/ Language: Русский / Genre:sci_chem

Сборник основных формул школьного курса химии

Г. Логинова

Пособие представляет собой школьный курс химии в виде расчетных и химических формул, пояснений к ним, а также уравнений реакций.Пособие составлено с учетом существующих в настоящее время стандартов среднего (полного) общего образования по химии для базового и профильного уровня. Материал пособия, соответствующий только профильному уровню, обозначен в тексте знаком «*».Пособие предназначено учащимся образовательных учреждений для повторения курса химии при подготовке к семинарам, зачетам, выпускным и вступительным экзаменам.

Е. В. Савинкина Г. П. Логинова

Сборник основныхформул по химии Карманный справочник школьника

Общая химия

Важнейшие химические понятия и законы

Химический элемент – это определенный вид атомов с одинаковым зарядом ядра.

Относительная атомная масса (Аr) показывает, во сколько раз масса атома данного химического элемента больше – массы атома углерода-12 (12С).

Химическое вещество – совокупность любых химических частиц.

Химические частицы

Формульная единица – условная частица, состав которой соответствует приведенной химической формуле, например:

Аr – вещество аргон (состоит из атомов Ar),

Н2O – вещество вода (состоит из молекул Н2O),

KNO3 – вещество нитрат калия (состоит из катионов К+ и анионов NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;).

Соотношения между физическими величинами

Атомная масса (относительная) элемента B, Ar(B):

где (атома В) – масса атома элемента В;

*ти – атомная единица массы;

*ти =  1/12  т (атома 12С) = 1,661024 г.

Количество вещества B, n(B), моль:

где N (B)  – число частиц В;

NA – постоянная Авогадро (NA = 6,021023 моль-1).

Молярная масса вещества В, М(В), г/моль:

где т(В)  – масса В.

Молярный объем газа В, VM, л/моль:

где VM = 22,4 л/моль (следствие из закона Авогадро), при нормальных условиях (н.у. – атмосферное давление р = 101 325 Па (1 атм); термодинамическая температура Т = 273,15 К или температура Цельсия t = 0 °C).

*Плотность газообразного вещества  B по водороду, D (газа B по H2):

*Плотность газообразного вещества В по воздуху, D (газ В по воздуху):

Массовая доля элемента Э в веществе В, w(Э):

где х – число атомов Э в формуле вещества В

Строение атома и Периодический закон Д.И. Менделеева

Массовое число (А) – общее число протонов и нейтронов в атомном ядре:

A = N(p0) + N(p+).

Заряд ядра атома (Z) равен числу протонов в ядре и числу электронов в атоме:

Z = N(p+) = N(e&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;).

Изотопы – атомы одного элемента, различающиеся числом нейтронов в ядре, например: калий-39: 39К (19 р+, 20 п0, 19 е&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; ); калий-40: 40К (19 р+, 21 п0, 19е&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;).

*Энергетические уровни и подуровни

*Атомная орбиталь (АО) характеризует область пространства, в которой вероятность пребывания электрона, имеющего определенную энергию, является наибольшей.

*Формы s– и р-орбиталей

Периодический закон и Периодическая система Д.И. Менделеева

Свойства элементов и их соединений периодически повторяются с возрастанием порядкового номера, который равен заряду ядра атома элемента.

Номер периода соответствует числу энергетических уровней, заполненных электронами, и обозначает последний по заполнению энергетический уровень (ЭУ).

Номер группы А показывает число валентных электронов ns и пр.

Номер группы Б показывает число валентных электронов ns и (п – 1)d.

Секция s-элементов – заполняется электронами энергетический подуровень (ЭПУ) ns-ЭПУ – IA– и IIА-группы, Н и Не.

Секция р-элементов – заполняется электронами np-ЭПУ – IIIA-VIIIA-группы.

Секция d-элементов – заполняется электронами (п- 1 ) d-ЭПУ – IБ-VIIIБ2-группы.

Секция f-элементов – заполняется электронами (п -2 ) f-ЭПУ – лантаноиды и актиноиды.

Изменение состава и свойств водородных соединений элементов 3-го периода Периодической системы

Нелетучие, разлагаются водой: NaH, MgH2, AlH3.

Летучие: SiH4, PH3, H2S, HCl.

Изменение состава и свойств высших оксидов и гидроксидов элементов 3-го периода Периодической системы

Осн&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/243;вные: Na2O – NaOH, MgO – Mg(OH)2.

Амфотерные: Al2O3 – Al(OH)3.

Кислотные: SiO2 – H4SiO4, P2O5 – H3PO4, SO3 – H2SO4, Cl2O7 – HClO4.

Химическая связь

Электроотрицательность (&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/967;) – величина, характеризующая способность атома в молекуле приобретать отрицательный заряд.

Механизмы образования ковалентной связи

Обменный механизм – перекрывание двух орбиталей соседних атомов, на каждой из которых имелось по одному электрону.

Донорно-акцепторный механизм – перекрывание свободной орбитали одного атома с орбиталью другого атома, на которой имеется пара электронов.

Перекрывание орбиталей при образовании связи

*Тип гибридизации – геометрическая форма частицы – угол между связями

Гибридизация орбиталей центрального атома – выравнивание их энергии и формы.

sp – линейная – 180°

sp2 – треугольная – 120°

sp3 – тетраэдрическая – 109,5°

sp3d – тригонально-бипирамидальная – 90°; 120°

sp3d2 – октаэдрическая – 90°

Смеси и растворы

Раствор – однородная система, состоящая из двух или более веществ, содержание которых можно изменять в определенных пределах.

Раствор: растворитель (например, вода) + растворенное вещество.

Истинные растворы содержат частицы размером менее 1 нанометра.

Коллоидные растворы содержат частицы размером 1-100 нанометра.

Механические смеси (взвеси) содержат частицы размером более 100 нанометра.

Суспензия => твердое + жидкое

Эмульсия => жидкое + жидкое

Пена, туман => газ + жидкое

Неоднородные смеси разделяют отстаиванием и фильтрованием.

Однородные смеси разделяют выпариванием, дистилляцией, хроматографией.

Насыщенный раствор находится или может находиться в равновесии с растворяемым веществом (если растворяемое вещество – твердое, то его избыток – в осадке).

Растворимость – содержание растворенного вещества в насыщенном растворе при данной температуре.

Ненасыщенный раствор содержит растворенного вещества меньше, чем его растворимость при данной температуре.

Пересыщенный раствор содержит растворенного вещества больше, чем его растворимость при данной температуре.

Соотношения между физико-химическими величинами в растворе

Массовая доля растворенного вещества В, w(B); доля единицы или %:

где т(В)  – масса В,

т(р)  – масса раствора.

Масса раствора, m(p), г:

m(p) = m(B) + m(H2O) = V(p) • &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/961;(p),

где F(p) – объем раствора;

&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/961;(p) – плотность раствора.

Объем раствора, V(p), л:

Молярная концентрация, с(В), моль/л:

где n(В) – количество вещества В;

М(В) – молярная масса вещества В.

Изменение состава раствора

Разбавление раствора водой:

> масса растворенного вещества не изменяется: т\'(В) = т(В);

> масса раствора увеличивается на массу добавленной воды: m\'(p) = m(p) + m(H2O).

Выпаривание воды из раствора:

> масса растворенного вещества не изменяется: т\'(В) = т(В).

> масса раствора уменьшается на массу выпаренной воды: m\'(p) = m(p) – m(H2O).

Сливание двух растворов: массы растворов, а также массы растворенного вещества складываются:

т"(В) = т(В) + т\'(В);

т"(р) = т(р) + т\'(р).

Выпадение кристаллов: масса растворенного вещества и масса раствора уменьшается на массу выпавших кристаллов:

m\'(В) = m(В) – m(осадка); m\'(р) = m(р) – m(осадка).

Масса воды не изменяется.

Тепловой эффект химической реакции

*Энтальпия образования вещества &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;H °(B), кДж/моль, – энтальпия реакции образования 1 моль вещества из простых веществ в их стандартных состояниях, то есть при постоянном давлении (1 атм для каждого газа в системе или при общем давлении 1 атм в отсутствие газообразных участников реакции) и постоянной температуре (обычно 298 К , или 25 °C).

*Тепловой эффект химический реакции (закон Гесса)

Q = &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/931;Q

(продуктов) – &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/931;Q (реагентов).

&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;Н° = &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/931;&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;Н°

(продуктов) – &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/931; &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;Н° (реагентов).

Для реакции аА + bВ +… = dD + еЕ +…

&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;Н° = {d&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;H°(D) + е&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;H°(Е) +…} – {а&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;H°(А) + Ь&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916;H°(В) +…},

где а, b, d, e – стехиометрические количества веществ, соответствующие коэффициентам в уравнении реакции.

Скорость химической реакции

Если за время &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/964; в объеме V количество реагента или продукта изменилось на &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/916; n, скорость реакции:

Для мономолекулярной реакции А &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; …:

v = k • 

с(А).

Для бимолекулярной реакции А + В &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; …:

v = k • 

с(А) • с(В).

Для тримолекулярной реакции А + В + С &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; …:

v = k • 

с(А) • с(В) • с(С).

Изменение скорости химической реакции

Скорость реакции увеличивают:

1) химически активные реагенты;

2)  повышение концентрации реагентов;

3)  увеличение поверхности твердых и жидких реагентов;

4)  повышение температуры;

5)  катализаторы. Скорость реакции уменьшают:

1) химически неактивные реагенты;

2)  понижение концентрации реагентов;

3)  уменьшение поверхности твердых и жидких реагентов;

4)  понижение температуры;

5)  ингибиторы.

*Температурный коэффициент скорости (&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/947;) равен числу, которое показывает, во сколько раз увеличивается скорость реакции при повышении температуры на десять градусов:

Химическое равновесие

*Закон действующих масс для химического равновесия: в состоянии равновесия отношение произведения молярных концентраций продуктов в степенях, равных

их стехиометрическим коэффициентам, к произведению молярных концентраций реагентов в степенях, равных их стехиометрическим коэффициентам, при постоянной температуре есть величина постоянная (концентрационная константа равновесия).

В состоянии химического равновесия для обратимой реакции:

аА + bВ + … &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; dD + fF + …

Кc = [D] d • [F]f …/ [А]а • [В]b …

*Смещение химического равновесия в сторону образования продуктов

1) Увеличение концентрации реагентов;

2) уменьшение концентрации продуктов;

3) увеличение температуры (для эндотермической реакции);

4) уменьшение температуры (для экзотермической реакции);

5) увеличение давления (для реакции, идущей с уменьшением объема);

6) уменьшение давления (для реакции, идущей с увеличением объема).

Обменные реакции в растворе

Электролитическая диссоциация – процесс образования ионов (катионов и анионов) при растворении в воде некоторых веществ.

При электролитической диссоциации кислот образуются катионы водорода и анионы кислоты, например:

HNO3 = Н+ + NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

При электролитической диссоциации оснований образуются катионы металла и гидроксид-ионы, например:

NaOH = Na+ + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

При электролитической диссоциации солей (средних, двойных, смешанных) образуются катионы металла и анионы кислоты, например:

NaNO3 = Na+ + NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

KAl(SO4)2 = К+ + Al3+ + 2SO42-

При электролитической диссоциации кислых солей образуются катионы металла и гидроанионы кислоты, например:

NaHCO3 = Na+ + HCO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8254;

Некоторые сильные кислоты

HBr, HCl, НСlO4, H2Cr2O7, HI, HMnO4, H2SO4, H2SeO4, HNO3, Н2СrO4

Некоторые сильные основания

RbOH, CsOH, КОН, NaOH, LiOH, Ba(OH)2, Sr(OH)2, Ca(OH)2

Степень диссоциации &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/945; – отношение количества продиссоциировавших частиц к количеству исходных частиц.

При постоянном объеме:

Классификация веществ по степени диссоциации

Правило Бертолле

Обменные реакции в растворе протекают необратимо, если в результате образуется осадок, газ, слабый электролит.

Примеры молекулярных и ионных уравнений реакций

1. Молекулярное уравнение: CuCl2 + 2NaOH = Cu(OH)2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 2NaCl

«Полное» ионное уравнение: Сu2+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + 2Na+ + 2OH&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Cu(OH)2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 2Na+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

«Краткое» ионное уравнение: Сu2+ + 2OН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Cu(OH)2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595;

2. Молекулярное уравнение: FeS(T) + 2HCl = FeCl2 + H2S&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

«Полное» ионное уравнение: FeS + 2Н+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Fe2+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + H2S&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

«Краткое» ионное уравнение: FeS (T) + 2H+ = Fe2+ + H2S&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

3. Молекулярное уравнение: 3HNO3 + K3PO4 = Н3РO4 + 3KNO3

«Полное» ионное уравнение: 3Н+ + 3NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + ЗК+ + PO43- = Н3РO4 + 3K+ + 3NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

«Краткое» ионное уравнение: 3Н+ + PO43- = Н3РO4

*Водородный показатель

(рН) рН = – lg[H3O+] = 14 + lg[OH&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;]

*Интервал рН для разбавленных водных растворов

рН 7 (нейтральная среда)

Примеры обменных реакций

Реакция нейтрализации – обменная реакция, протекающая при взаимодействии кислоты и основания.

1. Щелочь + сильная кислота: Ва(OН)2 + 2НСl = ВаСl2 + 2Н2O

Ва2+ + 2OН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + 2Н+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Ва2+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + 2Н2O

Н+ + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Н2O

2. Малорастворимое основание + сильная кислота: Сu(ОН)2(т) + 2НСl = СuСl2 + 2Н2O

Сu(ОН)2 + 2Н+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Сu2+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + 2Н2O

Сu(ОН)2 + 2Н+ = Сu2+ + 2Н2O

*Гидролиз – обменная реакция между веществом и водой без изменения степеней окисления атомов.

1. Необратимый гидролиз бинарных соединений:

Mg3N2 + 6Н2O = 3Mg(OH)2 + 2NH3

2. Обратимый гидролиз солей:

а) Соль образована катионом сильного основания и анионом сильной кислоты:

NaCl = Na+ + Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

Na+ + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8800; ;

Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8800;

гидролиз отсутствует; среда нейтральная, рН = 7.

б) Соль образована катионом сильного основания и анионом слабой кислоты:

Na2S = 2Na+ + S2-

Na+ + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8800;

S2- + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; HS&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

гидролиз по аниону; среда щелочная, рН >7.

