифференциальным уравнением (14.7)?

Перепишем сперва (14.7) так:

При нашем выборе Е0 первое слагаемое выпадет. Далее, пред­ставим себе непрерывную функцию С(х), которая плавно про­ходит через значения С(хn) в точках хn. Когда расстояние b стремится к нулю, точки хn сближаются все теснее и теснее и [если С(х) меняется достаточно плавно] величина в скобках попросту пропорциональна второй производной С(х). Можно написать (в чем легко убедиться, разложив в ряд Тэйлора каждый член) равенство

Тогда в пределе, когда b стремится к нулю, а b2A поддерживает­ся равным h2/2mэфф, уравнение (14.7) переходит в

Перед нами уравнение, утверждающее, что скорость изменения С(х)амплитуды того, что электрон будет обнаружен в х— зависит от амплитуды того, что электрон будет обнаружен в близлежащих точках так, что эта скорость пропорциональна второй производной амплитуды по координате.

Правильное квантовомеханическое уравнение движения электрона в пустом пространстве впервые было открыто Шре­дингером. При движении по прямой оно имеет вид (14.12); надо только mэфф заменить на mмассу электрона в пустом про­странстве. При движении по прямой в пустом пространстве уравнение Шредингера имеет вид

Мы не хотим, чтобы вы считали, будто мы сейчас вывели уравнение Шредингера; мы только показываем вам один из способов, каким его можно осмыслить. Когда Шредингер впер­вые написал его, он привел какой-то вывод, опиравшийся на эвристические доводы и блестящие интуитивные догадки. Не­которые из его доводов были даже неверны, но это не имело значения; важно то, что окончательное уравнение дает правиль­ное описание природы. И цель нашего обсуждения состоит просто в том, чтобы показать вам, что правильное фундаментальное квантовомеханическое уравнение (14.13) имеет ту же самую форму, какая получается в предельном случае электрона, дви­жущегося вдоль цепочки атомов. Это значит, что можно считать, что дифференциальное уравнение (14.13) описывает диффузию амплитуды вероятности от точки к точке вдоль прямой. Иначе говоря, если электрон имеет некоторую амплитуду того, что он будет в одной точке, то чуть позже у него появится амплитуда того, что он будет в близлежащих точках. Уравнение дейст­вительно напоминает уравнения диффузии, которыми мы поль­зовались в начале курса. Но есть и одно важное отличие: мни­мый коэффициент перед производной по времени приводит к по­ведению, в корне отличному от обычной диффузии (например, от диффузии газа, распространяющегося по длинной трубе). Обычная диффузия приводит к действительным экспоненциаль­ным решениям, а решения (14.13) суть комплексные волны.

§ 2. Волновая функция

Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проб­лему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратить­ся к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной части­цы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным мно­жеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют неко­торых технических видоизменений.

Начнем с того, что вектором состояния |х> обозначим со­стояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой — для 1,73, для 9,67, для 10,00 и т. д.— имеется соответствующее состояние. Выберем эти состояния |х> в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |y>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние — задать все амплиту­ды того, что электрон будет также найден в каждом из базисных состояний |x>. Надо задать бесконечную совокупность ампли­туд, по одной для каждого х. Запишем их в виде <x|y>. Каж­дая из этих амплитуд — комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда <x|y> является в действительности просто функцией х. Запи­шем ее также в виде С (х):

Мы уже рассматривали такие амплитуды, которые непрерыв­ным образом меняются с координатами, говоря в гл. 5 (вып. 8) об изменениях амплитуд во времени. Мы, например, показали там, что следует ожидать, что частица с определенным импуль­сом будет обладать особым типом изменения своей амплитуды во времени. Если частица имеет определенный импульс р и соответствующую ему определенную энергию Е, то амплитуда того, что она будет обнаружена в любом заданном месте x, такова:

<x|y> = С (x) ~e+ipx/h. (14.15)

Это уравнение выражает важный общий принцип квантовой механики, который связывает базисные состояния, соответст­вующие различным положениям в пространстве, с другой системой базисных состояний — со всеми состояниями опреде­ленного импульса. В некоторых задачах состояния определен­ного импульса удобнее, чем состояния с определенным х. И лю­бая другая система базисных состояний также годится для опи­сания квантовомеханической ситуации. К связи между ними мы еще вернемся. А сейчас мы по-прежнему будем придерживаться описания на языке состояний |х>.

Прежде чем продолжать, прибегнем к небольшой замене обозначений, которая, надеемся, вас не слишком смутит. Форма функции С (х), определенной уравнением (14.14), естественно, будет зависеть от рассматриваемого состояния |y>. Это нужно как-то отметить. Можно, например, указать, о какой функции С (х) идет речь, поставив снизу индекс, скажем Сy(х). Хотя такое обозначение вполне подошло бы, но оно все же чуточку громоздко и в большинстве книг вы его не встретите. Обычно просто убирают букву С и пользуются символом y для опреде­ления функции

Поскольку это обозначение принято во всем мире, неплохо было бы и вам привыкнуть к нему и не пугаться, встретив его где-нибудь. Надо только помнить, что y теперь будет использоваться двояким образом. В (14.14) y обозначает метку, которой мы отметили заданное физическое состояние электрона. А в (14.16) слева символ y применяется для определения математической функции от х, равной амплитуде, связываемой с каждой точкой х прямой. Надеемся, что это не слишком смутит вас, когда вы привыкнете к самой идее. Кстати, функцию y (х) обычно именуют «волновой функцией», потому что она очень часто имеет форму комплексной волны своих переменных.

Раз мы определили y (х) как амплитуду того, что электрон в состоянии y обнаружится в точке х, то хотелось бы интер­претировать квадрат абсолютной величины y как вероятность обнаружить электрон в точке х. Но, к сожалению, вероятность обнаружить электрон в точности в каждой данной точке равна нулю. Электрон в общем случае размазывается по какому-то участку прямой, и поскольку точек на каждом участке беско­нечно много, то вероятность оказаться в любой из них не может быть конечным числом. Вероятность обнаружить электрон мы можем описать только на языке распределения вероятно­стей, которое дает относительную вероятность обнаружить электрон в различных неточно указанных местах прямой. Пусть Вер. (х, Dх) обозначает вероятность обнаружить электрон в узком интервале Dх: возле точки х. Если мы в каждой физичес­кой ситуации будем пользоваться достаточно мелким масшта­бом, то вероятность будет от точки к точке меняться плавно, и вероятность обнаружить электрон в произвольном конечном маленьком отрезке прямой Dх; будет пропорциональна Dх. И можно так изменить наши определения, чтобы это было учтено. Можно считать, что амплитуда <x|y> представляет своего рода «плотность амплитуд» для всех базисных состояний |х> 1 в узком интервале х. Поскольку вероятность обнаружить

iэлектрон в узком интервале Dх вблизи х должна быть пропор­циональна длине интервала Dх, мы выберем такое определение <х |y>, чтобы соблюдалось следующее условие: Вер. (х, Dх)=| <x|y|>|2Dх. Амплитуда <x|y> поэтому пропорциональна амплитуде того, что электрон в состоянии y будет обнаружен в базисном состоя­нии х, а коэффициент пропорциональности выбран так, что квадрат абсолютной величины амплитуды <x|y> дает плот­ность вероятности обнаружить электрон в любом узком интер­вале. Можно писать и так:

Вер. (x, Dх)=| y (х)|2 Dх. (14.17)

Теперь надо изменить некоторые наши прежние уравнения, чтобы согласовать их с этим новым определением амплитуды вероятности. Пусть имеется электрон в состоянии |y>, а мы хотим знать амплитуду того, что он будет обнаружен в дру­гом состоянии |y>, которое может соответствовать другим условиям размазанности электрона. Когда речь шла о конеч­ной системе дискретных состояний, мы пользовались уравне­нием (14.5). До изменения нашего определения амплитуд мы должны были писать

А теперь если обе эти амплитуды нормированы так, как описано выше, то сумма по всем состояниям из узкого интервала х будет эквивалентна умножению на Dx, а сумма по всем значениям х превратится просто в интеграл. При наших измененных опре­делениях правильная формула будет такой:

Амплитуда <x|y> — это то, что мы теперь называем y (х); точно так же амплитуду <x|y> мы обозначим j(х). Вспоминая, что <j|x> комплексно сопряжена с <x|j>, мы можем (14.18) переписать в виде

При наших новых определениях все формулы останутся преж­ними, если только всюду знак суммы заменить интегрирова­нием по х.

К тому, что было сказано, нужно сделать одну оговорку. Любая подходящая система базисных состояний должна быть полной, если хотят, чтобы она сполна отражала все, что проис­ходит. Для одномерного движения электрона в действитель­ности недостаточно указать только базисные состояния |x>, потому что в каждом из этих состояний спин электрона может быть направлен вверх или вниз. Один из способов получить полную систему — взять две совокупности состояний по х: одну для спина вверх, другую для спина вниз. Мы, впрочем, пока не будем входить в такие подробности.

§ 3. Состояния с определенным импульсом

Пусть у нас имеется электрон в состоянии |y>, описывае­мом амплитудой вероятности |y>=y (х). Мы знаем, что y (х) обозначает состояние, в котором электрон размазан по прямой по какому-то закону, так что вероятность обнаружить его в узком интервале dx близ точки х попросту равна

Вер. (х, dx)=|y (х)|2dx.

Что можно сказать об импульсе этого электрона? Можно спро­сить, какова вероятность того, что импульс этого электрона равен р? Начнем с расчета амплитуды того, что состояние |y> присутствует в другом состоянии | имп. p>, которое мы опреде­лим как состояние с определенным импульсом р. Эту амплитуду можно найти, применяя наше основное уравнение для разло­жения амплитуд (14.20). В терминах состояний |имп. p>

А вероятность того, что у электрона будет обнаружен импульс р, выразится квадратом абсолютной величины этой амплитуды. Но опять возникает тот же вопрос насчет нормирования. Ведь вообще можно говорить только о вероятности обнаружить электрон с импульсом в узкой области dp близ значения р. Вероятность того, что импульс в точности равен р, равна нулю (разве что состояние |y> окажется состоянием с определенным импульсом). Только вероятность обнаружить импульс в интер­вале dp возле значения р может оказаться конечной. Нормиров­ку можно делать по-разному. Мы выберем тот способ нормиров­ки, который нам кажется особенно удобным, хотя вам сейчас это может так и не показаться.

Примем такую нормировку, чтобы вероятность была связана с амплитудой равенством

Это определение дает нам нормировку амплитуды <имп. р|x>. Амплитуда <имп. р|х>, естественно, комплексно сопряжена с амплитудой <х|имп. р>, а последнюю мы писали в (14.15). При нашей нормировке оказывается, что коэффициент пропор­циональности перед экспонентной как раз равен единице, т. е.

Тогда (14.21) превращается в

Вместе с (14.22) это уравнение позволяет находить распреде­ление импульсов для любого состояния |y>.

Возьмем частный пример: скажем, когда электрон распо­ложен в некоторой области вокруг х=0. Пусть мы взяли вол­новую функцию вида

Распределение вероятности иметь то или иное значение х для такой волновой функции дается ее квадратом

Функция плотности вероятности Р(х)это кривая Гаусса, по­казанная на фиг. 14.1.

фиг. 14.1. Плотность вероятности для волно­вой функции (14.24).

Большая часть вероятности сосредото­чена между х=+s и х=-s. Мы говорим, что «полуширина» кривой есть а. (Точнее, а равняется средней квадратичной координате х, если разброс координат соответствует этому распределению.) Коэффициент К следовало бы выбрать так, чтобы плотность вероятности Р(х) не просто была пропорциональна вероятности (на единицу длины ж) обнаружить электрон, но имела бы такой масштаб, чтобы Р(х)Dx равнялось вероят­ности обнаружить электрон в Dx вблизи х. Коэффициент К, при котором так и получается, можно найти из требования

\ Р (х) dx=1, потому что вероятность обнаружить электрон

где попало равна единице. Мы находим, что К = (2ps2)-1/4.

Теперь найдем распределение по импульсу. Пусть j(p)

есть амплитуда того, что импульс электрона окажется равным р:

Подстановка (14.25) в (14.24) дает

что можно также переписать в форме

Сделаем теперь замену интеграл обратится в

Математикам, вероятно, не понравился бы такой путь расчета, однако итог, несмотря на это, верен:

Мы пришли к интересному результату — распределение амплитуд по р имеет в точности ту же математическую форму, как и распределение амплитуд по х, только ширина кривой Гаусса иная. Можно записать это так:

где полуширина h распределения по р связана с полушириной а распределения по х формулой

Наш результат утверждает: если сделать распределение по х очень узким, взяв s малым, то h станет большим и распре­деление по р сильно расползется. Или наоборот, если распределение по р узко, то оно соответствует широкому распределению по х. Мы можем, если угодно, рассматривать h и s как некую меру неопределенности локализации импульса и коор­динаты электрона в изучаемом нами состоянии. Если обозначить их соответственно Dр и Dx, то (14.33) обратится в

Интересно вот что: можно доказать, что при всяком ином

виде распределения по х или по р произведение DpDx не может

стать меньше, чем у нас получилось. Гауссово распределение

дает наименьшее возможное значение произведения средних

квадратичных. В общем случае

Это количественная формулировка принципа неопределенности Гейзенберга, который качественно нам уже давно известен. Мы обычно делали приближенное утверждение: наименьшее значение произведения DpDx — это число порядка h.

§ 4. Нормировка состояний с определенной координатой х

Теперь мы вернемся к обсуждению тех изменений в наших основных уравнениях, которые необходимо сделать для работы с континуумом базисных состояний. Когда имеется конечное число дискретных состояний, то фундаментальное условие, которому должна удовлетворять система базисных состояний, имеет вид

Если частица пребывает в одном базисном состоянии, то ампли­туда пребывания в другом базисном состоянии равна нулю. С помощью подходящей нормировки можно так определить амплитуду <i|j>, чтобы она была равна единице. Оба эти условия содержатся в (14.36). Теперь мы хотим понять, как надо видоизменить это соотношение, когда пользуются базисными состояниями частицы на прямой. Если известно, что частица пребывает в одном из базисных состояний |х>, то какова ампли­туда того, что она пребывает в другом базисном состоянии |x'>? Если х и х' — две разные точки прямой, то амплитуда <x|х'>, конечно, есть нуль, что согласуется с (14.36). Но когда х и х' равны, то амплитуда <x|х' > не будет равна единице из-за той же старой проблемы нормировки. Чтобы увидеть, как надо все подправить, вернемся к (14.19) и применим это уравнение к частному случаю, когда состояние |j> — просто-напросто базисное состояние |х'>. Тогда получится

Далее, амплитуда <x|y> это как раз то, что мы назвали функцией y (х). Подобно атому а амплитуда <x'|y>, по­скольку она относится к тому же состоянию y, является той же функцией переменной х', а именно y (х'). Поэтому (14,37) можно переписать так;

Уравнение должно выполняться для любого состояния y и, стало быть, для любой функции y (х). Это требование обязано полностью определить природу амплитуды <x|х'), которая, конечно, есть попросту функция, зависящая от х и х'.

Наша задача теперь состоит в том, чтобы отыскать функцию f(х, х'), которая после умножения на y (х) и интегрирования по всем х даст как раз величину y (х'). Но оказывается, что не существует математической функции, которая это умеет делать! По крайней мере не существует ничего похожего на то, что мы обычно имеем в виду под словом «функция».

Выберем какое-нибудь значение х', например 0, и опреде­лим амплитуду <0|x> как некую функцию х, скажем f(х). Тогда (14.38) обратится в

Какого же вида функция f(х) могла бы удовлетворить такому уравнению? Раз интеграл не должен зависеть от того, какие значения принимает y (х) при х, отличных от нуля, то ясно, что f(х) должна быть равна нулю для всех значений х, кроме нуля. Но если f(х) всюду равна нулю, то интеграл будет тоже равен нулю, и уравнение (14.39) не удастся удовлетворить. Возникает невозможная ситуация: нам нужно, чтобы функция была нулем всюду, кроме одной точки, и давала все же конечный интеграл. Что ж, раз мы не в состоянии сыскать функцию, которая так поступает, то простейший выход — просто сказать, что функция f(х) определяется уравнением (14.39). И именно f(х) — такая функция, которая делает (14.39) правильным. Функция, которая умеет это делать, впервые была изобретена Дираком и носит его имя. Мы обозначаем ее d (х). Все, что о ней утверждается — это что функция d(х) обладает странным свойством: если ее подставить вместо f(х) в (14.39), то интеграл выберет то значе­ние, которое y (х) принимает при х=0; и поскольку интеграл не должен зависеть от y (х) при х, отличных от нуля, то функция d(х) должна быть нулем всюду, кроме х=0. Словом, мы пишем

<0|x>=d(x), (14.40)

где d (х) определяется соотношением

Посмотрите, что выйдет, если вместо y в (14.41) поставить частную функцию «1». Тогда получится

Иначе говоря, функция d(х) обладает тем свойством, что всюду, кроме х=0, она равна нулю, но интеграл от нее конечен и равен единице. Приходится вообразить, что функция d(х) обладает в одной точке такой фантастической бесконечностью, что полная площадь оказывается равной единице.

Как представить себе, на что похожа d-функция Дирака? Один из способов — вообразить последовательность прямо­угольников (или другую, какую хотите функцию с пиком), которая становится все уже и уже и все выше и выше, сохраняя все время единичную площадь, как показано на фиг. 14.2.

Фиг. 14.2. Последователь­ность функций, ограничиваю­щих единичную площадь, вид которых все сильнее и сильнее напоминает d-функцию.

Интеграл от этой функции от -Ґ до +Ґ всегда равен единице. Если вы умножите ее на произвольную функцию y(х) и проин­тегрируете произведение, то получите нечто, приближенно сов­падающее со значением функции при х=0, причем приближение становится все лучше и лучше, по мере того как прямоугольники становятся уже и уже. Если хотите, можете представлять d-функцию посредством такого рода предельного процесса. Но единственно здесь важно то, что d-функция определена так, что (14.41) справедливо для каждой волновой функции y (х).

Это однозначно определяет d-функцию. Ее свойства тогда получаются такими, как было сказано.

Заменим аргумент d-функции с х на х- х', и соотношения обратят­ся в d(х-x')=0,

Если в (14.38) вместо амплитуды <x|х'> подставить d(x- х'), то это уравнение будет выполнено. В итоге получаем, что для наших базисных состояний с координатой х условие, соответствующее формуле (14.36), имеет вид

<x'|x>=d(x-х'). (14.44)

Теперь мы завершили все необходимые видоизменения наших основных уравнений, нужные для работы с континуумом ба­зисных состояний, соответствующих точкам на прямой. Обобще­ние на три измерения вполне очевидно: во-первых, координата х заменяется вектором r; во-вторых, интегралы по х заменяются на интегралы по х, у и z (иными словами, они становятся интегралами по объему); в-третьих, одномерную d-функцию надо заменить просто произведением трех d-функций от x, от y и от z: d (х-х') d- у') d (z-z'). Собирая все вместе, получаем следующую совокупность уравнений для амплитуд частицы в трехмерном мире:

А что бывает, когда частиц не одна, а больше? Мы расскажем вам, как управляться с двумя частицами, и вы сразу поймете, что нужно делать, если вам понадобится оперировать с несколь­кими частицами. Пусть имеются две частицы; назовем их № 1 и № 2. Что применить в качестве базисных состояний? Одну вполне приемлемую совокупность можно задать, сказав, что частица № 1 находится в х1, а частица № 2 — в х2, и записав это в виде

|x1, х2>. Заметьте, что указание координаты только одной ча­стицы не определяет базисного состояния. Каждое базисное состояние обязано определять условия всей системы целиком. Вы не должны думать, что каждая частица движется независимо как трехмерная волна. Всякое физическое состояние |y> можно определить, задав все амплитуды <x1, х2 |y> того, что пара частиц будет обнаружена в х1 и x2. Эта обобщенная амплитуда поэтому является функцией двух совокупностей координат x1 и x2. Вы видите, что такая функция — это уже не волна в смысле колебания, которое разбегается в трех измерениях. Точно так же это и не простое произведение двух самостоятельных волн, по одной для каждой частицы. Это в общем случае какая-то волна в шести измерениях, определяемых числами х1 и x2. Если в при­роде имеются две взаимодействующие частицы, то не существует способа описать то, что происходит с одной из частиц, попытав­шись выписать волновую функцию для нее одной. Известные парадоксы, которые мы рассматривали в первых главах (где объявлялось, что измерения, проделанные над одной частицей, в состоянии предсказать, что будет с другой, или что они могут разрушить интерференцию), причинили людям много неприятностей, потому что они пытались придумывать волновую функцию одной отдельной частицы вместо правильной волновой функции координат обеих частиц. Полное описание можно правильно провести только в терминах функций координат обеих частиц.

§ 5. Уравнение Шредингера

До сих пор мы просто заботились о том, как бы записать состояния, которые бы учитывали, что электрон может находить­ся в пространстве где угодно. Теперь же следует позаботиться о включении в наше описание физики того, что может произойти в тех или иных обстоятельствах. Как и прежде, надо подумать о том, как состояния будут меняться со временем. Если у нас есть состояние |y>, которое несколько позже переходит в дру­гое состояние |y>, то положение в любой момент мы сможем описать, сделав волновую функцию (т. е. попросту амплитуду <r|y>) функцией не только координат, но и времени. Частицу в данных условиях можно будет тогда описывать, задавая меняющуюся во времени волновую функцию y (r, t) =y (х, у, z, t). Эта меняющаяся во времени волновая функция описывает эво­люцию последовательных состояний, которая происходит с тече­нием времени. Это так называемое «координатное представле­ние»; оно дает проекции состояния |y> на базисные состояния |r> и не всегда может считаться самым удобным, но мы с него

и начнем.

В гл. 6 мы описали на языке гамильтониана Нij., как состоя­ния меняются во времени. Мы видели, что временная вариация различных амплитуд дается матричным уравнением

Это уравнение говорит, что изменение во времени каждой из амплитуд Сi пропорционально сумме всех прочих амплитуд Сj

с коэффициентами Нij.

Как должно выглядеть (14.49) при континууме базисных состояний |x>? Вспомним сперва, что (14.49) можно также запи­сать в виде

Теперь ясно, что делать. Для x-представления следует писать

Сумма по базисным состояниям |j> заменяется интегралом по х'. Поскольку <х|Н^|х'> должна быть какой-то функцией от x и х', запишем ее как Н (х, х'), что соответствует Н if в (14.49). Тогда (14.50) это то же самое, что

где

Согласно (14.51), быстрота изменения y в точке х зависела бы от значений y во всех других точках х'; множитель Н(х, х') — это амплитуда (в единицу времени) того, что электрон перепры­гнет из х' в x. Оказывается, однако, что в природе эта амплитуда всюду, кроме точек х' , очень близких к х, равна нулю. Это озна­чает, как мы видели на примере цепочки атомов в начале главы [см. (14.12)], что правая часть (14.51) может быть полностью выражена только через y и ее производные по z в точке х.

Для частицы, которая свободно движется в пространстве, не подвергаясь действию каких-либо сил и возмущений, пра­вильный физический закон таков:

Откуда это получается? Это невозможно вывести из чего-либо нам уже известного. Это рождено в голове Шредингера, это вы­думано им в битве за понимание экспериментальных наблюдений реального мира. Может быть, какой-то ключ к тому, почему так должно быть, вам дадут размышления по поводу нашего вывода уравнения (14.12), которое проистекло из рассмотрения распро­странения электрона в кристалле.

Конечно, от свободных частиц проку мало. Что будет, если к частице приложить силы? Что ж, если действующая на частицу сила может быть описана с помощью скалярного потенциала V(х) (что означает, что речь идет не о магнитных силах, а об электрических) и если мы ограничимся низкими энергиями, чтобы иметь право пренебрегать теми сложностями, которые возникают при релятивистском движении, то гамильтониан, который укладывается в реальный мир, таков:

Опять-таки некоторый ключ к происхождению этого уравнения вы получите, если вернетесь к движению электрона в кристалле и посмотрите, как надо изменить уравнения, если энергия электрона медленно меняется от атома к атому, как если бы к кристаллу было приложено электрическое поле. Тогда член Е0 в (14.7) будет медленно меняться в зависимости от места и будет соответствовать новому слагаемому, появившемуся в (14.52). [Вас может удивить, отчего мы сразу перешли от (14.51) к (14.52), а не дали правильного выражения для амплитуды Н(х, х')=<х|Н^'>. Да потому, что Н (х , х') можно написать только с помощью необычных алгебраических функций, а инте­грал в правой части (14.51) выражается через привычные вещи. Если вам это в самом деле интересно, то вот смотрите: Н (х, х') можно записать так:

где d'' означает вторую производную 6-функции. Эту довольно странную функцию можно заменить чуть более удобным и пол­ностью ей равнозначным алгебраическим выражением

Мы не будем пользоваться этими формулами, а прямо будем рабо­тать с (14.52).]

Если теперь взять выражение (14.52) и подставить в (14.50) вместо интеграла, то для y(х)=<х|y> получится дифферен­циальное уравнение

Совершенно очевидно, что надлежит поставить вместо (14.53),

если нас интересует трехмерное движение. Надо только d2/dx2

заменить на

а V(х) заменить на V(x, у, z). Для электрона, движущегося в поле с потенциалом V (х, у, z), амплитуда y(х, у, z) удовлетво­ряет дифференциальному уравнению

Называется оно уравнением Шредингера и было первым извест­ным квантовомеханическим уравнением. Его написал Шредин­гер, прежде чем было открыто любое другое описанное в этом томе уравнение.

Хотя мы здесь пришли к нему совсем иным путем, но появле­ние этого уравнения в 1926 г., когда Шредингер впервые его написал, явилось великим историческим моментом, отметившим рождение квантовомеханического описания материи. Многие годы внутренняя атомная структура вещества была великой тайной. Никто не был в состоянии понять, что скрепляет вещест­во, отчего существует химическая связь, и, особенно, как атомам удается быть устойчивыми. Хотя Бор и смог дать описание внут­реннего движения электрона в атоме водорода, которое, каза­лось бы, объясняло наблюдаемый спектр лучей, испускаемых этим атомом, но причина, отчего электроны движутся именно так, оставалась тайной. Шредингер, открыв истинные уравне­ния движения электронов в масштабах атома, снабдил нас тео­рией, которая позволила рассчитать атомные явления количест­венно, точно и подробно. В принципе его уравнение способно объяснить все атомные явления, кроме тех, которые связаны с магнетизмом и теорией относительности. Оно объясняет уровни энергии атома и все, что касается химической связи. Но, ко­нечно, это объяснение только в принципе. Математика вскоре становится столь сложной, что точно решить удается только простейшие задачи. Одни лишь атомы водорода и гелия были рассчитаны с высокой точностью. Однако путем различных при­ближений, порой весьма сомнительных, можно многое понять и в более сложных атомах и в химической связи молекул. Некоторые из этих приближений были показаны в предыдущих главах.

Уравнение Шредингера в том виде, в каком мы его записали, не учитывает каких-либо магнитных эффектов. Их, правда, можно приближенно принять во внимание, добавив в уравнение еще другие члены. Но, как мы убедились раньше, магнетизм — это эффект существенно релятивистский, так что правильное опи­сание движения электрона в произвольном электромагнитном поле можно обсуждать только в рамках надлежащего релятиви­стского уравнения. Правильное релятивистское уравнение для движения электрона было открыто Дираком через год после того, как Шредингер придумал свое уравнение; оно имеет со­вершенно другой вид. Мы его не успеем здесь изучить.

Прежде чем перейти к рассмотрению некоторых следствий из уравнения Шредингера, хотелось бы продемонстрировать, как оно выглядит для системы многих частиц. Мы не будем им пользоваться, а просто хотим показать вам его, чтобы подчерк­нуть, что волновая функция y не просто обычная волна в про­странстве, а функция многих переменных. Если частиц много, уравнение превращается в

Потенциальная функция V — это то, что классически соответст­вует полной потенциальной энергии всех частиц. Если на ча­стицы не действуют внешние силы, то функция V есть попросту электростатическая энергия взаимодействия всех частиц. Иначе говоря, если заряд i-й частицы равен Ziqe, то функция V просто равна

§ 6. Квантованные уровни энергии

В одной из последующих глав мы на каком-нибудь примере более подробно разберем решение уравнения Шредингера. А сейчас мы хотим показать вам, как получается одно из самых замечательных следствий из уравнения Шредингера — тот поразительный факт, что из дифференциального уравнения, в которое входят только непрерывные функции непрерывных пространственных переменных, могут возникнуть квантовые эффекты, как, например, дискретные уровни энергии в атоме. Нам надо понять следующий существенный факт: как это может быть, что энергия электрона, попавшего в потенциальный «колодец» и вынужденного оставаться в определенной области пространства, с необходимостью принимает значения только из точно определенной дискретной их совокупности.

Пусть речь идет об одномерном случае движения электрона, когда потенциальная энергия меняется по х так, как показано па фиг. 14.3.

Фиг. 14.3. Потенциальная яма для частицы, движущейся вдоль оси х.

Предположим, что потенциал является статиче­ским: со временем он не меняется. Как уже мы делали много раз, поищем решения, отвечающие состояниям определенной энергии, т. е. определенной частоты. Испытаем такую форму

решения:

Если мы эту функцию подставим в уравнение Шредингера, то увидим, что функция а(х) обязана подчиняться следующему дифференциальному уравнению:

Это уравнение говорит, что, каково бы ни было х, вторая про­изводная а(х) по х пропорциональна а(х) с коэффициентом пропорциональности V-Е. Вторая производная от а (х) это скорость изменения наклона а (х). Если потенциал V больше энергии Е частицы, то скорость изменения наклона а (х) будет иметь тот же знак, что и а (х). Это значит, что кривая а(х) по­вернута выпуклостью к оси х, т. е. более или менее следует ходу положительной или отрицательной экспоненты е±x. Это озна­чает, что на участке слева от х1 (см. фиг. 14.3), где V больше предполагаемой энергии Е, функция а (х) будет напоминать одну из кривых на фиг. 14.4, а.

Фиг. 14.4. Возможные формы волновой функции а(х) при V>E и при V<E.

Если же потенциальная функция V меньше энергии Е, то знак второй производной а (х) по х противоположен знаку самой а(х) и кривая a(х) будет всегда вогнута к оси х, подобно одной из линий на фиг. 14.4, б. Решение на этом участке при­обретет форму кусочков синусоид.

Теперь поглядим, можем ли мы графически построить реше­ние для функции а(х), отвечающей частице с энергией Еа при потенциале V, показанном на фиг. 14.5. Раз нас интересует такое положение, когда частица заключена внутри потенциальной ямы, то мы будем искать решения, при которых амплитуда волны принимает после удаления х за пределы потенциальной ямы очень малые значения. Мы очень легко можем представить себе кривую наподобие изображенной на фиг. 14.5, стремящуюся к нулю при больших отрицательных х и плавно поднимающуюся при приближении к х1. Поскольку V в точке х1 равно Еа, то кривизна функции в этой точке равна нулю. Между х1 и х2 величина Vа всегда отрицательна, так что функция а(х) все время вогнута к оси, а кривизна тем больше, чем больше разность между Еа и V. Если продолжить кривую в область между x1 и x2, ей придется идти примерно так, как на фиг. 14.5.

Фиг. 14.5. Волновая функция для энергии Еа, стремящаяся к нулю при удалении х в отрицательную сторону.

Теперь протянем эту кривую правее х2. Там она искрив­ляется прочь от оси и движется к большим положительным зна­чениям (фиг. 14.6).

Фиг. 14.6. Волновая функция а(х) (см. фиг. 14.5), продолженная за x2.

Для выбранной нами энергии Еа решение a(х) с ростом х растет все сильнее и сильнее. Действительно, ведь и кривизна решения а(х) тоже возрастает (если потенциал остается почти постоянным). Амплитуда круто вырастает до гигантских масштабов. Что это означает? Просто что частица не «связана» потенциальной ямой. Обнаружить ее вне ямы беско­нечно более вероятно, чем внутри. Для изготовленного нами решения гораздо более вероятно встретить электрон в x=+Ґ, чем где-либо еще. Найти решение для связанной частицы нам не удалось.

Что ж, попробуем взять другую энергию, скажем, чуточку повыше чем Еа, например Еb (фиг. 14.7).

фиг. 14.7. Волновая функция а(х) для энер­гии eb, большей чем Еа.

Если слева условия останутся теми же, то мы придем к решению, показанному на нижней части фиг. 14.7. На первых порах оно выглядит получ­ше, нов конце концов оказывается таким же плохим, как и решение для Еа, только теперь при возрастании x ве­личина а(х) стано­вится все более и бо­лее отрицательной.

Может быть, в этом разгадка! Раз небольшое изменение энергии от Еа к Еb приводит к тому, что кривая перебрасывается с одной стороны оси на другую, то, может быть, существует энергия, лежащая между Еа и Еb, при которой кривая для боль­ших х будет стремиться к нулю. Так оно и есть, и мы на фиг. 14.8 изобразили, как может выглядеть решение.

Фиг. 14.8. Волновая функция для анергии Еc между Еа и Еb.

Вам нужно понимать, что решение, показанное на рисунке, это весьма частное решение. Если бы мы даже чуть-чуть подняли или снизили энергию, то функция перешла бы в другие кривые, похожие на одну из штриховых кривых фиг. 14.8, и опять для связанной частицы не получилось бы надлежа­щих условий. Мы пришли к выводу, что если частица должна находиться в потен­циальной яме, то это мо­жет с ней случиться толь­ко при вполне определен­ной энергии.

Значит ли это, что у частицы, находящейся в связанном состоянии в по­тенциальной яме, может быть только одна энергия? Отнюдь. Могут быть и другие, но не слишком близко к Ес. Обратите внимание, что волновая функция на фиг. 14.8 четы­ре раза пересекает ось на участке х1х2. Если бы мы выбрали энергию значи­тельно ниже Ес, то могло бы получиться решение, которое бы пересекло ось только трижды, только дважды, только единожды или ни разу. Возможные

решения намечены на фиг. 14.9.

Фиг. 14.9. Функция а(х) для пяти связанных состояний с наинизшими энергиями.

(Могут быть и решения, отве­чающие более высоким энергиям.) Вывод состоит в том, что если частица загнана в потенциальную яму, то ее энергия прини­мает только определенные специальные значения, образующие дискретный энергетический спектр. Вы понимаете теперь, как способно дифференциальное уравнение описать этот основной факт квантовой физики.

Следует заметить только одно. Если энергия Е выше верха потенциальной ямы, то дискретных решений уже не будет, и разрешены все мыслимые энергии. Такие решения отвечают рассеянию свободных частиц на потенциальной яме. Пример таких решений мы видели, когда рассматривали влияние атомов примесей в кристалле.

* Помните, еще раньше мы условились, что

* Был использован тот факт, что см. вып. 1

* О распределениях вероятностей шла речь в гл. 6, § 4 (вып. 1).

* Представьте себе, что по мере сближения точек хn амплитуда А прыжков из хn 1 в хn возрастает.