в) Соль образована катионом слабого или малорастворимого основания и анионом сильной кислоты:

ZnCl2 = Zn2+ + 2Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8800;

Zn2+ + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; ZnOH+ + Н+

гидролиз по катиону; среда кислотная, рН < 7.

г) Соль образована катионом слабого или малорастворимого основания и анионом слабой кислоты:

NH4(CH3COO) = NH4+ + СН3СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

NH4+ + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; NH3 + Н3O+

СН3СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; СН3СООН + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

гидролиз по катиону и аниону; среда нейтральная, слабо кислотная или слабо щелочная, рН 7, < 7 или >7.

*Среда в растворах кислых солей

1 . Гидрокарбонат-ион:

НСО4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; Н2СO3 + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

среда щелочная.

2. Гидроортофосфат-ион:

НРO42- + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; Н2РO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

среда щелочная.

3. Дигидроортофосфат-ион:

Н2РO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; НРO42- + Н3O+

среда кислотная.

4. Гидросульфид-ион:

HS&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; H2S + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

среда щелочная.

5. Гидросульфит-ион:

HSO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; SO32- + Н3O+

среда кислотная.

6. Гидросульфат-ион:

HSO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н20 = SO42– + Н3O+

среда кислотная.

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции (ОВР) протекают с изменением степеней окисления элементов и сопровождаются передачей электронов.

Степень окисления – условный заряд атома элемента, который рассчитывают, исходя из предположения ионного строения вещества.

Для молекулы сумма степеней окисления атомов равна нулю.

Для сложного иона сумма степеней окисления атомов равна заряду иона.

Степени окисления более электроотрицательных элементов отрицательны.

Степени окисления менее электроотрицательных элементов положительны.

Высшие и низшие степени окисления элементов 2-го и 3-го периодов в химических соединениях

Характеристика окислителя и восстановителя

Окислитель принимает электроны, восстанавливается, степень окисления атома-окислителя понижается.

Восстановитель отдает электроны, окисляется, степень окисления атома-восстановителя повышается.

Восстановленные формы некоторых окислителей

HNO3(конц.):

NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; => NO2(г)

HNO3(разб.):

NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; => NO(г)

HNO3(oч. разб.):

NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; => NO4+

Перманганат-ион:

MnO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; => Мn2+ (среда кислотная)

МnO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; => МnO2 (среда нейтральная)

МnO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; => МnO42- (среда щелочная)

Дихромат-ион: Cr2O72- => Сr3+ (среда кислотная)

Хромат-ион:

CrO42- => [Сг(ОН)6]3- (среда щелочная)

*Типы окислительно-восстановительных реакций

Межмолекулярные (окислитель и восстановитель входят в состав разных веществ):

Сu + 2H2SO4(конц.) = CuSO4 + SO2 + 2Н2O

Внутримолекулярные (окислитель и восстановитель входят в состав одного и того же вещества):

2КСlO3 = 2КСl + 3O2 (катализатор)

Дисмутация (атом одного и того же элемента и окисляется, и восстанавливается):

Сl2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; НСl + НСlO

Конмутация (атомы одного и того же элемента с разными степенями окисления приобретают одинаковую степень окисления):

NH4Cl + KNO2 = N2 + 2H2O + KCl

Электрохимический ряд напряжений металлов (ЭХРН)

Восстановительные свойства металлов убывают в ряду слева направо:

*Ряд неметаллов

Окислительные свойства неметаллов увеличиваются в ряду слева направо:

Примеры окислителей и восстановителей

Окислители: FeCl3, H2SO4, HNO3, K2Cr2O7, KClO3, KMnO4, O2, F2.

Окислители и восстановители: S и другие неметаллы, SO2, KNO2, НСl, Н2O2.

Восстановители: Аl, Са и другие металлы, H2S и сульфиды, K2SO3, KI, NH3.

Метод электронного баланса

1. Записывают формулы реагентов и продуктов, находят элементы, которые понижают и повышают степени окисления, и записывают их отдельно:

Мn O2 + K N O3 + КОН  &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; К2 Мn O4 + K N O2+…

2. Составляют уравнения полуреакций восстановления и окисления, соблюдая для каждой из них законы сохранения числа атомов и заряда:

MnIV – 2е&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = MnVI

NV + 2e&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = NIII

3. Находят наименьшее общее кратное числа переданных в каждой полуреакции электронов и подбирают дополнительные множители для уравнений полуреакции так, чтобы суммарное число принятых и отданных электронов стало равным нулю:

4. Проставляют полученные коэффициенты в схему реакции:

МnO2 + KNO3 + КОН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; К2МnO4 + KNO2 +…

5. Уравнивают числа остальных атомов, участвующих в реакции, и получают уравнение реакции с подобранными коэффициентами:

МnO2 + KNO3 + 2KOH = K2MnO4 + KNO2 + Н2O

*Метод электронно-ионного баланса

1. Записывают молекулярное уравнение реакции:

КМnO4 + H2S(г) + H2S04(разб.) &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594;

2. Записывают ионы окислителя, восстановителя и среды (для слабых электролитов, твердых веществ и газов – молекулы):

МnO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + H2S + Н+ &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594;

3. Составляют электронно-ионные уравнения полуреакций восстановления и окисления, учитывая формы частиц, в виде которых участники реакции находятся в растворе, и соблюдая законы сохранения числа атомов и заряда:

МnO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + 8H+ + 5е&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Мn2+ + 4Н2O

H2S – 2е&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = S + 2Н+

4. Подбирают дополнительные множители:

5. Составляют ионное уравнение реакции:

2MnO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + 6H+ + 5H2S = 2Мn2+ + 5S + 8Н2O

6. Переносят полученные коэффициенты в молекулярное уравнение и подбирают коэффициенты для веществ, отсутствующих в ионном уравнении:

2KMnO4 + 5H2S + 3H2SO4 = 2MnSO4 + 5S + K2SO4 + 8H2O

При составлении уравнений полуреакций следует использовать молекулы воды и катионы водорода (в кислотной среде):

[НI] = Н+; [O-II] + 2Н+ = Н2O

или гидроксид-ионы (в щелочной среде):

[НI] + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; = Н2O; [O-II] + Н2O = 2OН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;.

Классы неорганических веществ

Характер гидроксидов и соответствующих оксидов

Осн&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/243;вные

Гидроксиды: КОН; Ва(ОН)2

Оксиды: К2O; ВаО

Амфотерные

Гидроксиды: Zn(OH)2; Al(OH)3

Оксиды: ZnO: Al2O3

Кислотные

Гидроксиды (кислородсодержащие кислоты): H2SO4; HNO3

Оксиды: SO3; N2O5

Кислотный гидроксид (оксид) + основный гидроксид (оксид) = соль

Классификация солей

Средние: CaSO4; Na3PO4; K2CO3

Кислые: Ca(HSO4)2. NaH2PO4; Na2HPO4

Основные: Cu2CO3(OH)2; AlSO4(OH)

Двойные: KAl(SO4)2; Fe(NH4)2(SO4)2

Смешанные: Na3CO3(HCO3); Na2IO3(NO3)

Примеры бинарных соединений

Несолеобразующие оксиды: NO, CO

Бескислородные соли: КСl, NaI

Двойные оксиды: (FeIIFe2III)O4 или Fe3O4

Бескислородные кислоты: НСl, НВr

Другие соединения, не являющиеся оксидами, гидроксидами, солями: CS2, NH3

Неорганическая химия

Водород и вода

Общая характеристика водорода

Водород – самый распространенный элемент Вселенной.

Химический символ – Н

*Электронная формула – 1s1

Степень окисления – +I, -I

Простое вещество – Н2

Способы получения водорода

В промышленности:

1) разложение воды под действием постоянного тока в присутствии сильного электролита:

2Н2O (электролиз) &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;(катод) + O2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;(анод);

2) взаимодействие углерода с водой:

Н2O + С (кокс) = СО + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; (800-1000 °С).

В лаборатории:

1) взаимодействие металлов (см. ЭХРН) с кислотами (кроме азотной и концентрированной серной кислот):

Zn + H2SO4(разб.) = ZnSO4 + H2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2) взаимодействие амфотерных металлов с водой в щелочной среде:

2Н2O + 2NaOH + Zn = Na2[Zn(OH)4] + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

3) взаимодействие металлов с водой:

2Н2O + 2Li = 2LiOH + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

4Н2O (пар) + 3Fe = (FeIIFe2III)O4 + 4Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

4) реакция конмутации гидридов металлов с водой:

2Н2O + СаН2 = Са(ОН)2 + 2Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

Химические свойства водорода

Водород – восстановитель:

1) с кислородом:

2Н2 + O2 = 2Н2O

2) с оксидами металлов:

СuО + Н2 = Сu + Н2O

3) с неметаллами:

Н2 + Сl2 = 2НСl

Н2 + S = H2S

Водород – окислитель:

с металлами:

Н2 + 2Na = 2NaH

Вода – важнейшее соединение водорода.

Химические свойства воды

Вода – окислитель:

1) с активными металлами в обычных условиях:

2Н2O + 2Na = 2NaOH + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2) с менее активными металлами при высоких температурах:

Н2O + Zn = ZnO + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

Вода образует:

3) с оксидами активных металлов – основания:

К2O + Н2O = 2КОН

4) с оксидами неметаллов – кислоты:

Н2O + SO3 = H2SO4

Важнейшие элементы IA-IIIA-групп (металлы)

IA– группа (щелочные элементы)

* Электронные формулы атомов:

литий Li [He]2s1, натрий Na [Ne]3s1, калий К [Ar]4s1.

Получение: электролиз расплава, например:

2NаСl(ж) &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2Na (катод) + Сl2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;(анод)

IIА-группа

* Электронные формулы атомов:

магний Mg [Ne]3s2, кальций (щелочноземельный элемент) Са [Ar]4s2.

Получение: электролиз расплава, например:

МgСl2(ж) &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Mg (катод) + Сl2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;(анод)

Химические свойства щелочных металлов, магния и кальция

Реакции с неметаллами:

1) с галогенами &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; галогенид металла:

2Li + Br2 = 2LiBr

2) с серой &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; сульфид металла:

2Na + S = Na2S

3) с водородом &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; гидрид металла:

2К + Н2 = 2КН

4) с кислородом &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; оксид металла (Li2O, MgO, CaO), пероксид металла (Na2O2), надпероксид металла (КO2).

Реакции со сложными веществами:

1) с кислотами-неокислителями &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; соль металла + водород:

Mg + H2SO4 (разб.) = MgSO4 + H2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2) с водой &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; гидроксид металла + водород:

Са + 2Н2O = Са(ОН)2 + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

Основные свойства оксидов щелочных металлов

Реагируют:

1) с водой:

Li 2O + Н2O = 2LiОН

2) с кислотными оксидами:

К2O + SO2 = K2SO3

3) с кислотами:

3Na2O + 2Н3РO4 = 2Na3PO4 + ЗН2O

Основные свойства гидроксидов щелочных металлов

В водном растворе – сильные основания (щелочи)

КОН = К+ + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

Реагируют:

2) с кислотными оксидами:

2NaOH + СO2 = Na2CO3 + Н2O

3) с кислотами:

LiOH + НВr = LiBr + Н2O (нейтрализация)

Основные свойства оксидов магния и кальция

Реагируют:

1) с водой:

СаО + Н2O = Са(ОН)2

2) с кислотными оксидами:

MgO + SO3 = MgSO4

3) с кислотами:

СаО + 2HNO3 = Ca(NO3)2 + H2O

Основные свойства гидроксидов магния и кальция

В воде – малорастворимы, Са(ОН)2 в разбавленных растворах – сильное основание:

Са(ОН)2 = Са2+ + 2OН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

Реагируют:

1) с кислотными оксидами:

Mg(OH)2 + N2O5 = Mg(NO3)2 + H2O

2) с кислотами:

Са(ОН)2 + 2НСl = СаСl2 + 2Н2O (нейтрализация)

IIIА-группа

*Электронная формула атома алюминия:

Al [Ne]3s23p1.

Получение:

электролиз Аl2O3 в расплаве Na3[AlF6]

2Аl2O3 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 4Аl(катод) + 3O2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;(анод) (900 °C)

Химические свойства алюминия – амфотерного элемента

Реакции с неметаллами:

1) с галогенами: 2Аl + 3I2 = 2АlI3

2) с серой: 2Аl + 3S = Al2S3

3) с кислородом: 4Аl + 3O2 = 2Аl2O3

Реакции со сложными веществами:

1) с водой:

2Аl (+Hg) + 6Н2O = 2Аl(ОН)3 + ЗН2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2) с кислотами-неокислителями:

2Аl + 6НСl = 2АlСl3 + ЗН2

3) *со щелочами в водном растворе:

2Аl + 6Н2O + 2NaOH = = 2Na[Al(OH)4] + ЗН2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

и расплаве:

2Аl + 2(NaOH • Н2O) = 2NaAlO2 + ЗН2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

*Амфотерные свойства оксида алюминия

В воде практически нерастворим. Реагирует:

1) с кислотными оксидами:

Аl2O3 + 3N2O5 = 2Al(NO3)3 (40 °C)

2) с кислотами:

Аl2O3 + 6НСl (конц., гор.) = 2АlСl3 + ЗН2O

3) со щелочами в водном растворе:

Аl2O3 + 2NaOH (конц., гор.) + ЗН2O = 2Na[Al(OH)4]

и расплаве (1000 °C):

Аl2O3 + 2NaOH = 2NaAlO2 + Н2O

*Амфотерные свойства гидроксида алюминия

В воде практически нерастворим.

Реагирует:

1) с кислотами:

2Аl(ОН)3 + 3H2SO4 = Al2(SO4)3 + 6Н2O

2) со щелочами в водном растворе:

Аl(ОН)3 + NaOH (конц.) = Na[Al(OH)4]

и расплаве (1000 °C):

Аl(ОН)3 + NaOH = NaAlO2 + 2Н2O

Важнейшие элементы-неметаллы IVA-группы

* Электронные формулы атомов:

углерод С [He] 2s22p 2, кремний Si [Ne] 3s23p 2.

Аллотропные модификации углерода

1) Алмаз – бесцветные прозрачные кристаллы, имеющие атомную кристаллическую решетку, состоящую из тетраэдров.

2)  Графит – серо-черные непрозрачные кристаллы, состоящие из слоев шестиугольников.

3)  Карбин – бесцветные прозрачные кристаллы, состоящие из линейных макромолекул.