Главa 15

СИММЕТРИЯ И ЗАКОНЫ СОХРАНЕНИЯ

§ 1. Симметрия

§ 2. Симметрия и ее сохранение

§ 3. Законы сохранения

§ 4. Поляризованный свет

§ 5. Распад Λ°

§ 6. Сводка матриц поворота

Повторить: гл. 52 (вып. 4} «Сим­метрия законов физики»

§ 1. Симметрия

В классической физике немало величин (та­ких, как импульс, энергия и момент количества движения) сохраняется. Теоремы о сохранении соответствующих величин существуют и в кван­товой механике. Самое прекрасное в квантовой механике это то, что теоремы сохранения в опре­деленном смысле удается в ней вывести из чего-то другого; в классической же механике они сами практически являются исходными для других законов. (Можно, правда, и в классиче­ской механике поступать так же, как в кванто­вой, но это удается только на очень высоком уровне.) В квантовой механике, однако, законы сохранения очень тесно связаны с принципом суперпозиции амплитуд и с симметрией физи­ческих систем относительно различных измене­ний. Это и есть тема настоящей лекции. Хотя идеи эти мы будем применять главным образом к сохранению момента количества движения, но существенно здесь то, что все теоремы о сохранении каких угодно величин всегда связа­ны — в квантовой механике — с симметриями системы.

Начнем поэтому с изучения вопроса о симметриях систем. Очень простым примером слу­жат молекулярные ионы водорода (впрочем, в равной степени подошли бы и молекулы ам­миака), у которых имеется по два состояния. У молекулярного иона водорода за одно базис­ное состояние мы принимали такое состояние, когда электрон расположен возле протона № 1, а за другое базисное со­стояние то, в котором электрон располагался возле протона № 2. Эти два состояния (мы их называли |1> и |2>) мы снова показываем на фиг. 15.1, а.

Фиг. 15.1. Если состояния |1> и |2> отразить в плоскости Р—Р, они перейдут соответ­ственно в состояния |2> и |1>.

И вот, по­скольку оба ядра в точ­ности одинаковы, в этой физической системе име­ется определенная сим­метрия. Иначе сказать, если бы нам пришлось отразить систему в пло­скости, поставленной по­средине между двумя протонами (имеется в виду, если бы все находящееся с одной стороны плоскости симметрично перешло на другую сторону), то возникла бы картина, представленная на фиг. 15.1, б. А коль скоро протоны тождественны, операция отражения пе­реводит |1> в |2>, а |2> в |1>. Обозначим эту операцию отражения Р^ и напишем

Значит, наше Р^это оператор, в том смысле, что он «что-то делает» с состоянием, чтобы вышло новое состояние. Интересно здесь то, что Р^, действуя на любое состояние, создает какое-то другое состояние системы.

Далее, у Р^, как у всякого другого оператора, с которыми мы встречались, есть матричные элементы, которые можно определить с помощью обычных очевидных обозначений. Именно

суть матричные элементы, которые получаются, если Р^ |1> и

Р^|2> умножить слева на <1| . Согласно уравнению (15.1), они равны

Таким же путем можно получить и Р21, и Р22. Матрица Р^ относительно базисной системы|1> и |2> есть

Мы снова убеждаемся, что слова оператор и матрица в кван­товой механике практически взаимозаменяемы. Есть, конечно, легкие технические различия, как между словами «числитель­ное» и «число», но мы не такие педанты, чтобы забивать себе этим голову. Так что будем именовать Р^ то оператором, то мат­рицей, независимо от того, определяет ли оно операцию или реально использовано для получения численной матрицы.

Теперь мы хотели бы кое на что обратить ваше внимание. Предположим, что физика всей системы молекулярного иона водорода сама по себе симметрична. Этого могло бы и не быть — это зависит, например, от того, что находится с нею рядом. Но если система симметрична, то с необходимостью должна быть справедлива следующая идея. Предположим, что вначале, при t=0, система находится в состоянии |1>, а через промежуток времени t мы обнаруживаем, что система оказалась в более сложном положении — в какой-то линейной комбинации обоих базисных состояний. Вспомните, что в гл. 6 (вып. 8) мы привыкли представлять «эволюцию во времени» умножением на оператор U^. Это означает, что система через мгновение (скажем для опреде­ленности, через 15 сек) окажется в каком-то ином состоянии.

Например, это состояние на Ц 2/3 может состоять из состояния |1> и на iЦ1/3 из состояния |2>, и мы бы написали

|y на 15-й секунде>=.(15.4)

Теперь спросим: что же произойдет, если вначале мы запустим систему в симметричном состоянии |2> и при тех же условиях подождем 15 сек? Ясно, что если мир симметричен (что мы и предполагаем), то обязательно получится состояние, симметрич­ное с (15.4):

|y на 15-й секунде>=

Те же идеи схематично изображены на фиг. 15.2.

Фиг. 15.2. Если в симметричной системе чистое состояние |1> развивается во вре­мени так, как показано в части (а), то чистое состояние |2> будет во времени развиваться так, как показано в части (б).

Итак, если физика системы симметрична относительно некоторой плоскости и мы рассчитали поведение того или иного состояния, то нам также известно поведение состояния, которое получилось бы после отражения исходного состояния в плоскости симметрии.

То же самое можно высказать чуть более общо, т. е. чуть более отвлеченно. Пусть Q^ любая из множества операций, которые вы можете произвести над системой, не меняя физики. К примеру, за Q^ мы можем принять операцию отражения в пло­скости, расположенной посредине между двумя атомами моле­кулы водорода. Или в системе с двумя электронами можно было бы под Q^ подразумевать операцию обмена двумя электронами. Третьей возможностью явилась бы в сферически симметричной системе операция поворота всей системы на конечный угол вокруг некоторой оси; от этого физика не изменится. Конечно, в каждом отдельном случае мы бы обозначали Q^ по-своему. В частности, через R^y (q) мы обычно будем обозначать операцию «поверни систему вокруг оси у на угол q». Под Q^ мы просто понимаем один из названных операторов или любой другой, который оставляет всю физическую ситуацию неизменной.

Оператор Q^ мы будем называть оператором симметрии для системы.

Вот вам еще примеры операторов симметрии. Если у нас имеется атом, а внешнее магнитное или внешнее электрическое поле отсутствует, то после поворота системы координат вокруг любой оси физическая система остается той же самой. Опять-таки молекула аммиака симметрична относительно отражения в пло­скости, параллельной той, в которой лежат три атома водорода (пока нет электрического поля). Если есть электрическое поле, то при отражении надо было бы обратить и поле, а это меняет всю физическую задачу. Но пока внешнего поля нет, молекула симметрична.

Теперь рассмотрим общий случай. Положим, мы начали с состояния |y1>, а через некоторое время или под влиянием других физических условий оно превратилось в состояние |y2>. Напишем

[Посмотрите на формулу (15.4).] Теперь вообразите, что над всей системой мы проводим операцию Q^. Состояние |y1> преобра­зится в состояние |y'1>, которое также записывается в виде Q^|y1>. А состояние |y2> превращается в |y'2>=Q^|y2>. И вот, если физика симметрична относительно Q^ (не забывайте про это, если это отнюдь не общее свойство системы), тогда, подождав в тех же условиях то же время, мы должны получить

[Как в (15.5).] Но вместо |y'1> можно написать Q^|y1>, а вместо |y2> написать Q^ |y2>, так что (15.7) переписывается в виде

Теперь, если |y2> заменить на U^ |y1> [см. (15.6)], то получим

Нетрудно понять, что это значит. В отношении атома водорода это означает, что «отразить и после немного подождать» [правая часть (15.9)] — это то же самое, что «немного подождать, а после отразить» [левая часть (15.9)]. Они должны совпасть, если толь­ко U^ при отражении не меняется.

А поскольку (15.9) справедливо при любом исходном со­стоянии | y 1>, то на самом деле это уравнение для операторов

Это-то мы и хотели получить — математическую формулировку симметрии. Когда соблюдается (15.10), мы говорим, что операторы U^ и Q^ коммутируют. Тогда «симметрию» можно опреде­лить следующим образом: физическая система симметрична относительно операции Q^, когда Q^ коммутирует с U^ опера­цией прошествия времени). [На языке матриц произведение двух операторов равнозначно матричному произведению, так что (15.10) в системе, симметричной относительно преобразова­ния Q^, выполняется и для матриц Q^ и U^.]

Кстати, поскольку для бесконечно малого времени 8 мы имеем [7=1 — iH^e/h, где H^ — обычный гамильтониан [см. гл. 6 (вып. 8)1, то легко видеть, что когда (15.10) выполнено, то вы­полнено и

Так что (15.11) есть математическая формулировка условий на симметричность физической ситуации относительно оператора Q^. Она определяет симметрию.

§ 2. Симметрия и ее сохранение

Прежде чем применять только что найденный результат, хотелось бы еще немного вникнуть в идею симметрии. Положим, что стечение обстоятельств таково, что после действия опера­тора Q^ на состояние получается опять то же состояние. Это очень частный случай, но все же допустим, что так сложилось, что состояние |y'>=Q^|y0>. физически совпадает с состоянием |y0>. Это значит, что |y'> равняется |y0>, если не считать не­которого фазового множителя. Как это себе представлять? Пусть, например, имеется ион H+2 в состоянии, которое мы когда-то обозначали |I>. У этого состояния имеется одинаковая ам­плитуда побывать в базисных состояниях |1> и |2>. Вероят­ности показаны столбиками на фиг. 15.3, а.

Фиг. 15.3. Состояние |I> и состояние P^|I>, получае­мые отражением |I> в плоскости, проходящей посреди­не между атомами в ионе Н2+.

Если мы на состояние |I> подействуем оператором отраже­ния Р^, он перевернет его, поменяв местами |1> с|2>, а |2> с|1>; полу­чатся вероятности, по­казанные на фиг. 15.3,б. Перед нами опять состояние |I>. Если начать с состояния |II>, то вероятности до и после отражения будут выглядеть тоже одинаково. Правда, если посмотреть на ампли­туды, то разница все же есть. У состояния |I> после отраже­ния амплитуды останутся теми же, у состояния | //) они приобретут противоположный знак. Иными словами,

Если написать , то у состояния |I> мы имеем еid=1, а у состояния |II> имеем еid=-1.

Возьмем другой пример. Пусть у нас есть правополяризованный по кругу фотон, распространяющийся в направлении z. Если мы совершим операцию поворота вокруг оси z, то, как мы знаем, это просто приведет к умножению амплитуды на eij, где j — угол поворота. Значит, в этом случае для операции поворота 8 просто равно углу поворота.

Далее, ясно, что если оказывается верным, что оператор Q^ в какой-то момент времени просто меняет фазу состояния (ска­жем, в момент t=0), то это будет верно всегда. Иначе говоря, если состояние |y1> переходит за время t в состояние |y2>:

и если симметрия физической картины такова, что

то верно и то, что

Это ясно, ведь

[Верхние равенства следуют из (15.13) и (15.10) для симметричной системы, нижние — из (15.14) и из того, что всякое число, скажем еid, коммутирует с оператором.]

Итак, при некоторых симметриях то, что верно сначала, вер­но всегда. Но разве это не закон сохранения? Да! Он утверждает, что если вы взглянете на исходное состояние и, проделав где-то в стороне небольшой подсчет, откроете, что операция, которая является операцией симметрии для системы, приводит только к умножению на некоторый фазовый множитель, то вы будете уверены, что это же свойство будет выполнено для конечного состояния — та же операция умножит и конечное состояние на тот же фазовый множитель. Это будет верно всегда, даже если вы ничего не знаете о том внутреннем механизме мира, который изменяет систему от начального состояния к конечному. Даже если вы не позаботились вглядеться в детали того, каким именно способом система переходит от одного состояния к другому, вы все равно имеете право говорить, что если вещь вначале находилась в состоянии с определенным характером симметрии и если гамильтониан этой вещи симметричен отно­сительно этой операции симметрии, тогда тот же характер симметрии останется у состояния на вечные времена. Это основа всех законов сохранения квантовой механики.

Рассмотрим частный пример. Возьмем опять оператор Р^. Сперва, правда, немножко изменим определение операции Р. Пусть Р^ будет не просто зеркальным отражением, потому что оно требует определения плоскости, в которой поставлено зер­кало. Существует особый вид отражения, который указания плоскости не требует. Переопределим операцию Р^ таким обра­зом: сперва вы отражаете в зеркале, находящемся в плоскости z, так что z переходит в -z, x остается х, а у остается у; затем вы поворачиваете систему на угол 180° вокруг оси z, так что х переходит в -х, а у в -у. Все вместе называется инверсией, обращением координат. Каждая точка проецируется через начало координат в диаметрально противоположное положение. Все координаты всего на свете меняют знак. Эту операцию мы, как и прежде, будем обозначать символом Р. Она изображена на фиг. 15.4 и немного удобнее, чем простая операция отражения, потому что не нужно указывать, в какой координатной плоско­сти происходит отражение, достаточно лишь указать точ­ку, являющуюся центром симметрии.

Фиг. 15.4. Операция инверсии Р^. То, что находится в точке A (х, у, z), переходит в точку

А' (-х, -у, -z).

Теперь предположим, что у sac есть состояние |y0>, которое при операции инверсии переходит в еid|y0>, т. е.

Сделаем теперь новую инверсию. После двух инверсий мы вернемся к тому, с чего начали: ничего не изменится. Должно получиться

Но

Отсюда следует, что (еid)2=1. Значит, если оператор инверсии является операцией симметрии для какого-то состояния, то У d могут быть только две возможности:

еid=±1,

а это означает, что или

В классической физике, если состояние симметрично отно­сительно инверсии, то эта операция дает опять то же состояние. А в квантовой механике имеются две возможности: получается

либо то же состояние, либо минус то же состояние. Когда полу­чается то же состояние, Р^|y0>=|y0>, мы говорим, что у со­стояния |y0> четность положительна. Если знак меняется, так что Р^|y0>=-|y0>, мы говорим, что четность состояния отрицательна. (Оператор инверсии Р^ известен также как опе­ратор четности.) Состояние |I> иона Н+2 обладает положитель­ной четностью; состояние же |II>отрицательной [см. (15.12)]. Бывают, конечно, состояния, не симметричные отно­сительно операции Р^; это состояния без определенной четности. Например, в системе Н+2 состояние |I> имеет положительную четность, состояние | II>отрицательную, а состояние | определенной четности не имеет.

Когда мы говорим о том, что операция (например, инверсия) была совершена «над физической системой», то это можно пред­ставлять себе двояким образом. Можно считать, что все, что было в точке r, физически сдвинулось в обратную точку -r; или можно считать, что мы смотрим на ту же систему из новой системы отсчета х', y', z', связанной со старой формулами х'=-х, у' =-у и z'=-z. Точно так же, когда мы говорим о поворотах, то можно либо считать, что мы поворачиваем цели­ком всю физическую систему, либо что поворачиваем систему координат, в которой мы измеряем нашу систему, оставляя последнюю закрепленной в пространстве. Эти две точки зрения по существу равноценны. Они равноценны и при повороте, только поворот системы на угол q подобен повороту системы отсчета на отрицательный угол —q. В нашем курсе мы обычно смотрели, что получается, когда берется проекция на новую систему осей. То, что при этом получается, совпадает с тем, что получится, если мы оставим оси прежними и повернем тело на столько же назад. Когда вы это делаете, не забудьте поменять знаки углов.

Многие законы физики (но не все) не меняются при отраже­нии или инверсии координат. Они симметричны по отношению к инверсии. Законы электродинамики, например, не изменяются, если мы меняем x на -х, у на -у и z на -z во всех уравнениях. То же относится и к законам тяжести, и к сильным взаимодей­ствиям ядерной физики. Только у слабых взаимодействий, ответственных за b-распад, нет такой симметрии. [Мы обсуждали это несколько подробнее в гл. 52 (вып. 4).] Но мы сейчас пре­небрежем b-распадом. Тогда в любой физической системе, на которую, как можно думать, b-распад не оказывает заметного влияния (в качестве примера возьмем испускание света атомом), гамильтониан H^ и оператор Р^ будут коммутировать, В этих обстоятельствах верно следующее утверждение. Если четность состояния вначале положительна и вы поинтересуетесь физиче­ской ситуацией через некоторое время, то увидите, что четность останется положительной. Пусть, например, нам известно, что атом перед тем, как испустить фотон, находился в состоянии с положительной четностью. Вы рассматриваете всю эту систему (включая фотон) после испускания; четность опять будет поло­жительна (и точно так же было бы, если бы вы начали с отрица­тельной четности). Этот принцип именуется сохранением чет­ности. Вы теперь понимаете, почему слова «сохранение четно­сти» и «симметрия относительно отражений» в квантовой меха­нике тесно переплетены. Хотя до последних лет считалось, что природа всегда сохраняет четность, теперь известно, что это не так. Выяснилось, что это неверно, потому что реакция b-pacпада не обладает симметрией относительно инверсии, обнаружен­ной в других законах физики.

Теперь мы можем доказать интересную теорему (справедли­вую до тех пор, пока слабыми взаимодействиями можно прене­брегать): любое состояние определенной энергии, не являющееся вырожденным, обязано обладать определенной четностью. Его четность должна быть либо положительна, либо отрицательна. (Припомните, что нам иногда встречались системы, в которых несколько состояний имели одну и ту же энергию,— такие со­стояния мы называем вырожденными. Так вот наша теорема к ним не относится.)

Мы знаем, что если |y0> — состояние определенной энергии, то

где Е — просто число, энергия состояния. Если у нас имеется произвольный оператор Q^, который является оператором сим­метрии для системы, то мы можем доказать, что

если только |y0> — единственное состояние с данной энергией. Рассмотрим новое состояние |y0> которое вы получаете после действия Q^. Если вся физика симметрична, то |y'0> должно иметь ту же энергию, что и |y0>. Но мы ведь выбрали случай, когда состояние с такой энергией только одно, а именно |y0>; значит, |y'0> должно быть тем же состоянием, отличаясь разве что фазой. Таково физическое доказательство.

Но то же последует и из нашей математики. Наше определе­ние симметрии —это (15.10) или (15.11), справедливое для лю­бого состояния |y>:

Но сейчас речь идет о состоянии |y0>, которое является состоя­нием с определенной энергией, так что Н^|y0>=Е|y0>. А раз Е — просто число, то оно попросту проходит сквозь Q^, и мы имеем

так что

Значит, |y'0>=Q^ ly0> — тоже состояние H^ с определенной энергией и при этом с тем же самым Е. Но по нашей гипотезе имеется только одно такое состояние; значит, |y0> должно быть равно ёid|y0>.