4) Фуллерен – темно-красные прозрачные кристаллы, состоящие из молекул: С60 или С70 (полые сферы).

Химические свойства углерода (графита)

Реагирует при высоких температурах:

1) с водородом как окислитель:

2С + Н2 = С2Н2

2) с металлами как окислитель:

2С + Са = СаС2

3) с кислородом как восстановитель:

С + O2 = СO2 (сжигание на воздухе)

4) с водой (1000 °C):

С + Н2O(пар) &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; СО + Н2

5) с оксидами металлов:

С + 2РЬО = 2РЬ + СO2

*Химические свойства аморфного кремния

Реагирует:

1) с кислородом: Si + O2 = SiO2 (1200 °C)

2) с галогенами: Si + 2F2 = SiF4

3) с водой (500 °C): Si + 2Н2O (пар) = SiO2 + 2Н2

4) со щелочами в водном растворе: Si + 4NaOH(конц.) = Na4SiO4 + 2H2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

*Образование и свойства оксида углерода(II)

В промышленности:

1) получение генераторного газа:

С + O2 = СO2;

СO2 + С = 2СО (1000°)

2) получение водяного газа:

С + Н2O = СО + Н2 (1000 °С)

В лаборатории:

действие H2SO4(конц.) на муравьиную кислоту:

НСOOН = Н2O + СO

При неполном сгорании топлива:

1) в печах: 2С + O2 = 2СО

2) в двигателях внутреннего сгорания:

С8Н16 + 8O2 = 8СО + 8Н2O

Сильный восстановитель:

1) сжигание на воздухе:

2СО + O2 = 2СO2

2) определение в воздухе:

5СО + I2O5 = 5СO2 + I2

*Образование оксида углерода(IV)

При горении углеродсодержащих веществ (сжигание топлива):

1) С + O2 = СO2

2) СН4 + 2O2 = СO2 + 2Н2O

В промышленности:

3) СаСO3 = СаО + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

В лаборатории:

4) СаСO3 + 2HCl = СаСl2 + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + Н2O

При медленном окислении (дыхание, гниение, брожение):

5) органические вещества + O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СO2 + Н2O

Реакции оксида углерода(IV)

Обменные:

1) с водой (оксид и кислота мало растворимы в воде):

СO2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; Н2СO3

2) с основаниями:

СO2 + NaOH = NaHCO3

СO2 + 2NaOH = Na2CO3 + H2O

СO2 + Са(ОН)2 = CaCO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + Н2O

3) с основными оксидами:

СO2 + СаО = СаСO3

4) с карбонатами:

СаСO3 + СO2 + Н2O = Са(НСO3)2

Окислительно-восстановительные:

1) с металлами: СO2 + 2Mg = 2MgO + С

2) с неметаллами: СO2 + С = 2СО

*Реакции оксида кремния(IV)

Реагирует при сплавлении:

1) с основаниями:

SiO2 + 2NaOH = Na2SiO3 + H2O

2) с основными оксидами:

SiO2 + СаО = CaSiO3

3) с карбонатами:

SiO2 + СаСО3 = CaSiO3 + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

В воде SiO2 нерастворим и с водой не взаимодействует.

Свойства солей угольной кислоты

Карбонаты реагируют:

1) с солями:

Na2CO3 + СаСl2 = CaCO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; +2NaCl

2) с кислотами:

Na2CO3 + 2HCl = 2NaCl + H2O + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

3) с диоксидом углерода:

MgCO3 + СO2 + Н2O = Mg(HCO3)2

Разлагаются при прокаливании:

4) СаСО3 = СаО + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

Растворимые соли гидролизуются:

5) Na2CO3 = 2Na+ + CO32-

CO32- + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; HCO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + OH&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; щелочная среда

Не взаимодействуют с основаниями.

Гидрокарбонаты реагируют:

1) с солями:

2NH4HCO3 + ВаСl2 = = BaCO3l + 2NH4Cl + H2O + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2) с основаниями:

NaHCO3 + NaOH = Na2CO3 + H2O

3) с кислотами:

КНСО3 + НСl = КСl + Н2O + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

Разлагаются при кипячении раствора:

4) Са(НСO3)2 = СаСО3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + Н2O + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

В водном растворе гидролизуются:

5) NaHCO3 = Na+ + HCO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

НСО3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; Н2СO3 + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; щелочная среда

Не реагируют с диоксидом углерода.

*Свойства солей кремниевой кислоты

Силикаты реагируют:

1) с солями:

Na2SiO3 + СаСl2 = CaSiO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 2NaCl

2) с кислотами:

Na2SiO3 + 2HCl = H2SiO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 2NaCl

3) с диоксидом углерода в водном растворе:

Na2SiO3 + Н2O + СO2 = = H2SiO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + Na2CO3

В водном растворе гидролизуются:

4) гидролиз растворимых солей:

Na2SiO3 = Na+ + SiO32-

SiO32– + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; HSiO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + OH&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; щелочная среда

He реагируют с основаниями. Не разлагаются при нагревании.

Важнейшие элементы-неметаллы VA-группы

*Электронные формулы атомов: азот N [He] 2s22p3 ; фосфор Р [Ne] 3s23p3 .

Простые вещества

Азот N2 – газообразное вещество, входит в состав воздуха.

Белый фосфор Р4 – твердое вещество.

Красный фосфор Рп – твердое вещество.

*Получение азота

В промышленности:

перегонка жидкого воздуха.

В лаборатории:

термическое разложение нитрита аммония:

NH4NO2 = N2 + 2H2O

*Получение белого фосфора

В промышленности:

восстановление фосфатов углем

2Са3(РO4)2 + С (кокс) + 6SiO2 = 6CaSiO3 + Р4 + 10CО (1000 °C)

Химические свойства азота

Реагирует как окислитель:

1) с водородом

(промышленное получение аммиака):

N2 + ЗН2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; 2NH3 (500 °С, р, кат. Fe, Pt)

2) с металлами

N2 + 3Mg = Mg3N2 (на воздухе, 800 °C)

Реагирует как восстановитель:

3) с кислородом:

N2 + O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; 2NO

(идет в малой степени даже под действием электрического разряда!)

*Химические свойства фосфора

Реагирует как окислитель:

1) с водородом:

Р4 + 6Н2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; 4РН3 (300 °C, р)

2) с металлами:

2Р (красный) + ЗСа = Са3Р2 (300 °C)

Реагирует как восстановитель:

3) с кислородом (сгорание на воздухе):

4Р(красный) + 5O2 = 2Р2O5 (300 °С)

Получение аммиака в лаборатории

2NH4Cl(т) + Са(ОН)2(т) = 2NH3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + СаСl2 + 2Н2O (200 °C)

Химические свойства аммиака

Обменные реакции:

слабое основание в водном растворе:

NH3 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; NH4+ + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; щелочная среда

2) с хлороводородом в газовой фазе и в водном растворе:

NH3 + HCl = NH4Cl

3) с кислотами:

NH3 + H2SO4 = NH4HSO4

2NH3 + H2SO4 = (NH4)2SO4

Окислительно-восстановительные реакции:

1) 4NH3 + 3O2 = 2N2 + 6H2O (сгорание)

2) 4NH3 + 5O2 = 4NO + 6H2O (каталитическое окисление)

*Свойства солей аммония

1. Гидролиз:

(NH4)2SO4 = 2NH4+ + SO42-

2NH4+ + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; NH3 + H3O+ кислотная среда

2. Термическое разложение:

NH4Cl = NH3 + НСl

NH4NO3 = N2O + 2H2O

NH4NO2 = N2 + 2H2O

Важнейшие оксиды азота и фосфора

Несолеобразующие: N2O (условная степень окисления +1); NIIO; NIVO2.

Кислотные: N2IIIO3; N2IVO5; P2VO5.

Получение азотной кислоты

В промышленности (по стадиям):

1) 4NH3 +5O2 = 4NO +6Н2O (кат. Pt, Rh)

2) 2NO + O2 = 2NO2

3) 4NO2 + 2Н2O + O2 = 4HNO3

В лаборатории при нагревании:

NaNO3(т) + H2S04(конц.) = NaHSO4 + HNO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

Химические свойства азотной кислоты

Обменные реакции:

1) электролитическая диссоциация:

HNO3 = Н+ + NO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

2) с оксидами металлов:

2HNO3 + CuO = Cu(NO3)2 + H2O

3) с основаниями:

2HNO3 + Mg(OH)2 = Mg(NO3)2 + 2H2O

4) с солями:

2HNO3 + К2СO3 = 2KNO3 + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;+ Н2O

Окислительно-восстановительные реакции:

1) разложение на свету:

4HNO3 = 4NO2 + 2Н2O + O2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2) с металлами:

2HNO3(конц.) + Ag = AgNO3 + NO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + Н2O

8HNO3(разб.) + Сu = Cu(NO3)2 + 2NO&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 4H2O

10HNO3(разб.) + 4Mg = 4Mg(NO3)2 + N2O&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 5H2O

2HNO3(разб.) + 5Sn = 5Sn(NO3)2 + N2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 6H2O (медленно)

30HNO3(оч. разб.) + 8Аl = 8Al(NO3)3 + 3NH4NO3 + 9H2O

3) с неметаллами:

4HNO3(конц.) + С = СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 4NO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 2Н2O

5HNO3(конц.) + Р = Н3РO4 + 5NO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + Н2O

6HNO3(конц.) + S = H2SO4 + + 6NO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 2Н2O

4) с белками (&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; вещества ярко-желтого цвета)

Водород никогда не является основным продуктом в реакциях с участием азотной кислоты!

*Термическое разложение нитратов

(зависит от положения металла в ЭХРН)

1. Металл левее Mg &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; нитрит металла + кислород:

2KNO3 = 2KNO2 + O2

2. Металл между Mg и Сu &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; оксид металла + диоксид азота + кислород:

2Cu(NO3)2 = 2CuO + 4NO2 + O2

3. Металл правее Си &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; металл + диоксид азота + кислород:

2AgNO3 = 2Ag + 2NO2 + O2

*Свойства ортофосфорной кислоты

Реагирует:

1) с активными металлами:

2Н3РO4(разб.) + Mg = Mg3(PO4)2 + 3H2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2) с оксидами металлов:

2Н3РO4(разб.) + ЗСаО = Са3(РO4)2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + ЗН2O

3) с основаниями:

Н3РO4 + NaOH = NaH2PO4 + H2O

Н3РO4 + 2NaOH = Na2HPO4 + 2H2O

Н3РO4 + 3NaOH = Na3PO4 + 3H2O

4) с аммиаком:

Н3РO4 + NH3 • H2O = (NH4)H2PO4 + Н2O

Н3РO4 + 2(NH3 •H2O) = = (NH4)2HPO4 + 2H2O

5) с солями:

2Н3РO4(разб.) + 3Na2CO3(конц.) = 2Na3PO4 + 3H2O + ЗСO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;(кипячение)

2Н3РO4 (разб.) + 3Ca(NO3)2 = = Са3(РO4)2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 6HNO3

*Гидролиз ортофосфатов

1. Na3PO4 = 3Na+ + РО43-

РО43– + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; HРО42- + OH&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; щелочная среда

2. Na2HPO4 = 2Na+ + HРО42-

HРО42- + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; H2PO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + OH&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; щелочная среда

3. NaH2PO4 = Na+ + H2PO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

H2PO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + H2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; HРО42- + H3O+ кислотная среда

Удобрения

Азотные: гидрат аммиака NH3•H2O; соли аммония (нитрат и сульфат) NH4NO3, (NH4)2SO4; селитры (нитраты натрия, калия и кальция) NaNO3, Ca(NO3)2; мочевина C(NH2)2O.

Фосфорные: простой суперфосфат Са(Н2РO4)2 и CaSO4, двойной суперфосфат Са(Н2РO4)2 с примесью СаНРO4.

Калийные: хлорид калия, сульфат калия КСl, K2SO4.

Комбинированные: KNO3.

Важнейшие элементы-неметаллы VIA-группы (халькогены)

*Электронные формулы атомов: кислород О [He] 2s22p4 ; сера S [Ne] 3s23p4 .

Аллотропные модификации кислорода и серы

Дикислород O2 – бесцветный газ.

Озон O3 – синий газ.

Кристаллическая сера S8 – твердое вещество желтого цвета.

Пластическая сера Sn – твердое вещество коричневого цвета.

*Получение кислорода

В промышленности: перегонка жидкого воздуха. В лаборатории:

термическое разложение сложных веществ, например:

2КМnO4 = К2МnO4 + МnO2 + O2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2Н2O2 = 2Н2O + O2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

Химические свойства кислорода

Кислород – окислитель:

1) с металлами (сгорание на воздухе):

O2 + К = КO2 (надпероксид калия)

O2 + 2Na = Na2O2 (пероксид натрия)

O2 + 2Mg = 2MgO (оксид магния)

3O2 + 4Аl = 2Аl2O3 (оксид алюминия)

2) с неметаллами (сгорание на воздухе):

O2 + S = SO2

5O2 + 4Р (красный) = 2Р2O5

3) со сложными веществами:

O2 + 4Fe(OH)2 + 2Н2O = 4Fe(OH)3

Химические свойства серы

Сера – окислитель:

1) с водородом: S + Н2 = H2S (200 °C)

2) с металлами: 3S + 2Аl = Al2S3 (200 °C)

3) с некоторыми неметаллами:

2S + С = CS2 (700 °C)

Сера – восстановитель:

1) с кислородом: S + O2= SO2

2) с галогенами: S + 3F2= SF6

S + Cl2= SCl2 (до 20 °C)

*Получение и химические свойства оксида серы(IV) и его гидрата

Получение в промышленности:

1) S + O2 = SO2 (сгорание на воздухе)

2) обжиг сульфидных руд:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

2PbS + 3O2 = 2РЬО + 2SO2

Получение в лаборатории обменной реакцией:

Na2SO3(т) + 2H2S04(конц.) = 2NaHSO4 + SO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + Н2O

Отношение к воде:

SO2 + Н2O = SO2 • Н2O

(гидрат диоксида серы – сернистая кислота)

SO2 • Н2О + Н2О &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; HSO3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н3О+

слабая кислота

Получение серной кислоты

окисление 2SO2 + O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; 2SO3 (400 °C; кат. Pt, V2O5, Fe2O3)

SO3 + H2O = H2SO4 + Q

Химические свойства серной кислоты

В разбавленном водном растворе сильная двухосновная кислота:

H2SO4 + 2Н2O = SO42- + 2Н3O+

Обменные реакции:

1) с оксидами металлов &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; соль + вода:

H2SO4 + CuO = CuSO4 + Н2O

2) с основаниями &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; средняя или кислая соль + вода:

H2SO4(разб.) + 2NaOH = Na2SO4 + 2H2O

H2SO4(конц.) + NaOH = NaHSO4 + H2O

3) с солями &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; соль + кислота, осадок или газ:

H2SO4 + ВаСl2 = BaSO4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 2HCl

H2SO4 + Na2CO3 = Na2SO4 + CO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;+ H2O

4) с водой &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; гидраты:

H2SO4(конц.) + nH2O = H2SO4 • nH2O + Q

Окислительно-восстановительные реакции:

1) разб. с металлами &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; соль + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;:

H2SO4(разб.) + Zn = ZnS04 + H2T

2) конц. с металлами &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; соль + SO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; или H2S&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;:

2H2SO4(конц.) + Сu = CuSO4 + SO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 2Н2O

5H2SO4(конц.) + 4Zn = 4ZnSO4 + H2S&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;+ 4H2O (примесь S)

3) конц. с органическими веществами &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; обугливание

Важнейшие элементы-неметаллы VIIA-группы (галогены)

*Электронные формулы атомов: фтор F [He] 2s22p5 ; хлор CI [Ne] 3s23p53d0 ; бром Br [Ar,3d10] 4s24p5 ; иод I [Kr,4d10] 5s25p5

Простые вещества

F2 – светло-зеленый газ.