Все, что мы только что доказали, относится к любому опера­тору Q^, лишь бы он был оператором симметрии для физической системы. Поэтому когда в рассмотрение входят только электрические силы и сильные взаимодействия (и нет никакого b-распада), так что симметрия относительно инверсии является вполне допустимым приближением, в этих обстоятельствах Р^|y>=еid|y>. Но мы видели также, что еid обязано равняться либо +1, либо -1. Итак, любое состояние с определенной энергией (если оно не вырождено) навсегда снабжено либо положитель­ной, либо отрицательной четностью.

§ 3. Законы сохранения

Обратимся теперь к другому интересному примеру операции симметрии — к повороту. Рассмотрим частный случай опера­тора, который поворачивает атомную систему на угол j вокруг оси z. Обозначим этот оператор R^z(φ). Предположим еще, что никаких влияний, выстроенных вдоль осей х и у, в нашем физи­ческом случае нет. Все электрические или магнитные поля взяты параллельными оси z, так что никаких изменений во внешних условиях от поворота всей физической системы вокруг оси z не наступит. Например, если имеется атом в пустом простран­стве и мы повернем этот атом вокруг оси z на угол j, то получим ту же физическую систему.

Тогда существуют особые состояния, обладающие тем свойст­вом, что такая операция создает новое состояние, равное перво­начальному, умноженному на некоторый фазовый множитель. Заметим, что когда это так, то изменение фазы обязано быть всегда пропорционально углу j. Представьте, что вы дважды захотели бы сделать поворот на угол j. Это равносильно тому, что повернуть на угол 2j. Если поворот на угол j имеет своим следствием умножение состояния |y0> на фазовый множи­тель eid, так что

то два таких поворота, один вслед за другим, привели бы к умножению состояния на множитель (еid)2i2d, так как

Изменение фазы d оказывается пропорциональным φ. Мы, стало быть, рассматриваем лишь те особые состояния |y0>, для которых

R^z(j)|y0> =eimj|y0>, (15.22)

где mнекоторое вещественное число.

Нам известен также тот примечательный факт, что если система симметрична относительно поворота вокруг z и если исходное состояние обладает тем свойством, что (15.22) окажется выполненным, то и позже у этого состояния сохранится то же свойство. Значит, это число m имеет большую важность. Если его значение мы знаем в начале, то мы знаем его и в конце. Это число m, которое сохраняется, есть константа движения. Причи­на, почему мы говорим об m, выталкиваем его на первый план, состоит в том, что оно не связано с каким-либо определенным углом j, и еще потому, что у него есть соответствие в классиче­ской механике. В квантовой механике мы выбираем для mh (в состояниях, подобных |y0>) название момент количества движения вокруг оси z. И тогда мы обнаруживаем, что в пределе больших систем та же величина равняется z-компоненте момента количества движения из классической механики. Значит, если мы имеем состояние, для которого поворот вокруг оси z при­водит просто к фазовому множителю eimj, то перед нами со­стояние с определенным моментом количества движения во­круг этой оси, и момент количества движения сохраняется. Он навсегда остается равным mh. Конечно, повороты можно делать вокруг любых осей, и сохранение момента количества движения тоже будет получаться для любых осей. Вы видите, что сохранение момента количества движения связано с тем фактом, что, когда вы поворачиваете систему, вы получаете опять то же состояние, только с новым фазовым множителем.

Сейчас мы покажем вам, насколько обща эта идея. Применим ее к двум другим законам сохранения, по физической идее точно соответствующим сохранению момента количества движения. В классической физике существует также сохранение импульса и сохранение энергии, и интересно, что оба они тоже связаны с некоторыми физическими симметриями. Положим, у нас имеет­ся физическая система — атом, или сложное ядро, или же моле­кула, или что угодно — и если мы возьмем ее и как целое пере­двинем на новое место, то ничего не изменится. Значит, мы имеем гамильтониан с тем свойством, что он в некотором смысле зави­сит от внутренних координат, но не зависит от абсолютного положения в пространстве. В этих обстоятельствах существует специальная операция симметрии, которая называется простран­ственным переносом. Определим D^x (а) как операцию смещения на расстояние а вдоль оси х. Тогда для каждого состояния мы сможем проделать эту операцию и получить новое состояние. И опять здесь возможны весьма специальные состояния, обла­дающие тем свойством, что когда вы их смещаете по оси х на а, вы получаете то же самое состояние (если не считать фазового множителя). И так же, как делалось выше, можно доказать, что когда так бывает, то фаза пропорциональна а. Так что для этих специальных состояний |y0> можно писать

Коэффициент k, умноженный на h, называется х-компонентой импульса. Его называют так потому, что это число, когда система велика, численно совпадает с классическим импульсом рх. Общее утверждение таково: если гамильтониан не меняется при сдвиге системы и если вначале состояние характеризуется опре­деленным импульсом в направлении х, то импульс в направле­нии х останется с течением времени неизменным. Полный им­пульс системы до и после столкновений (или после взрывов или еще чего-нибудь?) будет один и тот же.

Есть и другая операция, которая совершенно аналогична смещению в пространстве: сдвиг во времени. Положим, перед нами физические обстоятельства, когда ничто внешнее от вре­мени не зависит, и вот в этих обстоятельствах мы помещаем нечто в некоторый момент времени в данное состояние и пускаем его на произвол судьбы. А в другой раз (в новом опыте) мы то же самое устройство запускаем двумя секундами позже или вообще т секундами позже. И вот если ничего во внешних условиях не зависит от абсолютного времени, то все будет развиваться точно так же, как прежде, и конечное состояние совпадет с прежним конечным состоянием, за исключением того, что за­поздает на время т. В этих обстоятельствах также найдутся осо­бые состояния, у которых развитие во времени обладает той особенностью, что запоздавшее состояние — это попросту ста­рое состояние, умноженное на фазовый множитель. И на этот раз тоже ясно, что для этих особых состояний изменение фазы должно быть пропорционально t. Можно написать

Общепринято при определении w пользоваться знаком минус; при таком соглашении wh — это энергия системы; она сохра­няется. Итак, система с определенной энергией — это такая система, которая при сдвиге во времени на t воспроизводит самое себя, умноженную на e-iwt. (Это как раз то, что мы гово­рили, когда определяли квантовое состояние с определенной энергией, так что все согласуется.) Это означает, что если система находится в состоянии с определенной энергией и если га­мильтониан не зависит от t, то независимо от того, что произой­дет дальше, система во все позднейшие времена будет обладать той же энергией.

Теперь вы понимаете, стало быть, какая связь между законами сохранения и симметрией мира. Симметрия по отношению к сдви­гам во времени влечет за собой сохранение энергии; симметрия относительно положения на осях х, у или z влечет за собой сохранение соответствующей компоненты импульса. Симметрия относительно поворотов вокруг осей х, у и z влечет за собой сохранение х-, у- и z-компонент момента количества движения. Симметрия относительно отражений влечет за собой сохранение четности. Симметрия по отношению к перестановке двух элек­тронов влечет за собой сохранение чего-то, чему не придумано еще названия, и т. д. Часть этих принципов имеет классические аналоги, а часть — нет. В квантовой механике есть больше законов сохранения, чем это нужно для классической механики или по крайней мере чем обыкновенно в ней в ходу.

Чтобы вы смогли разобраться в других книгах по кванто­вой механике, мы сделаем небольшую техническую ремарку и познакомим вас с одним общепринятым обозначением. Операция сдвига по времени — это как раз та самая операция U^, о кото­рой мы как-то говорили:

Многие предпочитают язык бесконечно малых сдвигов по времени или бесконечно малых перемещений в пространстве или пово­ротов на бесконечно малые углы. Поскольку всякое конечное смещение или угол можно постепенно накопить последователь­ными бесконечно малыми смещениями или поворотами, то часто легче проанализировать сначала этот бесконечно малый случай. Оператор бесконечно малого сдвига Dt во времени есть (по определению гл. 6, вып. 8)

Тогда Н аналогично классической величине, которую мы име­нуем энергией, потому что если Н^|y> оказывается равным

постоянной, умноженной на |y>, а именно если Н^|y>=E|y>,

то эта постоянная есть энергия системы.

То же самое проделывается и с другими операциями. Если мы делаем легкое смещение по х, скажем на Dx, то состояние

|y>, вообще говоря, перейдет в некоторое новое состояние

|y'>. Мы можем написать

потому что, когда Dx стремится к нулю, |y'> обязано обратиться опять в |y>, или, что то же самое, D^x (0)=1, а для малых Dx отклонение D^x (Dx) от единицы должно быть пропорционально Dx. Оператор рх, определенный таким путем, называется оператором импульса (естественно, для x-компоненты).

По тем же причинам для малых поворотов обычно пишут

и называют J^z оператором z-компоненты момента количества движения. Для тех особых состояний, для которых R^z (j)|y0>=еimj |y0>, можно для каждого малого угла, скажем Dj, разложить правую часть до членов первого порядка по Dj и получить

Сравнивая это с определением J^z по формуле (15.28), приходим к

Иначе говоря, если вы действуете оператором J^z на состояние с определенным моментом количества движения вокруг оси z, то получаете mh, умноженное на это состояние, где mhколи­чество z-компоненты момента количества движения. Все совер­шенно аналогично тому, как действие Н^ на состояние с опреде­ленной энергией дает Е|y>.

Теперь хотелось бы перейти к некоторым приложениям идеи о сохранении момента количества движения, чтобы показать вам ее в действии. Дело в том, что в действительности все это очень просто. О том, что момент количества движения сохраняется, вы знали и раньше. Единственное, что вам нужно запомнить из этой главы, это что если у состояния |y0> есть такое свойство, что при повороте на угол j вокруг оси z оно превращается в еimj|y0>, то z-компонента момента количества движения равна mh. Этих знаний достаточно, чтобы получить уйму инте­ресных вещей.

§ 4. Поляризованный свет

Прежде всего необходимо проверить одну идею. В гл. 9, § 4 (вып. 8), мы показали, что когда состояние правополяризованного по кругу света наблюдается из системы, повернутой на угол j вокруг оси z, то оно оказывается умноженным на еij. Не означает ли это, что фотоны правополяризованного по кругу света несут момент количества движения вдоль оси z, равный единице?

Да, так оно и есть. Это означает еще, что когда у нас имеется пучок света, содержащий множество фотонов, поголовно оди­наково поляризованных по кругу (как бывает в классических пучках), то он будет нести с собой какой-то момент количества движения. Если полная энергия, уносимая пучком за какое-то время, есть W, то в нем имеется N=W/hw фотонов. Каждый несет по моменту h, так что полный момент количества движения равен

Jz=Nh=W/w. (15.30)

Можно ли и в классике доказать, что свет, правополяризованный по кругу, несет с собой энергию и момент количества движения в пропорции W к w? Ведь если все правильно, это было бы классическое утверждение — случай, когда можно перейти от квантов к классике. Надо проверить, подтверждается ли это классической физикой. Тогда станет ясно, имеем ли мы право назвать т моментом количества движения. Припомним, чем в классическом смысле является правополяризованный свет. Он описывается электрическим полем с колеблющейся x-компонентой и колеблющейся y-компонентой, сдвинутыми по фазе на 90°, так что суммарный вектор x электриче­ского поля бежит по кругу (фиг. 15.5, а).

Фиг. I5.5. Электрическое поле x в поляризованной по кругу све­товой волне (а) и вращение элек­трона, приводимого в движение поляризованным по кругу светом (б). .

Теперь положим, что мы осветили таким светом стенку, способную поглотить его (или по крайней мере часть его), и рассмотрим один из атомов стенки, опираясь на классические представления. Мы часто представляли движение электрона в атоме в виде гармонического осциллятора, который приводится в дейст­вие внешним электрическим полем. Предположим, что атом изотропен, так что с равным успехом колеблется как в направлении х, так и в направлении у. Далее, у све­та, поляризованного по кру­гу, смещения по х и по у одинаковы, хотя и отстают друг от друга на 90°. В итоге электрон будет двигаться по кругу (фиг. 15.5, б). Он сместит­ся из положения равновесия в начале координат на величину г и начнет ходить по кругу, как-то отставая по фазе от вектора x. Связь между x и r может быть такая, как пока­зано на фиг. 15.5, б. Электрическое поле с течением времени поворачивается, но с такой же частотой поворачивается и сме­щение, так что относительная ориентация остается той же. Посмотрим теперь, какая работа производится над электроном. Скорость, с какой электрону подается энергия, равна его ско­рости v, умноженной на компоненту xt, параллельную этой

скорости:

Но вы не можете не заметить, что у электрона в это время непре­рывно увеличивается и момент количества движения, потому что он все время испытывает действие момента, вращающего его вок­руг начала координат. Вращательный момент равен xtr, и он обязан равняться скорости изменения момента количества движения dJz/dt:

Вспоминая, что v=wr, имеем

Следовательно, если проинтегрировать поглощаемый пол­ный момент количества движения, то он окажется пропорцио­нальным полной энергии, с коэффициентом пропорциональности 1/w, что согласуется с (15.30). Свет действительно несет с собой момент количества движения — одну единицу (Xh), когда он правополяризован по кругу вдоль оси z, и минус одну единицу, когда левополяризован.

Теперь зададим следующий вопрос: если свет линейно поля­ризован в направлении х, то чему равен момент количества движения? Свет, поляризованный в направлении х, может быть представлен суперпозицией право- и левополяризованного света. Поэтому имеется некоторая амплитуда того, что момент количества движения равен +h, и некоторая амплитуда того, что момент равен -h, так что определенного момента количества движения у него нет, а есть амплитуда появиться с +h, и такая же появиться с -h. Интерференция этих двух амплитуд создает линейную поляризацию, обладающую равной вероятностью оказаться с плюс или с минус одной единичкой момента количе­ства движения. Макроскопические измерения, проведенные над пучком линейно поляризованного света, покажут, что он несет нулевой момент количества движения, потому что среди боль­шого числа фотонов, несущих противоположные количества момента, окажется поровну правых и левых, и средний момент количества движения будет равен нулю. И в классической тео­рии вы не обнаружите никакого момента количества движения, разве что где-то окажутся следы какой-то круговой поляриза­ции.

Мы говорили, что частица со спином 1 может иметь три зна­чения Jz: +1, 0, -1 (те три состояния, которые нам встрети­лись в опыте Штерна — Герлаха).

Но у света свой нрав: у него только два состояния. Состоя­ния с нулем у него нет. Эта странная потеря связана с тем, что свет не может стоять на месте. У покоящейся частицы со спином j имеются 2j+1 возможных состояния со значениями jz, идущими с шагом 1 от -j до +j. Но оказывается, что если что-то имеет спин j, а масса этого чего-то равна нулю, то у него могут быть только состояния с компонентами +j и -j вдоль направ­ления движения. Например, у света не три состояния, а два, хотя фотон — это объект со спином 1. Как же это согласуется с нашими прежними доказательствами, опирающимися на то, что происходит при поворотах в пространстве, доказательства­ми того, что для частиц со спином 1 необходима тройка состоя­ний? Покоящуюся частицу можно поворачивать вокруг любой оси, не меняя состояния ее момента. Частицы же с нулевой массой покоя (например, фотоны или нейтрино) не могут на­ходиться в покое; только повороты вокруг оси, указывающей направление движения, не изменят состояния момента. А пово­ротов вокруг одной оси не хватает на то, чтобы доказать, что нужны обязательно три состояния, если дано, что одно из них при поворотах на угол j меняется, как еij.

Еще одно замечание в сторону. Вообще-то частицы с нулевой массой покоя могут обойтись только одним из двух спиновых со­стояний (+j, -j) относительно линии движения. У нейтрино (частиц со спином 1/2) в природе существуют только состояния с компонентой момента количества движения -h/2, обратной направлению движения (а у антинейтрино — только с компо­нентой по направлению движения, +h/2). Когда же система обладает симметрией инверсии (так что четность сохраняется), требуются уже обе компоненты +j и -j. Примером является свет.

§ 5. Распад L0

Теперь приведем пример того, как теорема о сохранении мо­мента количества движения применяется в чисто квантовофизических задачах. Рассмотрим распад лямбда-частицы (L0), кото­рая расщепляется на протон и p--мезон посредством слабого взаимодействия:

Пусть нам известно, что спин у пиона равен нулю, у протона — половине, а у L0 тоже половине. Мы хотели бы решить следую­щую задачу: положим, что L0 рождена таким образом, что ока­залась полностью поляризованной; это значит, что ее спин направлен, скажем, вверх по отношению к подходящим образом выбранной оси z (фиг. 15.6, а).

Фиг. 15.6. L0-частица со спином, направленным вверх, распадается на протон и пион (в системе центра масс).

Какова вероятность того, что протон вылетит под углом q?

Вопрос заключается в том, с какой вероятностью она распадется так, что протон вылетит под углом q к оси z (фиг. 15.6, б). Иными словами, каково угло­вое распределение распадов? Мы будем рассматривать распад в системе координат, где L0 покоится, измеряя углы в системе покоя L0; если нужно, их всегда можно перевести в другую

систему.

Начнем с рассмотрения того частного случая, когда протон испускается в небольшой телесный угол DW близ оси z (фиг. 15.7).

Фиг. 15.7. Две возможности распада частицы L0 со спином, направленным вверх, если про­тон движется по оси +z.

Момент сохраняется только при схеме распада (б).