Сl2 – желто-зеленый газ.

Вr2 – красно-бурая жидкость.

I2 – черные кристаллы.

Хорошо растворимы в органических растворителях.

Окислительная способность убывает в ряду: F2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; С12 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Вr2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; I2.

Восстановительная активность растет в ряду: Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Вr&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; I&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; .

*Примеры соединений галогенов в различных степенях окисления

HF-I, KF-I, HCl-I, Са(Сl-I)2, HBr-I, NaBr-I, HI-I, КI-I

НСlIO, Са(СlIO)2, НВrIO, IIF

HClVO3, KClVO3 HBrvO3, NaBrvO3, HIvO3

HClVIIO4, KClVIIO4, HBrVIIO4, H5IVIIO6

Химические свойства галогенов

Взаимодействие с водой:

1) 2F2 + Н2O = 2HF + OF2

2) Сl2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; НСlO + НСl хлорная вода

3) Вr2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; HBrO + HBr бромная вода

4) I2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8800;

Галогены – сильные окислители:

1) с металлами &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; ионные галогениды:

F2 + 2Na = 2NaF; Br2 + Mg = MgBr2

2) с неметаллами &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; ковалентные соединения:

3F2 + S = SF6; 3Cl2 + 2P (красный) = 2PCl3

3) с галогенидами – более активные «вытесняют» менее активные (ниже в VIIA-группе) из их солей:

2NaCl + F2 = Cl2 + 2NaF

2KI + Br2 = I2 + 2KBr

*Получение хлора

В промышленности:

1) электролиз расплава:

2NaCl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2Na + Cl2

2) электролиз раствора:

2NaCl + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + Сl2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 2NaOH

В лаборатории:

1) окисление хлороводорода

4НСl(конц.) + МnO2 = Сl2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + МnСl2 + 2Н2O

2) окисление хлоридов при нагревании

10NaCl(т) + 2КМnO4(т) + 8H2SO4(конц.) = Сl2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + 2MnSO4 + 5Na2SO4 + K2SO4 + 8H2O

Химические свойства хлора

Хлор реагирует:

1) с водородом: Сl2 + Н2 = 2НСl (получение НСl в промышленности)

2) с металлами: Сl2 + 2Na = 2NaCl

3) со щелочью в водном растворе:

Сl2 + 2NаОН(хол.) = NaClO(гипохлорит) + NaCl + Н2O

ЗСl2 + 6NaOH(гор.) = NaClOg(хлорат) + 5NaCl + Н2O

4) с бромидами или иодидами:

Сl2 + 2NaBr = Br2 + 2NaCl

Сl2 + 2KI = I2 + 2KCl

*Химические свойства иода

Иод реагирует:

1) с водородом: I2 + Н2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; 2HI

2) с металлами: I2 + 2К = 2KI

3) со щелочью в водном растворе:

3I2 + 6КОH(гор.) = КIO3(иодат) + 5KI + Н2O

4) с иодидом калия в водном растворе:

I2 + KI(p) = K[I(I2)] йодная вода

дииодоиодат(I) калия

Получение хлороводорода в лаборатории

2NaCl(т) + H2SO4(конц.) = 2НСl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + Na2SO4

Химические свойства хлороводорода

Хлороводород реагирует:

1) с водой:

НС1 + Н2O = Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н3O+ сильная кислота в водном растворе

2) с металлами:

НСl + Zn = ZnCl2 + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

3) с оксидами металлов:

2НСl + СаО = СаСl2 + Н2O

4) с основаниями:

2НСl + Mg(OH)2 = MgCl2 + 2Н2O

5) с солями, если продукт выпадает в осадок или выделяется газ:

2НСl + FeS = FeCl2 + 2H2S&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

2НСl + Pb(NO3)2= PbCl2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 2HNO3

6) с нитратом серебра &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; хлорид серебра:

НСl + AgNO3 = AgCl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + HNO3

7) с окислителями &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; хлор:

4НСl (конц.) + Са(ClO)2 = 2Сl2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593; + СаСl2 + 2Н2O

Железо

Железо Fe – d-элемент VIIIБ-группы, важнейший для человека металл.

*Электронная формула: [Ar] 3d64s2 .

Минералы железа

Гематит Fe2O3, лимонит Fe2O3 • nH2O, пирит FeS2, магнетит (FeII,Fe2III)O4.

Сплавы железа

Чугун (2,0–4,5 % С); сталь (< 2 % С); легированные стали (< 2 % С + др. металлы).

Химические свойства железа

Железо окисляется:

слабыми окислителями до Fe(+II):

1) Fe + S = FeS;

2) Fe + 2HCl = FeCl2 + H2

3) Fe + H2SO4(разб.) = FeSO4 + H2

сильными окислителями до Fe(+III):

1) 2Fe + 3Cl2 = 2FeCl3

2) 2Fe + 3Br2 = 2FeBr3

3) Fe + 4HNO3(разб.) = Fe(NO3)3 + NO&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;+ 2H2O

*Железо подвергается коррозии:

4Fe + 6H2O (влага) + 3O2 (воздух) = 4Fe(OH)3 коричневая «ржавчина»

*Оксиды и гидроксиды железа

Основные: FeO, Fe(OH)2

Амфотерные: Fe2IIIO3, FeIIIO(OH), FeIII(OH)3

Двойной оксид – «железная окалина»: (FeIIFe2III)O4

Окисление кислородом воздуха гидро-ксида железа(II):

4Fe(OH)2 + O2 + 2Н2O = 4Fe(OH)3

Органическая химия

Общая характеристика органических соединений

Теория строения органических веществ А.М. Бутлерова:

• все атомы, образующие молекулы органических веществ, связаны друг с другом в определенной последовательности;

• свойства веществ зависят не только от того, атомы каких элементов и в каком количестве входят в состав органического вещества, но и от последовательности соединения атомов в молекулах;

• по свойствам органического соединения можно определить строение молекулы, а по строению – предвидеть свойства;

• атомы и группы атомов в молекулах органических веществ влияют друг на друга.

«Полуторные связи» содержатся в ароматических соединениях. Характер атома углерода

Функциональные группы – группы атомов, обусловливающие характерные химические свойства органических веществ.

Некоторые функциональные группы

Углеводороды: R-Н, где R – обозначение углеводородного заместителя (радикала).

*Галогенпроизводные углеводородов:

R-Hal, где Hal – F (фтор), Сl (хлор), Br (бром), I (иод).

Спирты: R-ОН, где —ОН гидроксильная группа.

*Простые эфиры: R-О-R, где —О– кислород (эфирный).

Альдегиды и *кетоны:

Карбоновые кислоты:

*Нитросоединения:

Амины:

R-NH2, где – NH2 аминогруппа

Изомерия

Среди структурных изомеров можно выделить соединения, различающиеся

• по строению углеродного скелета: С4Н10

• по положению кратной связи: С4Н8

• по положению заместителей в углеродной цепи: С3Н8O

• по взаимному расположению функциональных групп: C3H7NO2

• по принадлежности к разным классам органических соединений: С2Н60

СН3-СН2-ОН этанол

СН3-О-СН3 диметиловый эфир

*Геометрические изомеры:

Углеводороды

Алканы (парафины) СnН2n+2 – ациклические, насыщенные; содержат простые (одинарные) связи; * sр3 -гибридизация атомных орбиталей углерода.

Например, этан С Н3-СН3.

Алкены (олефины) СnН2n – ациклические, ненасыщенные; содержат двойную связь С=С; * sр2 -гибридизация атомных орбиталей углерода.

Например, этен (этилен) СН2=СН2.

Алкадиены СnН2n_2 – ациклические, ненасыщенные; содержат две двойные связи С=С; * sр2 -гибридизация атомных орбита-лей углерода.

Например, бутадиен С Н2= С Н-СН=СН2.

Алкины (ацетилены) СnН2n_2 – ациклические, ненасыщенные; содержат тройную связь С&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8801;С; * -гибридизация атомных орбиталей углерода.

Например, этин (ацетилен) С Н&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8801;СН.

Циклоалканы (нафтены) СnН2n – циклические, насыщенные; содержат одинарные связи; * sр3 -гибридизация атомных орбиталей углерода.

Например, циклобутан

Арены (ароматические углеводороды) СnН2n_6 – циклические, ненасыщенные; содержат обобществленные &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/960;-электроны; *sp2- гибридизация атомных орбиталей углерода.

Например, бензол

Химические свойства предельных углеводородов

Реакции:

1) замещения: RH + Cl2  &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; RCl + НСl

2) горения: RH + O2  &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СO2 + Н2O

3) частичного окисления:

СН4 + O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; НСНO + Н2O (500 °C, катализатор)

4) отщепления водорода (дегидрогенизация):

СпH2п+2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СпH2п, СпH2п-2 + Н2

5) с водяным паром (800 °C):

СН4 + Н2О &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СО + 3Н2

6) с оксидом углерода(IV):

СН4 + СO2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2СО + 2Н2

7) изомеризации (t, катализатор):

*Механизм реакции замещения

1. Инициирование реакции

2. Развитие цепи

Н3С-Н + Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; НСl + Н3С&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729;

Н3С&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; + Сl-Сl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Н3С-Сl + Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729;

3. Обрыв цепи

Н3С&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; + Н3С&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Н3С-СН3

Н3С&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; + Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Н3С-Сl

Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; + Сl&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/729; &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Сl-Сl 

Химические свойства непредельных углеводородов

Реакции присоединения:

1) с галогенами:

СН2=СН2 + Вr2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН2Вr-СН2Вг

СН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8801;СН + Br2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; CHBr=CHBr

Н2С=СН-СН=СН2 + Вг2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; ВrН2С-СН=СН-СН2Вг

2) с водородом:

СН2=СН2 + Н2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3-СН3

СН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8801;СН + Н2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН2=СН2

3) с водой:

СН2=СН2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3-СН2ОН (800 °C, 8 МПа, Н3РO4)

С2Н2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; CH3C(H)O (HgSO4)

4) с галогеноводородами:

СН2=СН2 + НСl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3-СН2Сl

С2Н2 + НСl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Н2С=СНСl (катализатор)

Реакции замещения:

2НC&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8801;С-СН2-СН3 + Ag2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2Ag-C&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8801;C–CH2-CH3&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + Н2O

Реакции окисления:

1) полное окисление (горение):

С2Н4 + 3O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2СO2 + 2Н2O

2С2Н2 + 5O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 4СO2 + 2Н2O

2) частичное окисление:

С2Н4 + [О] + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; НОСН2СН2ОН (КМnO4)

Реакции полимеризации:

1) nСН2=СН2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; [-СН2-СН2-]n (TiCl4, Al(C2H5)3)

2) синтез каучука по методу Лебедева:

nСН2=СН-СН=СН2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; (-СН2-СН=СН-СН2-)n

3) получение бензола: ЗС2Н2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; С6Н6

Правило Марковникова

При присоединении молекул воды, гало-геноводородов и других водородсодержа-щих веществ атом водорода присоединяется к тому атому углерода при двойной связи, с которым соединено больше атомов водорода:

СН2=СН-СН3 + НСl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; CH3-CHCl-CH3

Химические свойства ароматических углеводородов

1. Полное окисление:

2С6Н6 + 15O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 12СO2 + 6Н2O

2. Частичное окисление, например, пер-манганатом калия КМnO4:

С6Н5СН3 + [О] &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; С6Н5СООН + Н2O

3. Замещение:

С6Н6 + Вr2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; С6Н5Вr + НВr (в присутствии катализатора)

С6Н5СН3 + 3HN03 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; CH3C6H2(NO2)3 + ЗН2O (в присутствии конц. H2SO4)

4. Присоединение:

С6Н6 + ЗН2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; С6Н12 (в присутствии катализатора)

*Химические свойства галогенопроизводных

1 . Со щелочами в водном растворе: СН3СН2Сl + NaOH &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СН2ОН(спирт) + NaCl

2. Со щелочами в спиртовом растворе: CH3CH2CHBr + NaOH &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СН=СН2(алкен) + Н2O + NaBr

3. С аммиаком: СН3СН2Сl + NH3 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; CH3CH2NH2, (CH3CH2)2NH, (CH3CH2)3N (амины)

Кислородсодержащие органические соединения

Спирты и *фенолы

Общая характеристика

Алкан ол ы – ациклические, насыщенные, одна группа —ОН, например метанол (метиловый спирт) СН3ОН.

Алкан диол ы – циклические, насыщенные, две группы —ОН, например этилен-гликоль СН2ОН-СН2ОН.

Алкан триол ы – ациклические, насыщенные, три группы —ОН, например глицерин СН2ОН-СНОН-СН2ОН.

*Фенолы – циклические производные бензола, содержащие группы —ОН в бензольном кольце, например фенол С6Н5ОН.