До распада спин L0 был направлен вверх (фиг. 15.7, а). Через мгновение (по причинам, по сей день неизвестным, известно только, что они связаны со слабыми распадами) L0 взрывается, образуя протон и пион. Пусть протон летит вверх по оси + z. Тогда пиону из-за сохранения импульса придется направиться вниз. Поскольку протон — это частица со спином 1/2, то его спин обязан быть направлен либо вверх, либо вниз,— в принципе имеются две возможности, показанные на фиг. 15.7, б и в. Со­хранение момента количества движения требует, однако, чтобы спин протона был направлен только вверх. Легче всего понять это из следующих рассуждений. Частица, движущаяся вдоль оси z, никак не может приобрести за счет своего движения момента вокруг этой оси, поэтому в Jz могут дать вклад только спины. Спиновый момент количества движения вокруг оси z до распада был равен +h/2; значит, и после он будет равен + h/2. Можно сказать, что из-за того, что у пиона нет спина, спин протона должен смотреть вверх.

Если вас тревожит, что такого рода рассуждения могут в квантовой механике оказаться неправильными, стоит потратить минутку, чтобы показать, что и по квантовой механике все обстоит так же. Начальное (дораспадное) состояние, которое мы обозначим |L0, спин по + z), обладает тем свойством, что если его повернуть вокруг оси z на угол j, то вектор состояния умножается на фазовый множитель eij/2. (В повернутой системе вектор состояния равен eitf/2|L0, спин но + z>.) Именно это и имеют в виду, говоря о спине вверх у частицы со спином 1/2.

Поскольку поведение природы не зависит от нашего выбора осей, то конечное состояние системы «протон плюс пион» должно обладать тем же свойством. Конечное состояние мы можем, на­пример, записать в виде

1 протон летит по +z, спин по +z; пион летит по -z>.

Но движение пиона на самом деле не нужно оговаривать, потому что в выбранной нами системе пион всегда движется противоположно протону; наше описание конечного состояния можно упростить до

1 протон летит по + z, спин по + z>.

Так что же случится с этим состоянием, если мы повернем си­стему координат вокруг оси z на угол j?

Раз протон и пион движутся вдоль оси z, их движение пово­ротом не изменишь. (Вот почему мы и выбрали этот частный случай; иначе бы наше рассуждение не прошло.) Значит, с пио­ном ничего не случится, потому что спин его равен нулю. У про­тона, однако, спин равен 1/2. Если его спин направлен вверх, он в ответ на поворот изменит фазовый множитель в eij/2 раз. (А если бы спин его был направлен вниз, то изменение фазы стало бы e-ij/2.) Но если момент количества движения обязан сохра­няться (а это так, ибо в гамильтониане нет факторов, завися­щих от внешних воздействий), то изменение фазы из-за поворота должно быть до распада и после распада одно и то же. Итак, единственная возможность состоит в том, что спин протона будет направлен вверх. Если протон двинулся вверх, то и спин его должен быть направлен вверх.

Мы, следовательно, заключаем, что сохранение момен­та количества движения разрешает процесс, показанный на фиг. 15.7, б, но не разрешает процесса, показанного на фиг. 15.7, в. А раз мы знаем, что распад все же про­исходит, то, значит, имеется некоторая амплитуда для процесса, показанного на фиг. 15.7, б, когда протон летит вверх и спин его при этом тоже смотрит вверх. И мы обозначим буквой а амплитуду того, что в бесконечно малый промежуток времени произойдет такой распад.

Теперь посмотрим, что было бы, если бы спин L0 вначале был направлен вниз. Опять рассматриваем распады, в кото­рых протон взлетает вверх по оси z, как показано на фиг. 15.8.

Фиг. 15.8. Распад вдоль оси z для L0 со спином, направлен­ным вниз.

Вам, конечно, теперь ясно, что в этом случае спин протона направлен вниз (если только момент коли­чества движения сохра­няется). Обозначим ампли­туду такого распада буквой b.

Об амплитудах а и b мы ничего больше сказать не сможем. Они зависят от внутренней механики час­тицы L0 и от слабых распадов, и никто пока не знает, как их подсчитывать. Их приходится полу­чать из опыта. Но, зная только эти две амплитуды, мы можем узнать об угловом распределении распадов все, что захотим. Надо только всегда тщательно и полностью определять те состояния, о которых идет речь.

Мы хотим знать вероят­ность того, что протон вы­летит под углом q к оси z (в некоторый узкий телесный угол qW), как показано на фиг. 15.6. Проведем новую ось z в этом направлении и обозначим ее z'! Как анализировать, что происходит вдоль этой оси, мы знаем. По отношению к ней спин Л° уже не направлен вверх, а имеет какую-то амплитуду того, что он окажется направленным вверх и какую-то — вниз. Все это мы уже подсчитывали в гл. 4, а потом опять в гл. 8 [уравнение (8.30)] (вып. 8). Амплитуда того, что спин будет направлен вверх, есть cosq/2, а амплитуда того, что спин будет смотреть вниз, есть -sinθ/2. Когда спин L0 направлен вверх по оси z', она испустит протон в направлении z с амплиту­дой а. Значит, амплитуда того, что по направлению z пройдет протон, держа свой спин вверх, равна

acosq/2. (15.33)

Точно так же амплитуда того, что вдоль положительной оси z пройдет протон, направив свой спин вниз, равна

-bsinq/2. (15.34)

Те два процесса, к которым относятся эти амплитуды, показаны

на фиг. 15.9.

Фиг. 15.9. Два возможных состояния распада L0.

Теперь зададим такой немудреный вопрос. Пусть мы соби­раемся регистрировать протоны, вылетающие под углом q, не интересуясь их спином. Два спиновых состояния (вверх и вниз по оси z') различимы, даже если бы мы того и не хотели. Значит, чтобы получить вероятность, надо амплитуды возвысить в квад­рат и сложить. Вероятность f(q) обнаружить протон в неболь­шом телесном угле qW при q равна

Вспоминая, что

запишем f(q) так:

Угловое распределение имеет вид

Одна часть вероятности не зависит от q, а другая зависит от cosq линейно. Из измерений углового распределения мы можем получить a и b, а значит, и |а| , и |b|.

Можно получить ответ и на многие другие вопросы. Может быть, вас интересуют лишь те протоны, спин которых направлен вверх относительно старой оси z? Каждый член в (15.33) и (15.34) даст амплитуду того, что спин протона окажется направ­ленным вверх или вниз по отношению к оси z' (|+z'> и |-z'>). А состояние, когда спин направлен вверх относитель­но старой оси, | + z), можно выразить через два базисных со­стояния | + z'> и |-z'>. Можно тогда взять две амплитуды (15.33) и (15.34) с надлежащими коэффициентами (cosq/2 и -sinq/2) и получить полную амплитуду

Ее квадрат даст вероятность того, что протон вылетит под углом q со спином, направленным туда же, куда направлен спин L0 (вверх по оси z).

Если бы четность сохранялась, можно было бы сделать еще одно утверждение. Распад на фиг. 15.8 — это просто зеркальное отражение, скажем в плоскости yz, распада с фиг. 15.7. Если бы четность сохранялась, b равнялось бы либо a, либо -а. Тогда коэффициента в (15.37) был бы равен нулю и распад оди­наково часто происходил бы во всех направлениях.

Результаты опытов говорят, однако, что при распаде асим­метрия существует. Измеренное угловое распределение дейст­вительно, как мы предсказали, меняется по закону cosq, а не по закону cos2q или по другой степени. Из этого углового распределения, стало быть, следует, что спин L0 равен 1/2. Кроме того, мы видим, что четность не сохраняется. Действи­тельно, коэффициента на опыте найден равным -0,62±0,05, так что b примерно вдвое больше а. Отсутствие симметрии от­носительно отражений совершенно очевидно.

Вы видите, как много можно вывести из сохранения момента количества движения. Еще некоторые примеры будут приведены в следующей главе.

· · ·

Замечание после лекции. Под амплитудой а здесь мы подразумевали амплитуду того, что состояние

| протон летит по + z, спин по + z> обра­зовано за бесконечно малое время dt из состояния |L, спин по + z>, или, иными словами, что

<протон летит по +z, спин по +z|H|L, спин по + z>= iha, (15.38)

где H — гамильтониан всего мира или по крайней мере той его части, которая ответственна за L-распад. Сохранение момента количества дви­жения означает, что у гамильтониана должно быть такое свойство:

<протон летит по +z, спин по -z|H|L, спин по +z>=0. (15.39)

Под амплитудой b подразумевается, что

<протон летит по + z, спин по —z|H|L, спин по -z>=ihb. (15.40)

Сохранение момента количества движения предполагает, что

<протон летит по + z, спин по +z|H|L, спин по -z>=0. (15.41)

Если вам не ясно, как написаны амплитуды (15.33) и (15.34), можно их записать в более математической форме. Когда мы писали (15.33), нам нужна была амплитуда того, что Л со спином, направленным по +z, распадается на протон, движущийся вдоль направления +z' и обладаю­щий спином, направленным тоже по +z', т. е.

<протон летит по + z', спин по +z'|H|L, спин по +z>. (15.42)

По общим теоремам квантовой механики эту амплитуду можно записать так:

2S<протон летит по + z', спин по +z'|H|L, i> <L, i|L, спин по +z>,

(15.43)

где суммирование проводится но базисным состояниям |L, i> покоящейся L-частицы. Поскольку спин L-частнцы равен 1/2, таких состояний два, л каком бы базисе мы ни работали. Если в качестве базисных мы выберем состояния со спином, направленным вверх и вниз по отношению к оси z'(|+z'>, |-z'>), то амплитуда (15.43) будет равна сумме

<протон летит по +z', спин по +z'|H|L, +z'> <L, +z'|L, +z>+ +<протон летит по +z', спин по +z'|H|L,-z'><L,-z|L, +z>. (15.44).

Первый множитель в первом слагаемом равен а [из (15.38)], а первый множитель во втором слагаемом равен нулю — из формулы (15.41), в свою очередь следующей из сохранения момента количества движения. Второй множитель <L, +z'|L, +z> из первого слагаемого — это как раз амплитуда того, что частица со спином 1/2, направленным вверх по одной оси, будет также обладать спином, направленным вверх по другой оси, повернутой относительно первой на угол q . Такая амплитуда равна cosq/2 [см. табл. 4.2 (вып. 8)]. Так что (15.44) равно просто а созq/2, как и было написано в (15.33). Амплитуда (15.34) следует из таких же рассуж­дений для L-частицы со спином, направленным вниз.

· · ·

§ 6. Сводка матриц поворота

Теперь мы хотим собрать воедино все, что мы узнали о пово­ротах частиц со спином 1/2 и спином 1; это будет удобно для дальнейшего. Ниже вы найдете таблицы двух матриц поворота Rz (j) и Ry(q) для частиц со спином 1/2, для частиц со спином 1 и для фотонов (частиц со спином 1 и нулевой массой).

Для каждого из них приведены элементы матрицы <j|R|i> по­воротов вокруг оси 2 или оси y. Они, конечно, в точности экви­валентны амплитудам типа <+Т|0S>, которыми мы поль­зовались в предыдущих главах. Под Rz (j) мы понимаем, что берется проекция состояния на новую систему координат, по­вернутую на угол j вокруг оси z, причем для определения направ­ления поворота всегда применяется правило правой руки; RV(q) означает, что оси координат повернуты на угол 9 вокруг оси у. Зная эти два поворота, вы запросто сможете рассчитать любой поворот. Как обычно, матричный элемент пишется так, что со­стояние слева — это базисное состояние новой (повернутой) системы, а состояние справа — это базисное состояние старой (неповернутой) системы. Клетки таблицы можно истолковывать по-разному. К примеру, клетка eij/2 в табл. 15.1 означает, что матричный элемент < — |R| —> = е-ij/2. Но это означает также, что R^|>=е-ij/2| — } или что

<— | R^=<— |e-ij. Это все одно и то же.

* Вспомните, что спин — это аксиальный вектор и при отражении он переворачивается.

* Мы провели ось z' в плоскости xz и используем матричные элементы для Ry (q). То же получилось бы и при другом выборе осей.

* Мы сейчас предполагаем, что механизм квантовой механики вам настолько знаком, что обо всем можно говорить на чисто физическом языке, не тратя времени на расписывание всех математических деталей. Но если то, что мы здесь говорим, вам не очень ясно, то обратитесь к концу этого параграфа, где приведены некоторые недостающие детали.

* Мы попытались на худой конец доказать, что компонента момента количества движения вдоль направления движения у частицы с нулевой массой должна быть, например, кратной h/2, а не h/3. Но даже приведя в действие всевозможные свойства преобразований Лоренца (и многое дру­гое), мы с этим не справились. Может, этой не так. Надо было бы потол­ковать об этом с профессором Вигнером, который знает все о таких вещах.

* Прошу прощения! Этот угол имеет обратный знак по отношению к использовавшемуся в гл. 9, § 4.

** Как правило, момент количества движения атомной системы весьма удобно измерять в единицах h. Тогда можно говорить, что частица со спином 1/2 обладает по отношению к любой оси моментом количества движения ±1/2. И вообще, что z-компонента момента количества движе­ния есть т. Не приходится все время повторять h.

* Для большей строгости все эти рассуждения нужно было бы про­вести для малых поворотов e. Раз каждый угол j представляет собой сумму некоторого числа n таких поворотов, j=ne, то R^z (j)=[Rz (e)]n, и общее изменение фазы в n раз превосходит изменение для малого угла 8 и поэтому пропорционально j.

* Точнее, мы определим R^z(j) как поворот физической системы на -j вокруг оси z; это то же самое, что повернуть систему координат на +j.

** Мы всегда вправе выбрать ось z вдоль направления поля при усло­вии, конечно, что его направление не меняется и что больше полей нет.

* В других книгах вы можете встретить формулы с другими знаками; вероятнее всего, в них используются углы, определенные по-иному.

* Кстати, вы можете доказать, что Q^ — это обязательно унитарный оператор, т. е. если он действует на |y>, приводя к |y>, умноженному на некоторое число, то это число должно иметь вид еid, где d — веществен­но. Это мелкое замечание, а доказательство основано на следующем наб­людении. Всякая операция наподобие отражения или поворота не приво­дит к потере каких-либо частиц, так что нормировки |y'> и |y> должны совпадать; отличаться они вправе только на множитель с чисто вещест­венной фазой в показателе.

Литература: А. Р. Эдмондс, Угловые мо­менты в квантовой механике, в кн. «Деформация атомных ядер», ИЛ, 1958.

Глава 16

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ

§ 1. Электрическое дипольное излучение

§ 2. Рассеяние света

§ 3. Аннигиляция позитрония

§ 4. Матрица пово­рота для про­извольного спина

§ 5. Измерения ядерного спина

§ 6. Сложение моментов количества движения

Добавление 1. Вывод матрицы поворота

Добавление 2. Сохранение четности при испускании фотона

§ 1. Электрическое дипольное излучение

В предыдущей главе мы развили представле­ния о сохранении момента количества движения в квантовой механике и показали, как ими можно воспользоваться для предсказания угло­вого распределения протонов при распаде L0-частицы. Теперь мы хотим добавить еще несколько иллюстраций тех следствий, кото­рые вытекают из сохранения момента количест­ва движения в атомных системах. Первым при­мером послужит излучение света атомом. Сохра­нение момента количества движения (наряду с другими обстоятельствами) определит поляри­зацию и угловое распределение испускаемых фотонов.

Пусть имеется атом в возбужденном со­стоянии с определенным моментом количества движения, скажем со спином, равным 1; он, излучая фотон, переходит к состоянию с мо­ментом нуль при более низкой энергии. Задача в том, чтобы представить угловое распределе­ние и поляризацию фотонов. (Она очень похожа на задачу о распаде L0-частицы, но только те­перь спин равен не 1/2, a 1.) Раз у возбужденного состояния спин равен единице, то для z-компоненты момента имеются три возможности. Зна­чение т может быть или +1, или 0, или -1. Возьмем для примера m=+1. (Если мы раз­беремся в этом примере, то справимся и с други­ми.) Предположим, что момент количества движения атома направлен по оси +z (фиг. 16.1, а), и спросим, какова амплитуда того, что он излучит вверх по оси гправополяризованный по кругу свет, так что в результате его момент станет равным нулю (фиг. 16.1, б).

Фиг. 16.1. Атом с т = +1 излучает вдоль оси +z правый фотон.

Ответа на этот вопрос мы не знаем. Но зато мы знаем, что правополяризованный по кругу свет уносит вдоль направления своего распространения одну единицу мо­мента количества движения. Значит, после излучения фотона положение станет таким, как показано на фиг. 16.1, б, т. е. атом остался с нулевым моментом относительно оси z, поскольку мы предположили, что низшее состояние атома имеет спин нуль. Обозначим амплитуду такого события буквой а. Точнее, а будет обозначать амплитуду излучения фотона в некоторый узкий телесный угол DW, окружающий ось z, за время dt. За­метьте, что амплитуда излучения левого фотона в том же на­правлении равна нулю. У такого фотона момент относительно оси z был бы равен -1, а так как у атома он равен нулю, то и в сумме получилось бы -1, так что момент не сохранился бы. Точно так же, если спин атома вначале направлен вниз (-1 вдоль оси z), то он может излучать в направлении оси +z только левые фотоны (фиг. 16.2).

Фиг. 16.2. Атом с m=-1 излучает вдоль оси z левый фотон.

Амплитуду такого события обозначим буквой b (снова имея в виду амплитуду излучения фотона в некоторый узкий телесный угол DW). С другой стороны, если атом находится в состоянии с m=0, он вообще не сможет испустить фотон в направлении +z, потому что у фотона момент количества движения относительно его направления распространения может быть только +1 или -1.

Далее, можно показать, что b и а связаны. Проделаем над ; системой, изображенной на фиг. 16.1, преобразование инверсии. Это значит, что мы должны представить себе, как будет выглядеть система, если мы каждую ее часть передвинем в соответст­вующую точку с другой стороны от начала координат. Но это не значит, что следует отражать и векторы момента количест­ва движения, ведь они — искусственные образования. Нужно другое — нужно обратить истинный характер движения, соот­ветствующего такому моменту количества движения.