Химические свойства спиртов и фенолов

1. Полное окисление (горение):

2СН3ОН + 3O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2СO2 + 4Н2O

2. Частичное окисление перманганатом калия КМnO4 или дихроматом калия К2Сr2O7:

СН3ОН + [О] &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; НС(Н)O + Н2O

3. Дегидрирование в присутствии катализатора:

СН3СН2ОН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3С(Н)=O(этаналь) + Н2

(СН3)2СНОН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; (СН3)2С=O(ацетон) + Н2

4. Дегидратация внутримолекулярная:

СН3СН2ОН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Н2С=СН2 + Н2O (> 140 °C, конц. H2SO4)

5. Дегидратация межмолекулярная

2СН3СН2ОН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СН2-О-СН2СН3 + Н2O (< 140 °C, конц. H2SO4)

6. Дегидрирование и дегидратация:

2С2Н5ОН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН2=СН-СН=СН2 + 2Н2О+ Н2 (425 °C, ZnO, Al2O3)

7. С галогеноводородами в присутствии конц. H2SO4:

С2Н5ОН + НСl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; С2Н5С1 + Н2O

8. Этерификация в присутствии конц. H2SO4 при нагревании:

СН3СООН + НОСН3 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СООСН3 + Н2O

9. С металлами:

2СН3ОН + 2Na &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2CH3ONa + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

10. *3амещение (только фенолы):

С6Н5ОН + 3Br2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; С6Н2(ОН)(Br)3

11. С основаниями (только фенолы и многоатомные спирты):

*С6Н5ОН + NaOH &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; C6H5ONa + Н2O

Альдегиды и *кетоны

Органические соединения, содержащие карбонильную группу > С=0, относят к карбонильным соединениям.

Общая характеристика альдегидов и кетонов

Альдегиды – карбонильная группа связана с одним углеводородным радикалом и атомом водорода, например метаналь (муравьиный альдегид, формальдегид) и этаналь (уксусный альдегид, ацетальдегид)

*Кетоны – карбонильная группа связана с двумя углеводородными радикалами (одинаковыми или разными), например пропанон (диметилкетон, ацетон)

*Химические свойства альдегидов и кетонов

1. Гидрирование в присутствии катализаторов (Pd, Pt, Ni):

HC(H)O + Н2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3ОН

*СН3СОСН3 + Н2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СН(ОН)СН3

2. Полное окисление:

2СН3С(Н)O + 5O2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 4СO2 + 4Н2O

3. Частичное окисление:

СН3С(Н)O + Ag2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СООН + 2Ag&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595;

СН3СОСН3 + [О] &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СООН + С02 + Н2O окислитель КМnO4

Карбоновые кислоты

Систематические и тривиальные названия кислот и анионов

НСООН – метановая (муравьиная)

НСОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – формиат

СН3СООН – этановая (уксусная)

СНдСОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – ацетат

С2Н5СООН – пропановая (пропионовая)

С2Н5СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – пропионат

С3Н7СООН – бутановая (масляная)

С3Н7СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – бутират

С4Н9СООН – пентановая (валериановая)

С4Н9СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – валерат

С6Н13СООН – гептановая (энантовая)

С6Н13СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – энантат

СН2=СНСООН – пропеновая (акриловая)

СН2=СНСОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – акрилат

С6Н5СООН – бензолкарбоновая (бензойная)

С6Н5СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; – бензоат

*НООС-СООН – этандионовая (щавелевая)

*(&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;ООС-СОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;) – оксалат

Химические свойства карбоновых кислот

1.  Диссоциация:

НСООН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; НСОО&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175; + Н+

2.  Образование солей:

НСООН + Zn &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Zn(HCOO)2 + Н2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

НСООН + NaOH &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; NaHCOO + Н2O

2НСООН + К2СO3 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 2КНСОО + Н2O + СO2&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8593;

НООС-СООН + СаСl2 &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СаС2O4&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595; + 2НСl

3.  Дегидратация при нагревании в присутствии концентрированной серной кислоты:

2СН3СООН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3С(O)O(O)ССН3 + Н2O

4.  Этерификация:

СН3СООН + С2Н5ОН  &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СН3СООС2Н5(этилацетат) + Н2O

*Особые свойства муравьиной кислоты

1. Разложение под действием концентрированной серной кислоты:

НСООН &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; СО + Н2O

2.  Окисление:

НСООН + Ag2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; Н2O + СO2 + Ag&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8595;

*Взаимные превращения кислородсодержащих органических соединений

По степени окисленности кислородсодержащие органические соединения образуют следующую последовательность: спирты и фенолы < альдегиды и кетоны < кар-боновые кислоты.

Они могут превращаться друг в друга под действием окислителей и восстановителей:

Жиры и углеводы

Жиры – это сложные эфиры трехатомного спирта глицерина и высших карбоно-вых кислот (жирных кислот).

*Карбоновые кислоты, входящие в состав жиров

Пальмитиновая С15Н31СООН

Стеариновая С17Н35СООН

Олеиновая С17Н33СООН

(одна двойная связь в радикале)

Линолевая С17Н31СООН

(две двойные связи в радикале)

Общая характеристика углеводов

Моносахариды – простые углеводы, не гидролизуются, например глюкоза и фруктоза С6Н12O6.

Олигосахариды – сложные углеводы, состоят из 2-10 моносахаридных остатков, гидролизуются до моносахаридов, например мальтоза и сахароза С12Н22O11.

Полисахариды – сложные углеводы, состоят из > 10 моносахаридных остатков, гидролизуются, например крахмал и целлюлоза (С6Н10O5)n

Азотсодержащие органические соединения

Классификация аминов

1. Первичные, например этиламин

СН3-СН2-NH2

2. Вторичные, например диметиламин

СН3-NH-СН3

3. Третичные, например триметиламин

4. Ароматические, например анилин

C6H5-NH2

*Химические свойства аминов

Восстановитель

1. Полное окисление (горение): 4CH3NH2 + 9O2  &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; 4СO2 + 10Н2О + 2N2

Основание

2. С водой:

CH3NH2 + Н2O &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8596; CH3NH3+ + ОН&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/175;

3. С кислотами:

CH3NH2 + HCl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; CH3NH3Cl

Аминокислоты

Глицин (аминоуксусная, аминоэтановая) NH2CH2COOH

Алании (&/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/945;-аминопропионовая, 2-аминопропановая) CH3CH(NH2)COOH

Фенилаланин C6H5CH2CH(NH2)COOH

Глутаминовая НООС(СН2)2СН(NН2)СООН

Лизин H2N(CH2)4CH(NH2)COOH

Серии HOCH2CH(NH2)COOH

Цистеин HSCH2CH(NH2)COOH

Тирозин HOC6H4CH2CH(NH2)COOH

Гистидин (C3H3N2)CH2CH(NH2)COOH

Пептидная связь

Из остатков аминоксилот, соединенных пептидными связями, построены белки.

Высокомолекулярные соединения (ВМС)

Методы получения ВМС

Поликонденсация – метод синтеза полимеров, при котором взаимодействие молекул мономеров сопровождается выделением побочных низкомолекулярных соединений (воды, аммиака, спиртов):

nС6Н5ОН + nНСНО &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; [-С6Н3(ОН) – СН2-]n+ nН2O

Полимеризация – реакция получения полимеров, протекающая без выделения побочных продуктов:

nСН2=СНСl &/storebooks/G/G-P-Loginova/Sbornik-Osnovnyh-Formul-Shkolnogo-Kursa-Himii/8594; [-СН2-СНСl-]n