На фиг. 16.3, а мы показали, как выглядит процесс, изобра­женный на фиг. 16.1, до и после инверсии относительно центра атома.

Фиг, 16.3. Если процесс (а) преобразовать путем инверсии относительно центра атома, он станет выглядеть, как (б).

Заметьте, что направление вращения атома не изменилось. В обращенной системе (фиг. 16.3, б) получается атом с m=+1, излучающий вниз левый фотон.

Если мы теперь повернем систему, изображенную на фиг. 16.3, б, на 180° вокруг оси х и у, она совпадет с фиг. 16.2. Сочетание инверсии и поворота превращает второй процесс в первый. Пользуясь табл. 15.2 (стр. 129), мы видим, что поворот на 180° вокруг оси у как раз перево­дит состояние с m=-1 в состояние с m=+1, так что амплитуда b должна быть равна амплитуде а, если не считать возмож­ной перемены знака при инверсии. А перемена зна­ка при инверсии зависит от четностей начального и конечного состояний атома.

В атомных процессах четность сохраняется, так что четность всей системы до и после излучения фотона должна быть одной и той же. Что на самом деле произойдет, зависит от того, положительны или отрицательны четности начального и конечного состоя­ний атома — в разных случаях угловое распределение из­лучения будет различным. Возьмем обычный случай отрица­тельной четности начального состояния атома и положительной четности конечного; он даст так называемое «электрическое дипольное излучение». (Если начальное и конечное состояния об­ладают одинаковой четностью, то говорят, что происходит «маг­нитное дипольное излучение», напоминающее по характеру излучение витка с переменным током.) Если четность начально­го состояния отрицательна, его амплитуда при инверсии, пере­водящей систему из а в б на фиг. 16.3, меняет знак. Конечное состояние атома имеет положительную четность, так что его амплитуда при инверсии знака не меняет. Если в реакции сохраняется четность, то амплитуда b должна быть равна а во величине, но противоположна по знаку.

Мы приходим к заключению, что если амплитуда того, что состояние m=+1 излучит фотон вперед, равна а, то для рас­сматриваемых четностей начального и конечного состояний амплитуда того, что состояние m=-1 излучит вперед ле­вый фотон, равна -а.

Теперь у нас есть все, чтобы найти амплитуду того, что фо­тон будет испущен под углом 0 к оси z. Пусть вначале атом поля­ризован так, что m=+1. Это состояние мы можем разложить на состояния с т = +1, 0, -1 относительно новой оси z', про­веденной в направлении испускания фотона. Амплитуды этих трех состояний — как раз те, которые были приведены в ниж­ней половине табл. 15.2 (стр. 129). Амплитуда того, что правый фотон испускается в направлении 0, равна тогда произведению а на амплитуду того, что в этом направлении будет m=+1, а именно

Амплитуда того, что в том же направлении будет испущен ле­вый фотон, равна произведению -а на амплитуду того, что в новом направлении будет m=-1. Из табл. 15.2 следует

Если вас интересуют другие поляризации, то их амплитуды вы получите из суперпозиции этих двух амплитуд. Чтобы получить интенсивность любой компоненты как функцию угла, вам при­дется, конечно, взять квадрат модуля амплитуд.

§ 2. Рассеяние света

Воспользуемся этими результатами, чтобы решить немного более сложную задачу, но зато и более близкую к реальности. Предположим, что те же атомы находятся в своем основном со­стоянии (j=0) и рассеивают падающий на них пучок света. Пусть свет первоначально распространяется в направлении + z, так что фотоны падают на атом из направления -z, как показано на фиг. 16.4, а.

Фиг. 16.4. Рассеяние света атомом, рас­сматриваемое как процесс, состоящий из двух шагов.

Рассеяние света мы можем рассматри­вать как процесс, состоящий из двух шагов: фотон поглощается, а затем вновь излучается. Если мы начнем с правого фотона (фиг. 16.4, а) и если момент количества движения сохраняется, то после поглощения атом окажется в состоянии с m=+1 (фиг. 16.4, б). Амплитуду этого процесса мы обозначим с. Затем атом может испустить правый фотон в направлении q (фиг.16.4,в). Полная амплитуда того, что правый фотон рассеется в на­правлении q, равна просто произведению с на (16.1). Обозначая эту амплитуду рассеяния <R' |S |R>, имеем

Имеется также амплитуда того, что поглотится правый фотон, а излучится левый. Произведение обеих амплитуд — это амплитуда <L'|S|R>амплитуда того, что правый фотон, рассеявшись, превратится в левый. Используя (16.2), имеем

Теперь посмотрим, что происходит, если на атом падает левый фотон. Когда он поглощается, сам атом переходит в со­стояние с m =-1. Рассуждая так же, как в предыдущем па­раграфе, можно показать, что эта амплитуда будет равна -с. Амплитуда того, что атом в состоянии с m=-1 испустит правый фотон под углом q, равна произведению а на амплитуду <+|Ry(q)| —>, равную 1/2(1- cosq). В итоге получается

Наконец, амплитуда того, что левый фотон после рассеяния останется левым, есть

(здесь минус на минус дал плюс).

Если мы измеряем интенсивность рассеяния для любой дан­ной комбинации круговых поляризаций, то она будет пропор­циональна квадрату одной из этих четырех амплитуд. Например, если падает правополяризованный пучок света, то интенсивность правополяризованного света в рассеянном излучении будет меняться как (1 + cosq)2.

Все это прекрасно, но допустим, что мы хотели бы начать с линейно поляризованного света. Чего можно было бы тогда ожидать? Если свет поляризован вдоль оси х, его можно пред­ставить как суперпозицию право- и левополяризованного по кругу света. Мы пишем [см. гл. 9, § 4 (вып. 8)]

Или если свет поляризован вдоль оси у, то

Ч то вы теперь хотите знать? Хотите знать амплитуду того, что х- поляризованный фотон рассеется под углом в как правый фотон? Пожалуйста. Примените для этого обычное правило комбинирования амплитуд. Сначала умножьте (16.7) на <R'|S. Вы получите

Теперь подставьте сюда (16.3) и (16.5). Получается

Если бы вам нужна была амплитуда того, что x-фотон рассеется как левый фотон, то вы бы получили

Наконец, представим, что вас заинтересовала амплитуда того, что x-поляризованный фотон рассеется, сохранив свою x-поляризацию. Значит, вам нужно знать <х'|S|х>. Это мож­но записать так:

Если вы затем вспомните соотношения

то из них последует

В итоге вы получите

Ответ, стало быть, состоит в том, что пучок x-поляризованного света рассеивается в направлении q (в плоскости xz) с интен­сивностью, пропорциональной cos2q. Если же нас интересует y-поляризованный свет, то

Иначе говоря, рассеянный свет полностью поляризован в x-направлении.

Здесь отметим интересную вещь. Формулы (16.17) и (16.18) точно соответствуют классической теории рассеяния света, которую мы излагали в гл. 32, § 5 (вып. 3), считая, что электрон связан с атомом линейной возвращающей силой, что действует он как классический осциллятор. Вы можете подумать: «А в классической теории все было куда проще; если она дает верный ответ, зачем забивать себе голову квантовой теорией?» Во-пер­вых, мы пока рассмотрели только один частный (хотя и частый) случай атома с возбужденным состоянием j=1 и с основным состоянием j=0. Если бы возбужденное состояние имело спин, равный 2, вы бы получили уже иные результаты. Во-вторых, нет причины, почему бы модель электрона, привязанного к пружинке и приводимого в движение колеблющимся электриче­ским полем, должна была бы быть верна для одиночного фотона. Правда, мы обнаружили, что она все же верна и что интен­сивность и поляризация оказываются какими надо. Так что в каком-то смысле мы в течение нашего курса лавировали где-то неподалеку от истины. В начале курса мы излагали теорию показателя преломления и рассеяния света, опираясь на клас­сические представления. А теперь мы показали, что квантовая теория в самых обычных случаях приводит к тому же результату. Мы фактически только что объяснили такое, скажем, явление, как поляризация дневного света, с помощью квантовомеханических рассуждений, а это единственный по-настоящему закон­ный путь.

Вообще все имеющие сегодня хождение классические теории должны быть в конечном счете подтверждены единственно пра­вильными квантовыми аргументами. Естественно, что все те вещи, на объяснения которых мы потратили прежде столько времени, были отобраны как раз из тех частей классической физики, которые еще подтверждаются квантовой механикой. Заметьте, что мы не обсуждали во всех деталях такие модели атома, в которых электроны двигались вокруг ядра по орбитам. Это потому, что такая модель не дает результатов, согласуемых с квантовой механикой. Но электрон на пружинке (хоть эта картина ничуть не смахивает на настоящий атом) действительно с ней согласуется, и потому мы применяли эту модель в теории показателя преломления.

§ 3. Аннигиляция позитрония

Теперь хотелось бы рассмотреть еще один очень интересный пример. Он очень привлекателен, хотя и немного сложен, но, надеемся, все же не слишком. Пример этот — система, именуе­мая позитронием, т. е. «атом», составленный из электрона и позитрона,— связанное состояние е+ и е-. Он походит на атом водорода, только вместо протона стоит позитрон. Как и у водо­рода, у него много состояний. И как у водорода, основное со­стояние вследствие взаимодействия с магнитным моментом рас­щепляется на «сверхтонкую структуру». Спины электрона и позитрона равны 1/2 и могут быть либо параллельны, либо антипараллельны любой данной оси. (В основном состоянии орбитальное движение не создает своего момента количества движения.) Итак, всего есть четверка состояний: три из них — подсостояния системы со спином 1, все с одной энергией; и одно состояние со спином нуль и с иной, отличной энергией. Однако расщепление уровней здесь намного сильнее, чем те 1420 Мгц, которые есть в спектре водорода, потому что маг­нитный момент у позитрона куда больше протонного — в 1000 раз.

Но самое важное различие в том, что позитроний не может существовать вечно. Позитрон — это античастица электрона; они могут взаимно друг друга уничтожить. Две частицы полно­стью исчезают, обращая свою энергию покоя в излучение в виде g-квантов (фотонов). Две частицы с конечной массой покоя переходят в пару (а то и больше) объектов с нулевой массой покоя.

Начнем с анализа распада состояния позитрония со спином нуль. Он распадается на два g-кванта со временем жизни 10-10 сек. Вначале имеются позитрон и электрон с антипараллельными спинами, расположенные очень близко один к другому и образующие систему позитрония. После распада возникают два фотона, разлетающиеся с равными и противоположными импульсами (фиг. 16.5).

Фиг. 16.5. Двухфотонная аннигиляция позитрония.

Импульсы обязаны быть равны и про­тивоположны, потому что полный импульс после распада дол­жен быть таким, как и до распада, т. е. равен нулю (если мы рас­сматриваем аннигиляцию в покое). Если позитроний движется, мы можем нагнать его, решить задачу и затем все преобразовать обратно в лабораторную систему (вот видите — мы теперь все умеем; все, что надо, у нас под рукой).

Для начала заметим, что угловое распределение интереса не представляет. Раз спин начального состояния равен нулю, то нет какой-либо выделенной оси, оно симметрично относи­тельно любых поворотов. Значит, и конечное состояние должно быть симметрично относительно всякого поворота. Это означает, что все углы распада одинаково вероятны — амплитуда выле­теть в любую сторону для фотона одна и та же. Конечно, если один из фотонов отправляется в одну сторону, то другой отпра­вится в противоположную.

Единственное, что нам остается, это рассмотреть поляриза­цию фотонов. Проведем ось +z по направлению движения од­ного фотона, а ось -z по направлению движения второго фотона. Для описания состояний поляризации фотонов можно использовать любые представления. Мы выберем правую и левую круговые поляризации, всегда отсчитывая их относитель­но направлений движения. Сразу же видно, что если движущийся вверх фотон — правый, то момент количества движения оста­нется прежним, если фотон, отправившийся вниз, тоже окажется правым. Каждый унесет по +1 единице момента относительно направления своего импуль­са, что означает +1 и -1 относительно оси z. В сумме будет нуль, и мо­мент количества движения после распада окажется та­ким же, как и до распада (фиг. 16.6).

Фиг. 16.6. Одна из возмож­ностей для аннигиляции пози­трония вдоль оси z.

Те же рассуждения по­казывают, что если движущийся вверх фотон является правым, то движущийся вниз не может быть левым, ведь тогда конечное состояние обла­дало бы двумя единицами момента количества движения. А это не разрешается, если спин начального состояния равен нулю. Заметьте, что такое конечное состояние невозможно и тогда, когда основное состояние позитрония обладает спином 1, потому что в этом случае наибольшая величина момента количества движения в любом направлении равна единице.

А теперь мы покажем, что двухфотонная аннигиляция из состояния со спином 1 вообще невозможна. Могло бы показать­ся, что это не так, что если взять состояние с j=1, m=0, у которого момент количества движения относительно оси z равен нулю, то оно будет походить на состояние со спином 0 и поэтому распадется на два правых фотона. Конечно, изображен­ный на фиг. 16.7, а распад сохраняет момент количества движе­ния относительно оси z.

Фиг. 16.7. Для состояния позитрония с j=1 процесс (а) и процесс (б), получаемый поворотом (а) вокруг оси у на 180°, в точности совпадают.

Но посмотрим, что будет, если мы повернем эту систему вокруг оси у на 180°; получится то, что показано на фиг. 16.7, б, т. е. конфигурация, в точности сов­падающая с фиг. 16.7, а. Обменялись местами два фотона и больше ничего. А ведь фотоны — это бозе-частицы; перестановка их местами не меняет знака амплитуды, так что амплитуда распада на конфигурацию, показанную на фиг. 16.7, б, должна быть такой же, как и на конфигурацию фиг, 16.7, а. Но мы предполо­жили, что у начального объекта спин был равен единице. А когда мы поворачиваем объект со спином 1 в состоянии с m=0 на 180° вокруг оси у, то его амплитуда меняет знак (см. табл. 15.2 для q=p, стр. 129). Значит, амплитуды обеих конфигура­ций на фиг. 16.7 должны иметь обратные знаки; частица со спи­ном 1 не может распадаться на два фотона.

Когда образуется позитроний, то можно ожидать, что в те­чение 1/4 времени он будет превращаться в состояние со спином 0 и в течение 3/4 времени — в состояние со спином 1 (с m=-1,0 или +1). Так что 1/4 времени будет происходить двухфотонная аннигиляция. Остальные 3/4 времени двухфотонная аннигиляция происходить не может. Аннигиляция про­исходит, но на три фотона. Такой аннигиляции труднее дож­даться, и время жизни получается в 1000 раз дольше — около 10-7 сек. Это и наблюдается на опыте. Аннигиляцией состояния со спином 1 мы подробнее заниматься не будем.

До сих пор мы, опираясь на сохранение момента количества движения, считали, что состояние позитрония с нулевым спином может превращаться в два правых фотона. Имеется и другая возможность: это состояние может превратиться в пару левы фотонов, как показано на фиг. 16.8. Следующий вопрос — како-

во соотношение между амплитудами этих двух типов распада? Это можно узнать, учтя сохранение четности.

Но для этого нам нужно знать четность позитрония. Физи­ки-теоретики показали (сложным путем, который нелегко пояс­нить), что четности электрона и позитрона (его античастицы) должны быть противоположны, так что основное состояние позитрония со спином 0 должно обладать отрицательной чет­ностью. Мы просто предположим, что четность отрицательна, и, поскольку мы получим согласие с экспериментом, мы сочтем это достаточно убедительным доводом.

Посмотрим же, что произойдет, если мы проделаем инверсию процесса на фиг. 16.6. При инверсии оба фотона меняют свои направления и поляризации. Обращенная картина выглядит так, как показано на фиг. 16.8.

Фиг. 16.8 Другой мыслимый процесс аннигиляции позитрония.

Если считать, что четность по­зитрония отрицательна, то амплитуды процессов на фиг. 16.6 и 16.8 должны иметь обратные знаки. Пусть |R1R2> конеч­ное состояние на фиг. 16.6, где оба фотона правые, а | L1L2> конечное состояние на фиг. 16.8, где оба фотона — левые. Ис­тинное конечное состояние (обозначим его |F>) должно быть таким:

Тогда инверсия поменяет местами все R со всеми L и приведет к состоянию

имеющему по сравнению с (16.19) знак минус. Значит, конечное состояние |F> обладает отрицательной четностью, совпадаю­щей с четностью первоначального состояния позитрония со спином 0. Это единственное конечное состояние, кото­рое сохраняет и момент количества движения и четность. Можно, конечно, вычислить амплитуду то­го, что произойдет распад в это состояние, но мы не будем этим заниматься, нас сейчас интересует только поляризация.

Что же означает состояние (16.19) физически? Один из вы­водов таков: если мы наблюдаем пару фотонов при помощи двух детекторов, которые могут порознь считать число левых или число правых фотонов, то мы всегда будем видеть одновре­менно либо пару правых, либо пару левых фотонов. Иначе го­воря, если вы встанете по одну сторону позитрония, а ваш прия­тель по другую, то вы сможете, измеряя поляризацию, сказать вашему приятелю, какая поляризация у него получилась. С ве­роятностью 50% вы будете ловить то левый, то правый фотон; что вы поймаете, то и предсказывайте.

Раз левая и правая поляризации встречаются поровну, то все это сильно смахивает на линейную поляризацию. Спросим себя, что будет, если наблюдать фотон с помощью счетчиков, которые воспринимают только линейно поляризованный свет? Поляризацию g-квантов измерять не так легко, как поляриза­цию света; нет таких поляризаторов, которые на столь коротких волнах хорошо работают. Но вообразим, чтобы облегчить об­суждение, что такое бывает. Пусть имеется счетчик, который воспринимает только x-поляризованный свет, а по ту сторону позитрония стоит кто-то, кто тоже наблюдает линейно поляри­зованный свет, но только, скажем, y-поляризованный. Каков шанс, что вы оба одновременно заметите фотоны от аннигиля­ции? Нужно найти амплитуду того, что |F> будет в состоянии 1y2>. Иными словами, мы ищем амплитуду

<х1y2|F>,

которая, конечно, равна просто разности

Далее, хотя нам сейчас нужны двухчастичные амплитуды для двух фотонов, с ними здесь можно обращаться так же, как с амплитудами для отдельных частиц, ведь каждая частица действует независимо от другой. Это значит, что амплитуда <x1y2|R1R2> попросту равна произведению двух независимых амплитуд <x1|R1> и <y2|R2>. Эти амплитуды (см. табл. 15.3, стр. 130) равны 1/Ц2 и i/Ц2, так что

Аналогично,

Вычитая их, как сказано в (16.21), получаем

Значит, если вы заметите в своем x-поляризованном детекторе фотон, то ваш приятель с вероятностью единица тоже заметит фотон в своем y-поляризованном детекторе.

Теперь предположим, что ваш приятель настраивает свой счетчик на ту же х-поляризацию, что и вы. Тогда он ни за что не получит отсчета одновременно с вами. Подсчитав все, что надо, вы найдете, что

Естественно, если вы настроите свой счетчик на y-поляризацию, то ваш приятель будет получать совпадающие отсчеты только тогда, когда он сам настроится на z-поляризацию.

Все это создает интересное положение. Представьте, что вы взяли кусок известкового шпата, который разделяет фотоны на х- и y-поляризованные пучки, и в каждом пучке поставили по счетчику. Назовем один из них x-счетчик, другой — y-счетчик. Если ваш приятель, стоящий по другую сторону, сделает то же самое, вы всегда сможете его предупредить, в каком пучке со­бирается пройти его фотон. Всякий раз, как у вас и у него полу­чаются одновременные отсчеты, вы можете посмотреть, в какой из ваших детекторов попал фотон, и дать ему знать, какой из его счетчиков поймал фотон. Пусть, скажем, в некотором распаде вы обнаружите, что фотон вошел в ваш x-счетчик; тогда вы крик­нете ему, что в его y-счетчике произошел отсчет.

Многих людей, изучающих квантовую механику обычным (старомодным) способом, это обстоятельство очень волнует. Им хотелось бы считать, что когда фотон излучается, то он движется как волна определенного характера. Они хотели бы думать, что поскольку «каждый данный фотон» обладает некото­рой «амплитудой» того, что он окажется х- или y-поляризованным, то должен быть определенный шанс поймать его либо в х- , либо в y-счетчике, и что этот шанс не должен зависеть от того, что обнаруживает другой человек у совершенно другого фотона. Они доказывают, что «если кто-то другой делает измерения, он не должен быть в состоянии изменить вероятность того, что я обнаружу». Наша квантовая механика утверждает, однако, что, делая измерения над фотоном № 1, вы в состоянии пред­сказать точно, какая собирается быть поляризация у фотона № 2. С этим никак не мог согласиться Эйнштейн. Этот парадокс, так называемый «парадокс Эйнштейна — Подольского — Розена», его очень беспокоил. Но если описать положение вещей так, как это было сделано у нас, то вообще нет никакого парадокса; вполне естественно получается, что то, что измеряется в одном месте, коррелировано с тем, что измеряется где-то в дру­гом. Рассуждать, чтобы результат стал парадоксальным, надо примерно так:

1) Если у вас есть счетчик, который сообщает вам, какой ваш фотон — правый или левый, то вы можете точно предсказать сорт фотона (правый или левый), который обнаружит ваш при­ятель.

2) Каждый фотон, который он принимает, должен поэтому быть либо чисто левым, либо чисто правым, причем часть фото­нов будет одного сорта, а часть другого.

3) Вы бесспорно не в состоянии переменить физическую при­роду его фотонов, меняя характер тех наблюдений, которые вы совершаете над вашими фотонами. Какие бы вы измерения ни проделывали над своими фотонами, его фотоны по-прежнему должны быть либо правыми, либо левыми.

4) Допустим, что он меняет свой аппарат так, чтобы расще­пить свои фотоны при помощи куска известкового шпата на два линейно поляризованных пучка, так что все его фотоны перейдут либо в x-поляризованный, либо в y-поляризованный пучок. Согласно квантовой механике, нет никакого способа сообщить, в какой из пучков перейдет заданный правый фотон. Есть 50%-ная вероятность, что он пойдет в x-пучок, и 50%-ная вероятность, что в y-пучок. То же будет и с левым фотоном.

5) Поскольку каждый фотон является либо левым, либо правым (согласно пунктам 2 и 3), то каждый из них должен с 50%-ной вероятностью перейти либо в x-пучок, либо в y-пучок, и невозможно предсказать, какой путь он выберет.

6) А теория предсказывает, что если вы заметили, что ваш фо­тон прошел через x-поляризатор, то вы со всей определенностью можете предсказать, что его фотон пройдет в его y-поляризованном пучке. Это противоречит пункту 5, так что налицо пара­докс.

Но природа, по всей видимости, не замечает этого «пара­докса», потому что опыт свидетельствует о том, что предсказание пункта 6 в действительности верно. Мы уже обсуждали ключ к решению этого «парадокса» в нашей самой первой лекции по квантовомеханическому поведению [см. гл. 37 (вып. 3)]. В при­веденном выше рассуждении пункты 1, 2, 4 и 6 все правильны, а пункт 3 и, как следствие этого, пункт 5 — ошибочны; они не являются правильным описанием природы. Рассуждение в пункте 3 говорит, что с помощью вашего измерения (наблюдения правого или левого фотона) вы можете определить, какое из двух взаимоисключающих событий произойдет у него (увидит ли он правый фотон или левый), и что даже если вы не проде­лаете своих измерений, вы все равно сможете сказать, что у него произойдет либо одно событие, либо другое. В этом и состоит суть рассказанного в гл. 37 (вып. 3) — подчеркнуть сразу, с са­мого начала, что в Природе дело обстоит совсем не так. Ее путь требует описания на языке интерферирующих амплитуд, по одной амплитуде для каждого события, исключающего другие события. Измерение, в котором действительно реализуется одна из возможностей, разрушает интерференцию, но если измерение проделано не было, вы не вправе говорить, что все равно реали­зуется либо одна возможность, либо другая».

Вот если бы вы могли определить для каждого из ваших фо­тонов, какой он — правый или левый и, кроме того, являет­ся ли он x-поляризованным (все для одного и того же фотона), то это действительно было бы парадоксом. Но этого вы не сможете сделать — перед вами пример принципа неопределенности.

Если вы все еще не удовлетворены и считаете это «парадок­сом», то покажите, что это действительно парадокс: придумайте такой воображаемый опыт, для которого теория квантовой ме­ханики двумя различными рассуждениями предсказывала бы два несогласующихся результата. В противном случае «пара­докс» — это всего лишь конфликт между тем, что есть на самом деле, и вашим ощущением того, какой «полагалось бы быть» реальной природе.

Вы считаете, что это не «парадокс», но что это все же очень странно? С этим мы все можем согласиться. Именно это и делает физику столь захватывающе интересной.

§ 4. Матрица поворота для произвольного спина

Сейчас, я надеюсь, вам уже ясно, как важно представ­ление о моменте количества движения для понимания атомных процессов. До сих пор мы рассматривали только системы со спи­нами (или «полными моментами количества движения») 0, 1/2 и 1. Но бывают, конечно, и атомные системы с большими момента­ми количества движения. Для анализа таких систем нужны такие же таблицы амплитуд поворота, какие мы привели в гл. 15, § 6. Иными словами, нужна матрица амплитуд для спина 3/2, 2, 5/2, 3 и т. д. Мы не будем подробно рассчитывать эти таблицы, но хотели бы показать, как это делается, чтобы вы, если понадобится, могли сами это проделать.

Как мы видели раньше, любая система со спином, или «пол­ным моментом количества движения», j может существовать в одном из 2/ + 1 состояний, в которых z-компонента момента количества движения принимает одно из дискретных значе­ний j, j-1, j -2, . . ., -(j-1), -j (все в единицах h). Обозначая z-компоненту момента количества движения про­извольного выбранного состояния через mh, можно определить состояние момента количества движения, задав численные значения двух «квантовых чисел момента количества движения» j и m. Такое состояние можно отметить, указав вектор состоя­ния | j, m>. В случае частиц со спином 1/2 могут быть два состоя­ния | 1/2, 1/2) и | 1/2, -1/2> a состояния системы со спином 1 в этих обозначениях можно записать как |1, +1>, |1, 0>, | 1, -1>. У частицы со спином 0 может быть, конечно, лишь одно

состояние | 0, 0>.

Теперь мы можем посмотреть, что происходит, когда мы прое­цируем общее состояние | j, m> на представление, относящееся к повернутой системе осей. Прежде всего известно, что j — это число, которое характеризует систему, поэтому оно не меняется. При повороте осей мы получим просто смесь различных значе­ний т для одного и того же j. В общем случае появится амплиту­да того, что система в повернутой системе координат окажется в состоянии | j, m'>, где m' — новая z-компонента момента ко­личества движения. Значит, нам нужны матричные элементы <j, m' |R|j, m> всевозможных поворотов. Мы уже знаем, что бывает, если поворот делается на угол j вокруг оси z. Новое состояние — это попросту старое, умноженное на eimj, у него по-прежнему то же значение т. Это можно записать так:

или, если вам больше нравится,

(где dm,m' равно единице при m' = m, и нулю в прочих случаях).

При поворотах вокруг любой другой оси возникает переме­шивание различных m-состояний. Можно было бы, конечно, попытаться подсчитать матричные элементы для произвольных поворотов, описываемых углами Эйлера b,a и g. Но будет легче, если мы вспомним, что самый общий такой поворот может быть составлен из трех поворотов Rz(g), Ry(a), Rz(b); так что если мы знаем матричные элементы для поворотов вокруг оси y, то уже располагаем всем необходимым.

Как же нам найти матрицу поворота для поворота частицы со спином j на угол q вокруг оси у? Опираясь на основные за­коны (и на то, что уже было), это сделать нелегко. Мы так посту­пали со спином 1/2: вывели все, что нужно, пользуясь довольно сложными соображениями симметрии. Для спина 1 мы это про­делали уже иначе: рассмотрели частный случай, когда система со спином 1 складывается из двух систем со спином 1/2. Если вы последуете за нами и признаете правильным тот факт, что в общем случае ответы зависят только от спина j, а не от того, как скреплены между собой разные части системы со спином j, то мы сможем обобщить рассуждения для спина 1 на произвольный спин. Мы сможем, например, соорудить искусственную систему со спином 3/2 из трех объектов со спином 1/2. Мы сможем даже избежать всяких усложнений, вообразив, что все они суть различные частицы — скажем, протон, электрон и мюон. Преобразуя каждый объект со спином 1/2, мы увидим, что происходит со всей системой — надо только вспомнить, что для комбинированного состояния все амплитуды перемножаются. Давайте посмотрим, как все это проходит.

Допустим, мы расположили все три объекта со спином 1/2 спинами вверх; обозначим такое состояние |+++>. Если мы взглянем на него из системы координат, повернутой относительно оси z на угол j, то каждый плюс останется плюсом, но умно­жится на еij/2. Таких множителей у нас тройка, так что

Ясно, что состояние |+++> — это как раз то, что мы назы­ваем состоянием m=+3/2, или состоянием |3/2, + 3/2>.

Если мы затем повернем эту систему вокруг оси у, то у каж­дого из объектов со спином 1/2 появится некоторая амплиту­да стать плюсом или стать минусом, так что вся система станет теперь смесью восьми возможных комбинаций |+++>,

|++->, |+-+>, |-++>, |+-->, |-+->,

|--+> или |--->. Ясно, однако, что их можно раз­бить на четыре группы, чтобы каждая соответствовала своему значению m. Прежде всего мы имеем |+++>, для которого m=3/2. Затем имеется тройка состояний |++->, |+-+> и |-++> — каждое с двумя плюсами и одним минусом. Поскольку каждый из объектов со спином 1/2 имеет равные шансы стать после поворота минусом, то каждая из этих трех комбинаций должна войти на равных паях. Поэто­му возьмем комбинацию

где множитель 1/Ц3 поставлен для нормировки. Если мы по­вернем это состояние вокруг оси z, то получим множитель eij/2 для каждого плюса и e-if/2 для каждого минуса. Каждое слагаемое в (16.27) умножится на eij/2, и общий множитель еij/2 мы вынесем за скобки. Такое состояние соответствует нашему представлению о состоянии с m=+1/2; мы приходим к выводу, что

Точно так же можно написать

что соответствует состоянию с m=-1/2. Заметьте, что мы берем только симметричные сочетания, у нас нет комбинаций, куда входят слагаемые со знаком минус. Они отвечали бы со­стояниям с таким же т, но с иным j. Это аналогично случаю спина 1, где (1/Ц2){|+->+|-+>} было состоянием | 1,0>, а (1/Ц2){|+->-|-+>} было состоянием | 0,0>. Наконец, мы имеем

Эта четверка состояний сведена в табл. 16.1.

Таблица 16.1 · СВОДКА СОСТОЯНИЙ

Все, что нам теперь нужно сделать, это взять каждое состоя­ние, повернуть его вокруг оси у и посмотреть, сколько новых состояний оно создаст — пользуясь известной нам матрицей поворота для частицы спина 1/2. Можно поступать так же, как мы это делали в случае спина 1 [см. гл. 10, § 6 (вып. 8)]. (Только алгебры будет побольше.) Мы будем строго следовать идеям гл. 10 (вып. 8), так что подробных объяснений давать не будем. Состояния в системе S будут обозначаться

и т. д.; T-системой будет считаться система, повернутая вокруг оси у системы S на угол q. Состояния в T-системе будут обозна­чаться |3/2, + 3/2, Т>, |3/2, + 1/2, Т> и т. д. Ясно, что | 3/2, + 3/2, Т> это то же самое, что | +' + ' + ' > (штрихи всегда относятся к T-системе). Точно так же |3/2, +1/2, Т> будет равняться

и т. д. Каждое |+'>-состояние в T-системе получается как из |+>-, так и из |->-состояний в системе S с помощью матрич­ных элементов из табл. 10.4 (вып. 8, стр. 267).

Если мы имеем тройку частиц со спином 1/2, то (10.47) надо заменить на

Пользуясь обозначениями табл. 10.4, получим вместо (10.48) уравнение

Это уже дает нам некоторые из наших матричных элементов <jT| iS>. Чтобы получить выражение для 3/2, +1/2, S> мы дол­жны исходить из преобразования состояния с двумя плюсами и одним минусом. К примеру,

Добавляя два сходных выражения для + — +> и | — + +> и деля на ]/3, найдем

Продолжая этот процесс, мы найдем все элементы <jТ|iS> матрицы преобразования. Они приведены в табл. 16.2. Первый столбец получается из (16.32), второй — из (16.34). Последние два столбца были вычислены таким же способом. Теперь допустим, что T-система была повернута относительно S-системы на угол q вокруг ее оси у. Тогда а, b, с и d равны [см. (10.54), вып. 8]: а=d=cosq/2, с=-b=sinq/2. Под­ставляя это в табл. 16.2, получаем формулы, похожие на вторую половину табл. 15.2, но на этот раз для системы со спином 3/2.

Таблица 16.2 · МАТРИЦА ПОВОРОТА ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2

Коэффициенты а, b, с и d объясняются в табл. 10.4.

Рассуждения, которые мы только что провели, были обобще­ны на систему с произвольным спином j. Состояния |j, m> можно составить из 2j частиц со спином 1/2 у каждой. (Из них j+m будут в ] + >-состоянии, а j-m будут в |->-состоянии.) Проводится суммирование по всем возможным способам, какими их можно сочетать, а затем состояния нормируются умноже­нием на надлежащую постоянную. Если у вас есть способности к математике, то вы сможете доказать, что получается следую­щий результат:

где k пробегает все те значения, при которых под знаком факториала получаются неотрицательные величины.

Это очень запутанная формула, но с ее помощью вы сможете проверить табл. 15.2 для j=1 (стр. 129) и составить ваши собственные таблицы для больших j. Некоторые матричные элементы очень важны и получили особые наименования. Например, матричные элементы для m= m'=0 и целых j известны под названием полиномов Лежандра и обозначаются </, 0 |

Первые из них таковы:

P0(cosq)=l, (16.37)

P1(cosq)=cosq, (16.38)

§ 5. Измерение ядерного спина

Продемонстрируем теперь пример, где понадобятся только что описанные коэффициенты. Он связан с проделанными не так давно интересными опытами, которые вы теперь в состоянии будете понять. Некоторым физикам захотелось узнать спин одного из возбужденных состояний ядра Ne20. Для этого они принялись бомбить углеродную мишень пучком ускоренных ионов углерода и породили нужное им возбужденное состояние Ne20 (обозначаемое Ne20*) в реакции

где a1 — это a-частица, или Не4. Кое-какие из создаваемых таким образом возбужденных состояний Ne20 неустойчивы и распадаются таким путем:

Значит, на опыте видны возникающие в реакции две a-частицы. Обозначим их a1 и a2; поскольку они вылетают с разными энер­гиями, их можно отличить друг от друга. Кроме того, выбирая a1, имеющие нужную энергию, мы можем отобрать любые воз­бужденные состояния Ne20.

Опыт ставился так, как показано на фиг. 16.9.

Фиг. 16.9. Размещение приборов в опыте по определению спина воз­бужденных состояний Ne20.

Пучок ионов углерода с энергией 16 Мэв был направлен на углеродную пленку. Первая a-частица регистрировалась кремниевым детектором, настроенным на прием a-частиц с нужной энергией, движущихся вперед (по отношению к падающему пучку ионов С12). Вторая a-частица регистрировалась счетчиком a2, поставленным под углом q к a1. Скорость счета сигналов совпа­дений от a1 и a2 измерялась как функция угла q.

Идея опыта в следующем. Прежде всего нужно знать, что спины С12, О16 и a-частицы все равны нулю. Назовем направ­ление движения начальных частиц С12 направлением +z; тогда известно, что Ne20* должен обладать нулевым моментом коли­чества движения относительно оси z. Ведь ни у одной из осталь­ных частиц нет спина; кроме того, С12 прилетает вдоль оси z и a1 улетает вдоль оси z, так что у них не может быть момента относительно этой оси. И каким бы ни был спин j ядра Ne20*, мы знаем, что это ядро находится в состоянии |j, 0>. Что же случится, когда Ne20* распадется на О16 и другую a-частицу? Что ж, a-частицу поймает счетчик a2, а О16, чтобы сохранить начальный импульс, вынужден будет уйти в противоположную сторону. Относительно новой оси (оси a2) не может быть тоже никакой компоненты момента количества движения. А раз конечное состояние имеет относительно новой оси нулевой мо­мент количества движения, то у распада Ne20* должна быть некоторая амплитуда того, что m'=0, где m'—квантовое число компоненты момента количества движения относительно новой оси. Вероятность наблюдать a2 под углом q будет на самом деле равна квадрату амплитуды (или матричного эле­мента)

Чтобы получить спин интересующего нас состояния Ne20*, вычертим интенсивность наблюдений второй a-частицы как функцию угла и сравним с теоретическими кривыми для раз­личных значений j. Как мы отмечали в конце предыдущего параграфа, амплитуды <j,0|Ry(q)|j,0>—это просто функции Рj(cosq). Значит, угловые распределения будут следовать кри­вым [Pj(cosq)]2. Экспериментальные результаты для двух возбужденных состояний показаны на фиг. 16.10.

Фиг. 16.10. Экспе­риментальные резуль­таты измерений уг­лового распределения a-частиц, вылетающих при распаде двух воз­бужденных состояний Ne20.

Они получены на устрой­стве, показанном на фиг. 16.9.

Вы видите, что угловое распределение для состояния 5,80 Мэв очень хорошо укладывается на кривую1(cosq)]2, т. е. оно должно быть состоянием со спином 1. С другой стороны, данные для состоя­ния 5,63 Мэв выглядят совершенно иначе; они ложатся на кривую [Р3(cosq)]2. Спин этого состояния равен 3.

В этом опыте мы измерили момент количества движения двух возбужденных состояний Ne20*. Этой информацией можно воспользоваться, чтобы понять, как ведут себя протоны и нейтроны внутри этого ядра, и это принесет нам добавочные сведения о таинственных ядерных силах.

§ 6. Сложение моментов количества движения

Когда мы изучали сверхтонкую структуру атома водорода в гл. 10 (вып. 8), нам пришлось рассчитывать внутренние состоя­ния системы, составленной из двух частиц — электрона и протона — со спинами 1/2. Мы нашли, что четверка возможных спиновых состояний такой системы может быть разбита на две группы — на тройку состояний с одной энергией, которая во внешнем поле выглядела как частица со спином 1, и на одно ос­тавшееся состояние, которое вело себя как частица со спином 0. Иначе говоря, объединяя две частицы со спином 1/2, можно образовать систему, «полный спин» которой равен либо единице, либо нулю. В этом параграфе мы хотим рассмотреть на более общем уровне спиновые состояния системы, составленной из двух частиц с произвольными спинами. Это другая важная проблема, связанная с моментами количества движения квантовомеханической системы.

Перепишем сперва результаты гл. 10 для атома водорода в форме, которая позволит распространить их на более общий случай. Мы начали с двух частиц, которые теперь обозначим так: частица а (электрон) и частица b (протон). Спин частицы а был равен ja (=1/2), a z-компонента момента количества движе­ния mа могла принимать одно из нескольких значений (на са­мом деле два, а именно mа=+1/2 или mа=-1/2). Точно так же спиновое состояние частицы b описывалось ее спином jb и z-компонентой момента количества движения mb. Из всего этого можно было составить несколько комбинаций спиновых состояний двух частиц. Например, из частицы а с mа= 1/2 и частицы b с mb=-1/2 можно было образовать состояние | а, +1/2; b, -1/2>. Вообще, объединенные состояния образовы­вали систему, у которой «спин системы», или «полный спин», или «полный момент количества движения» J мог быть равен либо единице, либо нулю, а z-компонента момента количества движения М могла равняться +1, 0 или -1 при J=1 и нулю при J=0. На этом новом языке формулы (10.41) и (10.42) можно переписать так, как показано в табл. 16.3.

Левый столбец таблицы описывает составное состояние через его полный момент количества движения J и z-компоненту М.

Таблица 16.3 · СОСТАВЛЕНИЕ МОМЕНТОВ КОЛИЧЕСТВА ДВИЖЕНИЯ ДВУХ ЧАСТИЦ СО СПИНОМ 1/2,

Правый столбец показывает, как составляются эти состояния из значений т двух частиц а и b.

Мы хотим обобщить этот результат на состояния, составлен­ные из двух объектов а и b с произвольными спинами jа и jb. Начнем с разбора примера, когда jа=1/2 и jb=1, а именно с атома дейтерия, в котором частица а — это электрон е, а части­ца bядро, т. е. дейтрон d. Тогда ja=je=1/2. Дейтрон обра­зован из одного протона и одного нейтрона в состоянии с пол­ным спином 1, так что jb=jd=1. Мы хотим рассмотреть сверхтонкие состояния дейтерия, как мы сделали это для водо­рода. Поскольку у дейтрона может быть три состояния, mb= md=+1, 0, -1, а у электрона — два, mа=mе=+1/2, -1/2, то всего имеется шесть возможных состояний, а именно (используется обозначение

| е, me; d, md>):

Обратите внимание, что мы разверстали состояния согласно значениям суммы me и md в порядке ее убывания.

Спросим теперь: что случится с этими состояниями, если спроецировать их в другую систему координат? Если эту новую систему просто повернуть вокруг оси z на угол j, то состояние | е, me; d, md> умножается на

(Состояние можно считать произведением |е, mе>|d, md>, и каждый вектор состояния независимо привнесет свой собст­венный экспоненциальный множитель.) Множитель (16.43) имеет форму еiMj, поэтому z-компонента момента количества движения у состояния | е, mе; d, md> окажется равной

M=me+md. (16.44)

Иначе говоря, z-компонента полного момента количества движения есть сумма z-компонент моментов количества движе­ния отдельных частей.

Значит, в перечне состояний (16.42) верхнее состояние имеет М=+3/2, Два следующих М=+1/2, затем два М=-1/2 и последнее состояние М=-3/2. Мы сразу же видим, что одной из возможностей для спина J объединенного состояния (для полного момента количества движения) должно быть 3/2, это потребует четырех состояний с М= +3/2, +1/2, -1/2 и - 3/2. На М=+3/2 есть только один кандидат, и мы сразу видим, что

Но что является состоянием |J=3/2, М=+1/2>? Кандидатов здесь два, они стоят во второй строчке (16.42), и всякая их ли­нейная комбинация тоже даст М=+1/2. Значит, в общем случае можно ожидать, что

где a и b — два числа. Их именуют коэффициенты Клебша — Гордона. Найти их и будет нашей очередной задачей.

И мы их легко найдем, если просто вспомним, что дейтрон состоит из нейтрона и протона, и в явном виде распишем со­стояния дейтрона, пользуясь правилами табл. 16.3. Если это проделать, то перечисленные в (16.42) состояния будут выгля­деть так, как показано в табл. 16.4.

Пользуясь состояниями из этой таблицы, мы хотим образо­вать четверку состояний с J=3/2. Но ответ нам уже известен, потому что в табл. 16.1 уже стоят состояния со спином 3/2, образованные из трех частиц со спином 1/2. Первое состояние в табл. 16.1 имеет |J=3/2, М=+3/2>, это |+++>, а в наших нынешних обозначениях это |e, +1/2; n, + 1/2; p, +1/2>, или первое состояние из табл. 16.4. Но это состояние — то же самое, что первое по списку в (16.42), так что наше выражение (16.45) подтверждается. Вторая строчка в табл. 16.1 утверждает, если воспользоваться нашими теперешними обозначениями, что

То, что стоит в правой части, можно, очевидно, составить из двух членов во второй строчке табл. 16.4, взяв Ц2/3 от пер­вого члена и Ц1/3 от второго. Иначе говоря, (16.47) эквива­лентно

Таблица 16.4 · СОСТОЯНИЯ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ АТОМА ДЕЙТЕРИЯ

Мы нашли два наших первых коэффициента Клебша — Гор­дона a, и b [см. (16.46)]:

Повторяя ту же процедуру, найдем

а также, конечно,

Это и есть правила составления из спина 1 и спина 1/2 полного спина J=3/2. Мы свели (16.45) и (16.50) в табл. 16.5.

Таблица 16.5 · СОСТОЯНИЯ С J=3/2 АТОМА ДЕЙТЕРИЯ

Но у нас пока есть только четыре состояния, а у системы, которую мы рассматриваем, их шесть.

Из двух состояний во второй строчке (16.42) мы для об­разования |J=3/2, М=+1/2> составили только одну линей­ную комбинацию. Есть и другая линейная комбинация, орто­гональная к ней, у нее тоже М=+1/2 и она имеет вид

Точно так же из двух состояний в третьей строке (16.42) можно скомбинировать два взаимно-ортогональных состояния, каждое с М =-1/2. То, которое ортогонально к (16.50), имеет вид

это и есть два оставшихся состояния. У них M=me+md=±1/2; эти состояния должны соответствовать J=1/2. Итак, мы имеем

Можно убедиться, что эти два состояния действительно ведут себя как состояния объекта со спином 1/2; для этого надо выразить дейтронную часть через нейтронные и протонные со­стояния (при помощи табл. 16.3). Первое состояние в (16.53) превратится в

(16.55) а это можно переписать так:

Посмотрите теперь на выражение в первых фигурных скобках и подумайте, что получается при объединении е и р. Вместе они образуют состояние с нулевым спином (см. нижнюю строку в табл. 16.3) и не дают вклада в момент количества движения. Остался только нейтрон, значит, вся первая фигурная скобка (16.56) будет вести себя при поворотах как нейтрон, а именно как состояние с J=1/2, M=+1/2.

Повторяя те же рассуждения, убедимся, что во вторых фигурных скобках (16.56) электрон и нейтрон объединяются, чтобы образовать нулевой момент количества движения, и ос­тается только вклад протона — с mp=+1/2. Скобка опять ведет себя как объект с J=+1/2, М=+1/2. Значит, и все выра­жение (16.56) преобразуется как |J=+1/2, М=+1/2>, чего мы и хотели. Состояние М=-1/2, отвечающее формуле (16.56), можно расписать так (заменив везде, где нужно, +1/2 на -1/2):

Вы легко проверите, что это совпадает со второй строчкой в (16.54), как и полагается, если каждая скобка представляет собой одно из двух состояний системы со спином 1/2. Значит, наши результаты подтвердились. Дейтрон и электрон могут существовать в шести спиновых состояниях, четыре из которых ведут себя как состояния объекта со спином 3/2 (табл. 16.5), а два — как объект со спином J/2 (16.54).

Результаты табл. 16.5 и уравнения (16.54) мы получили, вос­пользовавшись тем, что дейтрон состоит из нейтрона и протона. Правильность уравнений не зависит от этого особого обстоятель­ства. Для любого объекта со спином 1, объединяемого с объектом со спином 1/2, законы объединения (и коэффициенты) одни и те же. Совокупность уравнений в табл. 16.5 означает, что если система координат поворачивается, скажем, вокруг оси у, так что состояния частицы со спином 1/2 и частицы со спином 1 изме­няются согласно табл. 16.1 и 16.2, то линейные комбинации по правую сторону знака равенства будут изменяться так, как это свойственно объекту со спином 3/2. При таком же повороте со­стояния (16.54) будут меняться как состояния объекта со спи­ном 1/2. Результаты зависят только от свойств относительно пово­ротов (т. е. от спиновых состояний) двух исходных частиц, но отнюдь не от происхождения их моментов количества движения. Мы этим происхождением воспользовались лишь для вывода формул, выбрав частный случай, в котором одна из составных частей сама состоит из двух частиц со спином 1/2 в симметричном состоянии. Все наши результаты мы свели в табл. 16.6, изменив индексы е и d на а и b, чтобы подчеркнуть их общность.

Таблица 16.6 · ОБЪЕДИНЕНИЕ ЧАСТИЦЫ СО СПИНОМ 1/2( ja=1/2) С ЧАСТИЦЕЙ СО СПИНОМ 1 (jb=1)

Поставим теперь себе общую задачу найти состояния, кото­рые можно образовать, объединяя два объекта с произвольными спинами. Скажем, у одного спин ja (так что его z-компонента mа пробегает 2jа+1 значений от -ja до +ja, а у другого jb (с z-компонентой mb, пробегающей значения от - jb до+jb).

Объединенные состояния суть | а, mа; b, mb>, их всего (2ja+1)(2jb+1). Какие же состояния с полным спином / мы обнаружим?

Полная z-компонента М момента количества движения рав­няется mа+mb, и все состояния можно перечислить, опираясь на величину М [как в (16.42)]. Наибольшое М является единст­венным; оно отвечает значениям ma=ja и mb=jb и равно по­просту ja+jb. Это означает, что наибольший полный спин J также равен сумме jа+jb:

J=Ммакс=ja+jb.

Следующему значению М, меньшему чем Ммакс на единицу, будут соответствовать два состояния (либо mа, либо mb меньше своих максимальных значений на единицу). Из них должно быть образовано одно состояние, принадлежащее совокупности с J=ja+jb, и останется еще одно, которое будет принадлежать новой совокупности с J=ja+jb-1. Следующее значение М (третье сверху) можно составить тремя путями (из ma=ja 2, mb=jb, из ma=ja-1, mb=jb-1 и из ma=ja, mb=jb -2). Два из них принадлежат к уже начавшим составляться груп­пам; третье говорит нам, что надо включить в рассмотрение и со­стояния с J=ja+jb-2. Такие рассуждения будут продол­жаться до тех пор, пока уже нельзя будет, меняя то одно, то дру­гое т, получать новые состояния.

Пусть из jа и jb меньшим является jb (а если они одинаковы, возьмите любое из них); тогда понадобятся только 2jb значений полного спина J, идущих единичными шагами от jа+jb вниз к jа-jb. Иначе говоря, когда объединяются два объекта со спинами jа и jb, то полный момент количества движения J их системы может равняться одному из значений:

(Написав | ja-jb | вместо ja-jb, мы можем избежать напо­минания о том, что jaіjb.)

Для каждого из этих значений J имеется 2J+1 состояний с различными значениями М; М меняется от +J до -J. Каждое из них образовано из линейных комбинаций исходных состояний | а, mа; b, mb> с соответствующими коэффициентами — коэффициентами Клебша — Гордона для каждого отдельного члена. Можно считать, что эти коэффициенты дают «количест­во» состояния | ja, ma; jb, mb>, проявляющегося в состоянии

Таблица 16.7 · ОБЪЕДИНЕНИЕ ДВУХ ЧАСТИЦ СО СПИНОМ 1 (ja=1, jb=1)

I /, My. Так что каждый из коэффициентов Клебша — Гордона обладает, если угодно, шестью индексами, указывающими его положение в формулах типа приведенных в табл. 16.3 и 16.6. Иначе говоря, обозначая, скажем, эти коэффициенты С (J, М; ja, ma; jb, mb), можно выразить равенство во второй строчке табл. 16.6 так:

Мы не будем здесь подсчитывать коэффициенты для других частных случаев. Но вы обнаружите такие таблицы во мно­гих книжках. Попробуйте сами подсчитать другой случай, например объединение двух объектов со спином 1. Мы же про­сто привели в табл. 16.7 окончательный результат.

Эти законы объединения моментов количества движения имеют очень важное значение в физике частиц, их приложениям поистине нет конца. К сожалению, у нас нет сейчас больше вре­мени на другие примеры.

Добавление 1. Вывод матрицы поворота

Для тех, кто хотел бы разобраться в этом поподробнее, мы вычислим сейчас общую матрицу поворота для системы со спи­ном (полным моментом количества движения) j. В расчете об­щего случая на самом деле большой необходимости нет; важно понять идею, а все результаты вы сможете найти в таблицах, которые приводятся во многих книжках. Но, с другой стороны, вы зашли уже так далеко, что у вас, естественно, может возник­нуть желание убедиться, что вы и впрямь в состоянии понять даже столь сложные формулы квантовой механики, как (16.35).

Расширим рассуждения § 4 на систему со спином j, которую будем считать составленной из 2/ объектов со спином 1/2. Состоя­ние с m=j имело бы вид | + + + . . . +> (с j плюсами). Для m=j-1 было бы 2j членов типа | + + . . . + + ->, | + + . . . +- +> и т. д. Рассмотрим общий случай, когда имеет­ся r плюсов и s минусов, причем r+s=2j. При повороте вокруг оси r от каждого из r плюсов появится множитель e+ij/2. В итоге фаза изменится на i(r/2-s/2)j. Мы видим, что

m=(r-s)/2 . (16.59)

Как и в случае J=3/2, каждое состояние с определенным т должно быть суммой всех состояний с одними и теми же r и s, взятых со знаком плюс, т. е. состояний, отвечающих всевозмож­ным перестановкам с r плюсами и s минусами. Мы считаем, что вам известно, что всего таких сочетаний есть (r+s)!/r!s!. Чтобы нормировать каждое состояние, надо эту сумму разделить на корень квадратный из этого числа. Можно написать

где

Введем еще новые обозначения, они нам помогут в счете. Ну а поскольку мы уж определили состояния при помощи (16.60), то два числа r и s определяют состояние ничуть не хуже, чем j и m. Мы легче проследим за выкладками, если обозначим

где [см.. (16.61)]

r = j+m, s = j-т.

Далее, (16.60) мы запишем, пользуясь специальным обозна­чением