*Примеры полимеров на основе этилена и его производных

Этилен (этен) СН2=СН2

Полиэтилен [-СН2-СН2-] п

Пропилен (пропен) СН3-СН=СН2

Полипропилен

Винилхлорид (хлорэтилен) Сl-СН=СН2

Поливинилхлорид 

Тетрафторэтилен CF2=CF2

Политетрафторэтилен (тефлон) [-CF2-CF2-]n

Стирол (винилбензол, фенилэтилен) С6Н5-СН=СН2

Полистирол

/9j/4AAQSkZJRgABAQEASwBLAAD/4SEVRXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAbAAAAcgEyAAIAAAAUAAAAjYdpAAQAAAABAAAApAAAANAAAABLAAAAAQAAAEsAAAABQWRvYmUgUGhvdG9zaG9wIENTIFdpbmRvd3MAMjAwNzowMzowOSAxMToxODo1MQAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAz6ADAAQAAAABAAABDAAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEAAAEeARsABQAAAAEAAAEmASgAAwAAAAEAAgAAAgEABAAAAAEAAAEuAgIABAAAAAEAAB/fAAAAAAAAAEgAAAABAAAASAAAAAH/2P/gABBKRklGAAECAQBIAEgAAP/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAoAB8AwEiAAIRAQMRAf/dAAQACP/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A3MH6rdBY1k4jbXmJda5z9T/WdtR+mHoeQ6tmHgMrL6G5O70a2hrXudVU2x30vVtdVds2/wCiV3GMbDzELH6Liv6bVkfZr8S11ePGZFstry6jaWWXuguZVcyxrbv5v0Ps/wDNrh4ylmx5zky5JZYmHsiU5cHrMo5OP939Hg/rt+UIiqiNfC3WxupYF1OVbTIrwbLKrvaB7qhusLI+kzb/ADaFX13Cdh5OXY23HbiVNyLarWgP9J7TZTazY97Htt2P/wAJ/OV+nYs/puAaMTIbjdQpzcd+C3HstL2Ftd9bbA136Fuz7NYzIsc/1v036L/CItfSqB0E04BrssvbSLrza61r/RNbbh9psNv6Oquu5tVf80z/AINOny3JxnIGU5ROXFCE/l4YS4ff933Iw9v0+7w/q/8AmKBlpQoa3p/ih1Kc3FyMu/Eps324zan2xwBeHup938ple9Dr6pg2YOR1Cuwux8X1vWcBqPQ3ertb+d7W76/31QZg29L+25GHZV6VuMRj23PDR6xsufjte4+30KaLceml2/8AmqUH9kW4HSup4leSLcTIwW1033uYwC0VOwfftayv0bKW4my3/txNHK8oSaynhMsMcdn1ZPkjzf6Po/nPcx/+pEcUqHp/B2bc3GpdkNe5wOLS3Ju0OlbvV2ub+879Wt9iX2/GBsbuM1UNyn+06VP9Ta7+t+hs/RrPd0d1DuptwwYzMJlNAttfY42tGXuG7Ida9tX6xR/wabF6Q/Hfk+iSWZOBVQw2Wut/TN+0bwDe+1zadt1X0P0Sj9jlOGRGWVgY+C+CPFxRw+9x/NwcHHm/znyJEjYsaX2dIZ2N6eNYHnZmlrcc7T7i9jr2f1P0bHfTVZ3WqW5jcc7fSfecQWEu3faA3f8AZxT6fu/f9ff6Pp/8IsvpnTOq1/YW2sNePjW47hS+/wBdwdXTk05d9bvftpsfbjsqx67P8HZb6VSJ+xcw592W5rXf5QZbjtke2jdVdlXbv9La+llfp/znp4//AAin+6clDJOMs0ZxECYyE4fPOXDD5PRx448Huev/ADiOKXCDRB06f3rehTpgnWSvWTpJJKUmnVJN3SU//9DsMbgQY0ifDwWKyufqjfgMxrG52N08Y17PRcCbA1zXsrs2frP6X1Lf0Pq/zvq/4ZbeN9JvmQuZr6j1H9mtt+027xhYFgcXEndbl21WP/rWUt9N/wDIXE8jjnPi4a9Oblpakx9fuThC9JcUPU6GSgQT2Lo9Vx7XVfWUV0vPrYjGVBrD7z6VrYq2j9L9Lb7FLOwcnE6bmU1EZGX1bIZW4VVmqposFeNaQxv2n7PWzDqsdbkP9T3/ANitQ6jmZQ68cEXPqxLbMNr7Gu27N32q30K9v6Rn262imh9jVPJyMgZmXlDIsacbPxMKrHDoqNVwxPX30/4Sy37da/1f5yv0afS/wvqzQ94ezG4UY4c/DrL3fTyeDBjnPh9H63Hj92H/AK5Weka9enh8zVyG3M6HTi3VCp2Bn1UuBY6+ptLLPUxnhsMfkY7MSzHr9T9Gmorro6b0azJrIwMXKvdkGyshpaRlsxcs4xZux8ey59duPU5n6p6tP/Gqxm5WWOuH0sm1lVGThYxpaYrPrCyzI3sj3b630o+P1eyvqeZjZLbDU7OGNjZEt2Nc7HovZiuG71/e71Xb/T9P3p5nl9qowEuMS52YjPhlXMYvbyRxccP5yMec9zH6sn9yf+URAsa9OH/pI+n4GZZg9Nvqii7EtvfRTkNMCi511eNU5rT6lTqcR9Hp1/8AWP6lfAqyvs31ZbjxVa3Hs3Otrc9rf0LNzXVtfQ5rnf8AGotPVOoPzKaXCz0n9VvoOQfT2OqY3JczFDQ71/Y6pv8Agf8AB/zqG/q3UXdSfisu/R0dRYzIJAn0bTXTj4bfb/hHOyMl7vpsrq/4ZLh5kzyRPtHiGTMNeKOOGb71g9uXonxfrublwwy/7L/KI077eH8v3ETG5bek/V5mK0jJdZYxjtsem+ynJYb3sf8AmUNfZd6f8j01LGovr6R0jHwCKras/Krodc1zgNreqMrdc0Gt3uj6f+k96t/tHOt66/A9R1WOzLdFsNh7a8XHyP2cz6Tt77brcqze3+Yrs9K39ydHWXWfWK7ANgOPtdTWyDPrUtryLn+pH0bGX2U7d3/aNKeTmDA1jgbxy+IHXj/VZfvPpyfq+CXt/fZ/q/8AV5v86qvHrw7dW10L7N+x8P7K011Nqa303fTa9vtvZdAb+sNvFn2j/hvUV9KT31SlYmafuZZ5KI45Sn6jxy9Z4vVP9P8AvMgFABdJMkmJUU3dOm7pKf/R6Gnr/RAB+u16f1x/3xBZZ9Sg4PazBDgdwcKwDIO/9z9/3rgGq1h4WXm2eli0uufEkNEwPF37qwv9B4cYlIczmxR3mROOOOn73peuPwfl+G55JADcngr/AKL39vUvq1kC31r8az1wwXF3LxWd9O87f8C/31f6NNZnfVm3KbmPvxXZLPo3E+4RO3/M3P8AT/0e/wBi4HIwczHyfsl1Lm5EgCuJJLvo7Nv0938lW8j6v9RxMF2blhmM3T06rHAWvkx+jqE/Q+k/fsUR+D8tDgH3zJH3fTjAnD9YMgjCsf78ZQjD/AWS+E8oOG8x/WVwfJ67/d/eezbl/VloIbfiAG77UfcNb53faP8AjUhf9WfthzvXxPtRO71i8bt230vUEna2z0m+n6m3fsXnKdS/6AjrXNZvUDGWvzRl80Zf1ZLv9CYv85L7IvpDcv6ujbtycQbLnZLf0jRFz9++/n6b/VsT+v8AV07j9pxJfcMl36VutzQ0Mv8ApfT/AEbF5skh/wAn43f3rL/I8X/SR/oPF/nD/ixfSX3fV9797srF3+u3K3C9oPrMa2lt25tg/wACz0nt/m7Kv0dn007buggVhuTjRTc7Iri9ulthsdbbPqfn/aLv5H6ReawnR/5PAgD73loaAdNuD/oS4Vf6Dxf5w/4sX1IdS6af+1dB+FrP/JKQz8A8ZVP/AG4z/wAkvLE6Z/yWxH/wRL/EH/fJ/wBCQ/zp/wAV9T+24Z4yKj/1xv8A5JP9qxTxdX/nt/8AJLyxJH/kpj/8Uy/8LH/fq/0HH/PH/F/9CfVRdS7RtjD8HNP8Ut9c/Tb/AJwXDfVMxm5BOgFBknw31LpNzZ3aRPM+cc/1kP8AkpC6+8y/8L/9eNU/DQOZHL+5uL4uH+rxfLxP/9Lm2rrOqWj6vdPxelUCL72tvz3tcWlwn+ZFjIc1jnNfX7P8Gz/hrFy2PZ6VzLI3bHB208GDMLp+tX/V3qV7upuzbC51QDcNlZD94HtDrX7qmtb/AIT/AMDes3nAZZuXjOE54AZzkIRnk4s0eH2Iz9v5fmnk9fo9D3GfXJhEoyli9UpcEZT4so/mhLg+X990KMgWUW/WXMdXh2X/AKHDc4eoaqxLD6Ff+Gybf0n5v/CfzP6JZeb9W7MrrNdONkPspvoblPyMky9lbpaTaTt3v9vt/wBbUf8AaH1fycHp12bc4/s+oMOAGEl9g2t3F3836b/T3KON16nqI6ozMvGFbntY2qw7ntbUwkOo0/4Nz/8AjPUsWfijzOI5MmKE4cN4iJY+KGHF7kcOCOKPD73Mexh4uZnOH6r/AMMytOEc+MznjjKNXjPFC444cft4hj/ymX2sf67ij6GhndDxWHGvwsn1On5Foxze8e5tgO2x2yG76v8ACV7Vq9R+rvR3usw8W019Rw8X1HsA9j9gH6S5zvbXZdub/hPYi4GRhZeRUzGBHR+gVm8vcPdZbDnNtc3+zZcz2Kj1TrHT6mX09PtN2R1M7s3NeCAyt3/aapn0vaz+c+n/ANufzDxm5vJlx44yyieME/LHT3Mn6r776ODijyn6yeL/AFmL20+5zM8kIA5BKGu370vR949P+Y+aDSq+r9lvSKMsB/2rLyBVj1Ae01kR6tn5zPf+erf/ADYxD1bJxm5LvsWDULMu8gS123d6bdu7d+//AOB/TWzR1vE/bVWKM5owcXFBdYXNDbrYa33v/wCKdu2N/wAKxZeBk9Oy+iW4+VmNxbsvL9TNc4S9wJ3t9MD83e1v6R/6Or9IkOb52XFKXFjjLhrghLLLHDm5+mXB7fqly+DB6f8AW5v1n+bV945o8RPFAGvliZmMc8tDw8P+SxYv8fI0P+bthxcGxtv6x1G3bRQW6+l/3IfBO39/b/o7Ee76sV0/br35BZg4oLab3t2my0D+aYz85jbP0XqN/P8A5taVvUunVdX6hmm6rdg4zaOnVCCCS3/Blv7ljvT9n+Cs/kLL+suT9to6dltyRc19AbZVu1Za3+ecavzfUd+d/wAGpsPMc7ly4omRx48ouUzD5ZZf6XHDj9PzQ5b9T7k/0/e/qL8ebmsmSETIwjPeRjsZ/r+CP93F+r4v9o4SdJILdDqrp0ydPCnc+qn9LyTMRQdfD31rf20eh6e4ehHpzOm2fS2bv/AlgfVfZ6uYbDDBQd5mIbubuOn8lb8Y/pbdPRmP5P09u3/tz2IfpuYT/wAJjbb6/wA2/wD/0+baNURSxca3Iyq8ZserdYK2k8bnO2TK7OvD6V6uT0JtA+xYlPqZ+cfp+q0bq3ssE7fT3Wex/wDwv6P/AElLmudhy9AxMyQckuH9DDExjLJ/jT4ccP8AKTe7y81HCI+kzJHGeH9HGPTxf870R/TeKTLp6fsX1e6fh5NtLcjPzS22XAO9OnR36Pf9G59bv+r/ANGrOHhY+Xh5/UwMbH/ac04tdh9tZksfu0/pFuz1a21KKfxKMAZnHL2eL2seW9M2Xj9uYjD5uGP6yfH/AKr+4snzwiDLgPt8XBDJf85Pi4JVH935/wDEeZp6nmUYN+BW+MbJINjY7gg+138rZteqq7K3o/TX5VOBY0Nxej4/rdQyGja573j1PScf5za5rfV/qfo1VyenUdZw8XLx8duFbfk/ZsZlY9rqAHOdba386yrZbusam4viXL3xDGccch4smTQRByCXsTn+lxZeXw+9/q8XzrIc9hBsQMBM8U5/3v5uUv7+LH7n9SDy6S7i/F6N0/AybGVU5GJjMND2BgsvdkE+nvycgjdjbH/Q2f8AGM/wNaDV9WKvsGHgPfj/AGi2318iwOBsdV/o8R23e9np7d3+C3oR+M4OHilGUI8fADLf0w9zJLh/1UODj/2sFD4njriMZRHFwi/CPHM/4H/dvHJLtMXpuNlZ2d1SvEoGGGGrBrsDRU97T6Lr3Nnaxm9n7n+E/wBKs7pHR29Pyc3K6vU19XTq/wCaMOa99g/RD85jtzXf9uPrUsfiuEjJp+sxRgTi4onJLLl4R7EY/v48k8WLJ/rJrx8QxkT09UBH9XY45ZJ/5Mf3ZyhCTzoThdZhdP6eOgYvUOqYxqrxC58MaN17XlvpOfw7a5x2t9T/AM9WLmMm2u7IttrrFNdj3ObUDIaCZDBo36Ktcrzkc88kYQlWGUsc5+n2+OEuHhjL9KXB+s/qcbNg5gZZTjGJ/VkwlL9DijL5Y/4PrRpJJ1eDYdv6sBpOaH/QNQD/AIbteFu7sf0N2no7t0wds+pu/wC2/V/6H/BrD+q7WOOa14lhqAcPET7v+itvfV6Pqx+ijfHfn1PHb9P+Um/puV/5cxtt9f5p/9TCx8u+u+rJa6bcdwNZOsbDNf8AZWr1D6x25VFtGPQzDZku9TKNZJdY487nO+iz+QsRmmnmZWp0zoWfnmmxlTxi2WtrdeBoATDngfnbFUzw5YcObPwj2/llM8I/ej6f0/8AV/8AMe4xRwDl8GTLQ4McKMjX6PF8v6X9VuD61WDFpb9jpObj1+jXluG4hkbPbW78/b/K2f8ABobfrEG09LoGPFXTX+o9gcYseDubZ/If/OO/r2IHWei3YFj7q67DgGwsousgF0fvNb+9td6b9n6Vn6RVX9NzmYTc99Lm4rnbG2HSSROjfp7P+E+gocfL8hOEZxEeHJI8Prl/OTjOHt1xfPH3s36r/JJjh5OUYyjVTPp9R+eQlHg+b5o+5P8AV/oOk36y7eo5+Q+j18TqA2247nbCWgba/wBKwe3a1Ds+suY7qONm11sqrwgW42MPoNYRscz+s9n56jg/VrqWfgOzKGT7g2qp3tNg4e+tzvZsZP8A58Wc7GvZkHGdW4Xh2w1x7t07dm1Ox4OQlOcYCE544+zkjxcXBD2/Z9UP9l+q93/qaoYuUlKQiIylCPtzF/LHh9v5f7no43YzfrJTdQ7GxcJuNRkW+tmN3lzrTIfs9Tax1TNw/MVln1rpHWbuomlwrON9nxmDbNZEPHg3b6u/+wsf9jdUOVbhjGecihpfZWIJDQJkR9P+Rs+mgHDyRjNyzU77O5xYLY9u4fmz80ByXIyjwCpCQMf5yU5SHMcMuLilOUpe5DB6Jf5qH+bQOW5SQ4RRsV8/EZe95y/T9v8AxHUwOvYuP0wYGThDJFdvrM95a1zvzfXZDvU2fufzdisP+tLL8VjMmj1LnZTb8oaenZW36FO0/R2bambPf/Ne9Yl+FlY1jKr6nMsta17Gkaua/wCgWpZeFlYVxoyq3VWAA7XeB/OH7yk+5cnOfHvOcjmiRklrL9OeP1fLxcHF7f6ftf6td915aUuLeUycgqZ1/eMPV/0Xat+swyquqNy63WHODG41c+ytrC8tn+puY/2s/S2LBCZOrXL8tiwCQxR4IyMTw/o+iEcMaH9zHFnw4MeKxAcIlWnT0xGMf82K6dME6tBld76qNDn5bSJBraCPIuW/DY2QNsz+PCwfqof0mV/UZ/1S3dpmZ7xEJv6bln/tkP5f5F//1cTpeOzL6jj41rtrb7Wse4cw50GJ/OXe1ftBuRlX+g5mLhMNPTcJoMWO/mvXc1nu2fuvf7GU2/13rzlhLXSDBGoI8V0eb1019NwacHJsflk/aMvIJO/1CDV6Rc4/mN9n/F+ksj4lyuXPPEIVISvHU4y4cf8AlMmTij8nuQx+x+/6/wBW9nzfLzyyxiNEG4ag8MP05yv9HjjH2nYtIfZh9D6jf9ozMu77RnSZDA1vqV4zeGs9TYxuxn/o6tNk5OSxvVeo5+6vF2PwcDFcIa+Tt3tqdt/c3bv+N/0S4s3Wm3197vW3b/Uk7t07t+/6W/ctHA6tv6vi5fV7bciqh0gkl20j+bcGz9FtgY9+1Rz+FygOIETjGJnkhGPDOWTj96ceVh8mL3uDFy/+rxY0T+HyiOIETAiZSjEeoz4vcl7Eflh7nDDF/ceoPTs6vBwOnvufjYuIz1+oZe7bwXObi12Nd7vT/Sf8HX+if/IVallTs+z6w5FcWZlraulUPkFxdtoZkub+b+j/AEn+tC5zqvWMvqGRkE2PGNdabG0zA0Arr3NH5zamVoNvVOoXOx32XuLsNrW450GwN+jt2/ne36f00sXwzmDC5zhGWUS97gBh6cx97LDi/S97NwY8kv0OXx/qlsOQzGNylGMsgl7nCOHTJ+syR/6pk9E/9U+gi6inqGc2kDfVV6+Vb3aQz08Sgf8AWWWXf21l4uA3I6F0qi2BhVl+XmWT7djC9/pv/wCM9VcvidSzjfdWcr0WdRcGZlrgCC1xIc9+n5vqP+grnVeo4mPhjovSnF+M12/JyDzdZp9D/gW7W/6/pLYY/C82KcMcJkzlLFL3AJSGOGDBPBPLKcuGMckJ5/6Li/2bGOQyQlGEZXKRhLjAPojjxyxynKX70ZZP1MHWZY/Ly3/WLIYIc9uN0fHePpPJ2VWuH/BuL7v+M3/6OtZ312d/lkMGorpY3/qnf9+WTd1LPu+zepc4/Y2huNHt2Bsbdu3b7/a33/TUczMyc7Idk5T/AFLnxudAHA2N9rA1v0WrQ5b4fPHzEMxMeDHjnijCPF+rx8UPYhH970RnPLP/AD2Rt4OTnDNHITHhhGUIxH6EfT7cY/4Pzy/ziFOEydaoby6dMnUgU7/1THuyz/JrH3ucf++rc3e/bOsbo+e3csX6pR+t/Cv8r1tQPXn+TH4pv6f1cv8A8uf8v8w//9bmxyurH1RxTUyo5Rrzji+u+hwBAcNS6x3+BpbubV7v++LC6IMI9VxvtzwzGDwXl2rdPcxr/wDg3v2set7L6xjnpfU8yq1rsvqeR6OwEbm47Rtr3VO93up3s3/8IsvnsnM+7jx4DKHy8UxHigZZZ+3GMuLi9GOEc2XL/wBT/wA49tzU83HCGIyjtcgLjxZJcMQf6sI+5ObR6f8AVz1sRmTm3jE+1n08CtwJdZY7Stztoc5lG/8AP2/+i/UyMrGtxcizGvG22pxa8eYXXZHUeim7E6w+9r6cShrcTpzPpi4bv51kbaW1+z9J/wAGz9z9LyWVk2ZWTbk2x6lzy90cS47vb/JT+RzcxlnOWQEQr5ZR4PaycUv1OP8AznBj/nsn+d/m13KZc+Sc5TBEa+WUeHgnxfzcP3uGH85L99vdF6TX1RuXWLC3KqqNmNUAIe4H3Nc53+Z/1z1P8Grjfqo79o0YDspjrPTNubs19Bo/eJ+lv3N/9Vq70LL6V0s4FWO9luXnkOzMh3+CZr+rN1b6bvUb7v8Atz/QKGG/pzOn9Yorz6qbb8gsddYSS7GB+lU36Vz3tdd9BVs3N8172bgM4YvQMXFi4/5yX3WeXbjjjxShLNDH/OZf9n6Gvl5nP7mQwMow9IhcL+Y+zKf70YQ/nIx/Tcm/ozaulv6kMgGl1xqxWlpDrmNJb6zRLvS+j9Cz/wAhvtH6qZn2PDtDoycywMFDhGxrmvsbY93u+jXX6lnsWvlDpIzWvyrGu6d0WisUY4LXG2x49RrtrT+k3RXu/Me/6f6L1FIdeptwcQOyGjL6jeRc9rxNFT3xbq6fR/V211V/Q/0yZLn+clHGcUTLinxSlKHpjjyY5ZMOL0x9Xt4Y/eOZl+/P2sa083zJjE47NyuRMfljOPHjh/g4/wBbmcW76r3s63V0qq31RYwWm/aRtYZ3ueyfzdv7/wDo0KzoJbiZWZXkNsopuFGOYIN7p2u9ES7/AKO//CfuLo8rKxjndaLMmmjKFVWPS+1+wNYWzf6bm+/dvP0a2/zzK0J5wcbq3Rumutb9jxafXY8nax9rg91drpdt9z2erX7v8Ili+I81UDIkmOKGSY4P5yOPD97zz+X5svHh5WH/AFXIiHOcxUbJsQjOQ4fn4Mfv5Jf4fFjw/wDhjlH6qWjOrwvtLN4o9fLcR7af5L3btrv9bFhEQSAZA7juur6nb9m6Ln5LchmRk9SyRVdbS4ua1gBsbjtf+fsq9n9S3YuUWn8NzZs0Zzyz4hEjGPTwcWSEeLPk/ue5P2sf9TD/AKxu8lky5IylklxAVAacPqjrkl/jS4I/3FJ0klpBtvQ/VL/tX/1v8ti3J/TR3j+Kw/qnxl/9b/LYtqf1qP8Ag5n+0m/puV/5c/r/AOoH/9fnAphF6exr82hjwHNc9oIOoIJWzaMCk1bsVn6V4r4EDXb6j/3a97mM3/6SxNAe8y81DDXEDqLcEplsdXx8evEa+qltTjYASBB4fosdGmXHkGSPEBXmpJJJFepOmSRUukkkiFLp0ydPCVJwkE6eFPQ/VPjL/wCtf+jFr/8Aa2NP5nj+2sj6pcZf/Wv/AEateR9tj/gf+/pv6f1cr/y5/X/1A//QxemmM/HMgRY3kwOfFbP2YZLbG5AIa4Gppa8D2Q47xtf9L1H7/d/oq1z4YeO6fb/tQGj2+fFhzkE5YihVXGTrdRN56VScloZf6g9Qbgfdtfud7C72v/nFLC6BXc2my3JrLL6XOAY6NtriynFpe4j+cdfb76/+BvWQGzwmI+CRBK+OLgxDHDOBW8vTKUnXHQB6voOttFo2DaKJ37mXXudi/pd2RX+rWV0P2/p3+n/Nqf8AzZcH1sOUPeLSXCtxa0sf6FTS+dm6679E/wB36B/76x6rLK3b6nFjoI3NMGHDY7j95rtqiB2/BCj3SYZr05gAV+5Dd07+gZNGPbkPsrDKq67RJgvbb9H0/wCW1302O/8ARtazE+10weYBjyPCaNY7pwB6suMkA8eSM+xA4FJKTmPaS1zS0tMEHQghMnheJA7EKCcJpHinBHinBNhdSY0vc1ggFxABcQBr+8530VHTxTyFIEvRfVQQMwHsahp/13wWxH63P/Bcf21jfVIjbma96v8A0atiR9t8vR5/tpn6blf+XP6/+oH/2f/bAEMADQkKCwoIDQsKCw4ODQ8TIBUTEhITJxweFyAuKTEwLiktLDM6Sj4zNkY3LC1AV0FGTE5SU1IyPlphWlBgSlFST//bAEMBDg4OExETJhUVJk81LTVPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT//AABEIAQwAzwMBIgACEQEDEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAAAQMEBQYCB//EAEUQAAEDAwIDBAcDCQYHAQEAAAECAwQABRESIQYxQRNRYYEUFSIycZGxocHRFiM1QlJUcpLwJDM0U2KTJUNEorLC4fFz/8QAGgEAAgMBAQAAAAAAAAAAAAAAAAMBAgQFBv/EADYRAAEEAAQEAwcCBgMBAAAAAAEAAgMRBBIhMUFRYXETgZEFFCIyUsHRofAVIzNCYuFTkrHx/9oADAMBAAIRAxEAPwB+JwqytAW++s53ITtVmzwza0+8ytZ/1LNWDHuJ2xtUPiFxTVkdcQpSClbZ1J5j2xXjhiMRNKI85FmvVbvDaApLVntze6IbXmM1KRHZR/dstp+CAKqoLibneX5rbi1R46Q0zuQCo5KjjzA3pviCRI7VpmEohbCFS146pTyHnvS/AlfKInO1rW+Gl/vqopo1V7juFGDUWW8F2l+Q0o4VHUtBz/pyKobc+hqRaxCmOvuSE/2lpTmsAack+GDVIsI6VjnXt9hflspugtRv40mKpJ816PxNGTrIipaAdGdvbUUgnzxRY5r8u6z1uKUWVhK2E52CQVJz4ZxUnBPEXi3pQPqarvx7IutFd4pcVRXue+zcmewWUtREh+SAfeSVBOPlk1OvjzjNjmOsLKVpZJQtJ3HiKr7q/wDl6/P+n7sHzRan0lUk27Mu+r0Q5qFOLktpcCF7lJznI7qk3WZ6JPt2t4NMrcWHCTgEaSRnzo90ksAjU3p2U2rOiquHOTKvr7bEhLrCY6FAJOQFajn7MVxHuKUXu4R5UlKEpLYaSsgc074qDhJLI4gA+tflHRXGa4cebaWhC1hKlkhOTzwM1CdkOJv8aOFns1x1rKehIIwftqLLlNi6zGZulcNmIl4trTkBWo7/ABojwxcR2vrvXrahXDLrbzSHWVhaFjKVDrXVU/DkiU+zJTLAQpp7SlsADswUhQTt3Zq5peIi8GQs5IBtFFJS0lCSiiloQijpSUUIS0daSihChtbJHWo16jPTLW4ywnW4VoIGcclAn7BUhkYQnwFRr3JdjwUJjr0OvuoZSr9nVzPyzWyHN4zcm9q521XYZkMX5x9trXHltpDigQOzWnOCR1yNvKo4tPpt0mybghxKCUtshDpTlAG5OD1J61PhRHIqlJMt59s4wl0glJ67/dVMj0t61zpwuUlCmlvaEJIKcJJwNx4Voic5xJY4DQNvW+nnpSpop0SLLRw69BdTl1DbjLZyPbG4SfDYipVrioiwGE9ghp3skBzCQCSAM5I51Eucp9nhgym3CH+ybOsd5xv9tcxn3mLy3CM4zEOtKcJUBqbIIxuOhz9lQ5sssbzYFkmteGp6ceKgVoupFvXMuk5L6VJjvRENIWMc8qJ8xkGuokNUW8ns2yIqYaGkK6ZSo7fHBpm+XJ+JLjojH2Wk9vJGP+XkD7z8qn3Z9ce0y32V4W20pSFdxxtUEzFjGnZ4ofoL77IoWqpNmVPduMiap9lbzim0JSvSC2BgZ7wadeamyOD3GFx1iZ6OWy31JG2R8cZrmFMlt3SJGXME1ElorWAhILJA7x06U/Kfkybx6viyTHS0yHXFpSFFRJwAM7U9zps7QSKFOG9ADTvrttyRXFFyg6hbjHjJy3LbUvQkAhIBznw5U7co6pFztiix2rKFuFzKchOUYGfOurbLdfYkoeIL8VxTS1AYC8DIVjpkEbVD9ZSfyXizytPbudlqONjlQB+yktE2YN4g5f8AsDqoofvopEaL2HEEh1tgNsKioAKU6UlWpWfPGKgSEdndboX7W/LTICOyKWgobIwdzy3q1ucpyK5C7NQAekhteR+rgk/SkXMWL4xFQtJaWwtxXxBAG/nRHLJeertvM7Nr8KaCgW2LLZm2v0pCypqEtDi+YSolJAJ+H0rmZb35fFA1tr9DUwguKx7KtKidOfiR5VPXcOxuslp9SUxmIqXicbg5UD9Kb4fuEi4syHJKQhSHtKU4wUpwCM+RphknaHT0Nq/7GxXUX5IoVSctTa0SroVoUkLlak5HMaE7j7asqohdJSraktlBlPS1x2sjYYURkjwAq8SFBKQpWpWMEgYyax4qN4dmf29KClLRRS1kQkpaSloQikpaShCKKKShCiNcsVGvMZyRBbUwkrdYeQ8lAO6tJ3A8s1JbHyqPeJLsS2qeYUErDjYzjOxUAfsNbIc3jNyb2Fc6hSIUxUtxf9kfYSnGFPJ06j4Cq5iPIHDdwZLKw64p/Sgjc5JxUsSnfXMuNqHZtR0uJGOSiVfhTcCc+/wymctQ7bsFLzjqM4+lNDXMFtAolnHoSP8AarxTd3juu8KlhtpanOybGgDfYpzVjFgxIZV6JHba1bKKRufOq5M+VJXbGI7iEuPMh+QrTnCQBtjxJxT1wlSVXFi3wnEtLcQp1xwp1aUg42HU5oc2YtERNXmcd/19NFUAbqALY9c51zefdfjNuHsEpAA1oA5nI5ZNOq9JkcHPtuNL9KEdbSklJySn2c+eM1Otsp11yTFlFKn4qwlS0jAWFDIOOlV8+4XNty6ORnGEswADpWgkq9gK++ntdLJII9PhykfoBw42EDe7TEJCTc7eq2QXowQgiUstaEqTjlvzOamyVC3X9ye8h1TD8dLepCCrSpJ5HHfmpF1nuw7OmW0ElZLex3HtEA/WrE7HakyYhxp7h8JBbvqaN7+Yr0UBoqlVWFp0Ny5TzamzLkKdShQwQnYDI7ziod5tEZmEHYrbuoSGyEhailOVjOE8hVpGlOO3eZEUlOhhLakkczqBzmktM1c6O444lIKH1tjT3JOKPGmjlMw0HwkgHgRoPRSQCFHv7CZCrc2tsuNmYnWnGRjCudcMwmInEjXoscNoMRedI2zqTTL1+da4can9mkyXipKEAbbE5PwwKnz57kay+moSkr0tnSeXtED76uBiGNbFWhJbvubQQFVzozszilcXSRHcYaU8rGxSlROPMkVYWUES7rqBH9sOMjppTTxmPLvRhMJQWmWgt5SicgnkB8qbvV0NsaZUlvtCte47kDdR8hUOfLKGwBupaK187PcAeVIriqWPGEWCLq20rto85wuYySW9ZSrbwBz5Vq2nEOtocaUFIWAUq7xSg5wRyI2pRWbE4kz6uGuvHhy8kAUiiiisilFLSUUIS0nSiihCKKKKEKG38ahcQpUbMvShSsOtkhIJOAtOdhU1vvp9PnWpknhyNfyIKYdln03SL67mSD2wadjIbSeyVuQVZ6eNP2pKxwWlCkqCvRnBjG/61XgzXW9Mfi2loa1tat4/SK5BLrW1mYbbVpXa5aWi2zJjhqQoJJwvAKSe7fIqdOUmFfWJz+Ux1R1MqXgkIVkEZ+O9W+DRg0Oxmd+dw4EHXcH8fYKA2hSpbU8lcq6XQhSYrik6FEH2koTgqx3VDJXI4dvkzSrTKU4pvIwSkJCR9K02D3UYPdUjGAPzBv08eDa0/Qa/oppUXEYzwvjG35rPwyKbtzkUXxDVnWtUQsqU+MqKArI0nfrzrQaT1o0+GPgMVDMWGwmIjnx01AGorWq013RSokwI87iS5ekpWezQzp0rUnmk9x8Ke4XQG7c8hIwEynQM/wAVW+N+VATjpjyqsmLc+Pwzt8PHahX6opYy2Mrd4emTHQNDEV5lgfHJWr6DyNXF7weFAM8wwM5/1Jq60jGNI092NqCkFOlSRjuIp0ntDPKJMuzrr7fvmoylU8FCLZfH4alkolIS60pZyoqGxTk8+/zpiY3JuV8koi+jlEVjsFB7OMrGTy8MVfKbQtSVKQlRQcpJGdJ8KUISlSlJQAVbkgc/jVBjKf4lfFVeegv00RR2UCwPKdtDKXDl1jLDnxQcfcKsaRKEpKsJAKjlWBzPfXVZZnh8heBVm1I0CKKKKUhFFFFCEUdKKKEIoNFJQpXlodd/zV/zGu+3e/zXP5jTIpa99laeC9Y1orZPekyP893+Y0elSP3h3+c0Roz0l0NR21LWegFTpFhuMaOp91kBCBlWFglI+dUc+Fjg1xAJ7KrnRNOVxFqF6ZK/eXv5zS+my/3p7/cNNttrecDbSCpSjgADOau4fC8t0BctaY7Y55OTVJpMPCLkICiR8MY+OgqkTpg/6t//AHDR6fN/e3/9w/jXVxYYjTVtRnw82nksVFpjWRvaHAb9FZrWOAICk+sJ373I/wBw0esZ2P8AFyP9w/jUaireEzkFbw2clL9Zz/3x/wDnNKLtcBymvfzmoeKWo8CL6R6KPCZyHopvri5dJr381L66uY/613+aoNFHu8X0D0CjwY/pHop/ru5/vrvzpfXl0H/Wu/MVX0Ue7Q/QPQI8CP6R6Kx9eXT99c+yl9fXT98X8hVdRU+6wfQPQI8CL6R6Kz9fXT96X8hS/lBdP3o/IVV0tT7nhz/YPQI93h+keitPyhun7z/2iuvyiun7wP5RVTS1PuWG/wCMegUe7Q/SPRW35SXT/PH8gpfykun+cn+QVUUVPuOG/wCMegR7rD9A9FsrNcpMyItx5zKg4U7ADoPxqcX3c7OH5CqXhshNvcJOAHST8hVnkKJ0nONtqWcFhr/pj0C4k8bWyuACwApxtCnHEoQMqUcAd9NirzhSP212DhGUsoK/PkKpPKIo3SHgF2nyeHGX8ldYj8NWjOkLkObZ/bV+A/rnUf1y0OHl9tKDst5Kho6gknb4Yqt4qk9tdlNA5QwnQPjzP9eFN8NwvTLsjWAW2vzigevd9uK5bMKz3f3ic6/MfsFhbh2+D40p13P4V3a4PqiAl4MF6e+PZR1A7vAd9U18Td0LSq5LOhfuhKvY+GBVvfb6uPJMSAAX/dW5jJB7gKcvjTr1nhRXyFS3XEJ5frY3+tJgkkbK2WVo+M8d66cgEuJ72yNkkA+L1r7BZSHCkTng1GaK1dcch41xJjuxZC2HhhxBwRWtuMlrh63NxYSR2yxnUefio/dUe+tdpw9FkykJ9LOjK8YUcg7H7K3R49z3tJb8DjQ59+y0sxbnOBr4SaHPuq+x2QXFLrkntWmgn82oDmc+PPFRJtnmwmy68yoN5xqBzWoRNcgcLMvvAB0NBKBjqfd+zemokl+RwzLfuZ1JWlWjIwSOn28qzNxuID3SaZM2WvwkjFTBxfpluq/CykOG/Of7GMjUvBOM42rpqFIdm+iIbJfyUlORtitXwxa1wWlSXNJcfQkoAOcJO/4V3bLaq2PS585xClqBVkdBzNOl9qNa97W0aqup/Cu/HgOcG8NupWOcjPtyTHW0oOg6dGN813KgyobiW5LKkKV7oO+a0NgbNwucm7ydkoUdGeQOPuFd25RvN+cmuZ9Hij80CNs9Pxpjse5jiCNGi3dzsAmOxbmuNjRo178lmH4z8Z3sn2lNr/ZUMGupUOREUEyWVNlQyAocxWiYWL5xIHcExooynxwds/E71Y3CE0/NTMuTyUxWPcbJ5nmSfw8Kh3tIxvayQa1ZHXgB1VXY0sc1rxrWv2CxkiHIihsyGVIDgykkcxTNW/EF3FyeS2yCGGicE81Hvqoro4Z8j4w6QUTwWyFz3MBeKKKWiitITUUtJS1ZSiiiipQtNw5kW5eAM9qcfIVYMoLTek7gHY1X2A6bU4oYOFqPyAqwadDpWQMAKwk94wN6W7dcDE14zlgxV7wrMai3BaHlBCXk6Qo9DnaqIUtY5ohNGYzxXXfGJGFh4rYzuHUSbi9MflpbYWdR7/mdqj8PvQo18kx468suDDS1HmR/RrMla1DBUSO4muayDAyOiMckliqGlV+UkYV5YWPfYqls0WyFapT1ynvhSisqbGORJzy6mqpu9+lcRRpTw0MIUUpST7oIxn76o1rWs5WoqPic1zUx4DcyuzEir5DohmE3MhskV2HRbefZxKu4nSnUCI2hO2eeO/wqvlyRxBemIbBUYjR1KPf3n7qzZdcUjSVqKR+qScVpOFHocaNKdddSHgMqBODoHdWWTDPw0XiE5i0U3Ta+PdIfA6BmcmyBQ6dVdT4Ue4qSh53DMZWVtjbfG2T0GKz18uiZzjdut5AjpUE5GwWemPAVTSZbsiQ86pRHbK1KAOxpinYX2cYqc911sOAPE9UzD4LJRcbrbotjfnVWuxMQ2nFdorCNYODgc/upbvmHwmhoKyVpQkqJ3OdzWTflPyUtpfdU4GxpTk8hXb0+U/FRGeeUtpv3UnpUM9nOaGWQadZ6qG4JwDbOxs9VrIEdx7hNDEIp7R1BBKjyyfa+ykcYFl4XfS2tK1qG608ipW30rIolPttKabecS2s5KUqwDThuEpUIQy8SwDkIPSoPs6Uu+YZS7MR/tQcE/N82ma1qLUhNp4aclqwXHE9p89kimp6PWHCDDySVKYAUd+72T+NZj0p8xvRu1V2OrVoztmno1ymRY62GHihtfMYzVz7PkD/FBt2a/LkpOEfm8QH4s1+XJRaKKK7AXRS0CiirKUtFFFWQiiiirBC1FgSFWopUMpUtQI79hVjpSkkgAAnf5YqqtIUbEoIzqUVDarBhLiVupc33BB6HYDb5Uo7rz+IP853dYUbGuq5zk576kwojs2ShhkZUr5Ad9ZyQ0EnZdsENbZTNFa/1XaYyE21RCpkgbOEZIPQ+ArOyLXJZuYgABbqiNODsQeRrNBjo5iQNOOvEc+yVFimSEjbvy5qDRWxYtdqti47EpIkSn1aRnl8cd1VV1t7B4hbhwgAHCkKSk7JPX8apF7QjkeWgGqJvhoqR4xj3UAaq7VHRitDfoMYXONCgMaHVgasct+VLxFbocUxI8Jo+kL2wDkqHLPxzVmY6N+QUfis9gOJVm4tjsunzLO0VqmLJbrfGSbs6C877IGSAk+GOfx5VR3O1v22SGXdKte6FJ3Bq0ONimflb5deddlMeKjkdlb/97KDS1pY9liQIiH7oFuvOEaI6OZP7Pia44ltcSHFYfjNlpS1aSjVkcs1VvtCJ0ojbZvQHgqtxkbnhg48eCztFaB62RI3DCZT7Z9JcwUnJ6nYfLelbtEZvhpyZL1JfUnWg55fsjzq3v0VXr82Xufwp97ZV9aWeoq+stqiv2yRNnhfZpyE4OMADJI+lUXXanxztke5jf7d01krXuc0cEnSlq9m2dmHw+iQ8VCUpQOCe/wDV+W9SZlkZftsN21tlS14BJO5B6n4Gk/xCHQ8CSL4aJXvkeh4E1fZZqirq82di2w2CHtT6jhQJ5/Ad1UtaoJ2Tszs2T4pWytzN2S0UUVoCYiiilqyFp7IoItCVKzgKUdqnNrCtYQCdCtJPeQKgWdHaWUIyUhZUMjmKnIQGyrTnCjnHdsB91KO68/Pfiu7rELaUn28YQo+znu51p+D0Nojy5S8ZTgE9wxk/14VlEHOR/XKrSzXZy1urIbDjaxhSCcVzsdE+WAsZut7g+fCCtyArTh2O7Purt0kZ0pUSCeRUfuA+6rC0utz73PmJwUthLTZ8O/7Ko7jxC7KjeixWExmeRCDuR3VGs92ctTy1BAcbcGFoJxnzrBLg5pWPeRRIoDkL+6W/DSyNc6qNUB0XUwTLrc5LrTTiygnYD3Ejl8OVXPBqEqYkLU0NQWMOnny5f131FncULdaW3DjpY181k5VTcK+NRrE7DS2UvYIStPI56mrTR4iXDeHkrYDXYcypkZM+HJlrYLQ2u4NXOQ+pqOEpZOA6cZV/QqutChcOI5kxe/Y+y0O4ch9mfnUHh+8xbdCeafSsLUrUkpHPbFV1oua7bN7cJ1pUMLTnmKS3APb4wjFaADrz9UoYRw8QMHCh91aaHLzxQrVksR1755BKTy8z9as3S3P4pba95MJsqP8AFn7tvlVZJ4laQytu1xAwpwkrWcA5PM7dfGqm2XF23zhJSNROy0k+8Dzpgwk0jS6stNpo/wDT5q4w8j23VUKA/wDVsGLsl29u28tHUgkJc7gBvnzqsfC3+L0R5ifSGh7iMbJBGdxSr4ogo1PMQT6QsYJUAPmRuagWe8ttXV2XPBUp4YLgGdPl3dKRDhJWB7xHXw11vmEqPDvaHODa0rrfNaOXMh+sGba7G7da8YBSClA8/Cq/iFxt2fBtq16GFEKXp8dhVXDuzP5SLnyCrs1FQGBkpGMDb4U3dLk27xAJrP5xttSCgEYzgD781eDAvjlaADo27/yKtFhXMkGmwvzWnmrt1thswpDalNL9lLYGonfr51Bk2GMm8xOwBQ0rUpxGf2e7wPKuX+I7YpSJIiLckoGEah7vnTNq4gbVPfeuBKS4AEEDKUAdKTFBi42F7QQaN9SeQ6b2lMixDGlzQeN9SeiW/Jfut6Rb4+ClkZUeiSdyT9lXcVluDBVDiua3GG8788nJ+tZ23X5mMJ7imiX3llxCjvnPIHwFJw/d2or0x6c6ordAVyyVEZ/Gmz4Scw+GB8LKofUeJ/UpkuHlMeUDRtaczxVNJkOyni6+srWeZNNV2+tLj7i0J0JUokJznAzXFekYAAABS7DRQGlJaKKKYrIpaSlqwQtPZlabMFZxgrOTUxgqKCV6shR5kZqLYv0U1/Er61YA6V52+NKO68/P/Vd3K89b94/AU5XCef8AXdXdJC6uD/oM7BLSVOZtE5+GqW2wotJGc53I8B1rQ3C1/wDCIlvjMBck4Ovlp/aJPdk4rJNjoo3Bt3ZrfbupkxTGODbv7LIUVJnQpEB8syUaVcxvkHxpy32uXcVERm8pHNR2A860GVgZ4hIrmnGRgbnJ0UKilWkoWUKBBBwR41f2zh4yra4/IDjbqv7oY57dfjVZsRHC3M86KkszIm5nFZ+ipk62TIASqU1pSrkoEEZqKhCnFhCASpRwAO+mMka9uZpsK7XtcMwOiSipM6BJt7oblNlCiMg5yD8KWTbpcRlt19lSEODKSfoe6oErDRBGu3VAkYao77KLRUhUGUiImWplQYVyXjaiNCkSW3XGGitLIysjoKt4jKuxSnxG1dqPRSgZIHMmpMuBLhafSmFN6uRPWrFzQQ0nUoLgDRO6jUUUtXCuilpKWrBCKKKKuEIpaSlqQhaqxfopvP7avrU0n2qg2L9FN/xK+tTsJKvbyRnv50p268/iNJHHqVgM5USeu5q64dtYuEsreBMdrdQ/aPQVS9a1fCq23rdLhh3Q6okg9cEYyPh99czHyOjgcWf/ABdLEOMcJyqcxdXJ15REg4TFZ3cWB72Og7h0rqddnPWbdtgJBdKgHHDvp78eVO2mBEtkZbjL4cK9lOnZJI2HlmmimHYGnZUhztZb2STyKyTyA6CuD/IMhEbboUBzPM9ly/5RfTG3WgHM8ymr9FTcbtBhJ2IClrI/VRt+FN3m4qtxatlrSG3MAEge7nkB4+NQLDce14hW/LWAqQkpydhnbA+zFWxtjUW7SLtcX0BsK1ND+uorQ5ggc2KbUNbYHNxKc5oic2OTUAaDmSoXF7DSVRXUIAfWSDjry+81Y324u262tqSpKZTuByzjbfFV0Far7xB6WpBEaN7qT9nnnerWVFgyJAuMt8KajgpSk+6lQJznvOao8tjMUUwvKLPHU7NVHUzJHJrl389gq+6LfVwilU4gvrUkjIwee3nimeGbalpPrKVhIGzQPy1fhXaVniW7YOUwY24TyK//ANx5Cnpk9My+RLZGIDLTgKyDsSnfHlj5023tiMDdCbc7/Ecky3tYYhoTZPQclYzYaJE1h6Rj0eKlSyD1V/8AMZqDxWvFmQNzrdTz+BNJf54XNj2ts/3riO28ASNvvpvjJ1KWIrR6uFWPAf8A7WfCxv8AFhzdaHQa/qk4djvEizeXZO3k+hcLoYTzKEN/efpSMlNh4c1rx27u+OR1kbDyFWCkxLm1HeS4hbDS+08MgdfhmqJ4r4kvXZNqKYjH63h1PxNWw58RmSTRoJc77BWi+NuV2gBt34TXDcBAC7pLADTO6M9Vd/l9an8YH/h7Cepdz/20lwltuXKHZ4uEtNuo14Pcfd/rrXPGa/zEVB5laj9K0Nc+XGxSP0uyByHD11TQXSYlj3cdu3BZSijFGK9IuyloooqwQloooqwUopaKKshaqxjFqa6ZUr61NKyk6hzFQ7LtamSMfrfWpL6ilpRSMmlFeexB+N57rB08wntHm2wrTqUE57s01S1nIXcAWr4nebh25i1sHGw1fwjl8zvWXWtbitS1qUe8nJpXHVur1OrKlYxknJrmk4XDCCMNJs8T1VMPD4TK3KSu1uOOD21qVjlkk4riitFAp1LWWebEg8OOusuJ9IAJUk89f6vl/wDayynXFJKVOKKSdWCep61xS1nhwrYnvfuXG0mKAMc525JTseVIilRjvKb1DCtJxkU0lSkK1JJBHIg70UVoyi7rdNyi7XZecL3alxRcznVnfNW9vhTOIH+0kyCWmsJKycn4CqWnWZL7CVpZdUgODCgk4yKVNG5zf5dB3A1slyxlzfg0PNX19urLMf1VbcBpA0uKHXw8fE1RRZciG4XIzqm1EYJB5imaKiDCsij8Pe97490RQMjZk359Uuo6tWTnOc09IlyJRQZDqnCgYSVHOBTFLWjK2wa2Tcou6RRRRV1ZLRRRVwhLRRRUhCKWkpasha2y/opj4H6mpD4ygio9l/RTHLkfqakuj2T8aUV53EfM/wA1gqmWyL6bcGGOi1b/AA5n7Kh1qeFIqGWHrk/slIIST3DdR+6ufjJvBhLuPDuuxiJfDjLuPBW0mJanrmhD7ba5CkYS2ByHecffWZm2lRvzkCIMpJ1DP6iSM7/Crnh/+7m3mV/zCrf/AEjc/h5V1w66l1FwujvvrcOfBIGcf13VxopJMLnIJIaAOmY8uy5rHvgzUboAef8Apcm0WphAtq1gzH0+ysjJB78dBt51mJ8NyBLXGeIKk9R1HfV7w7HenXR26yfdSSQehV+AH3VVX2YmbdXnm90A6UnvA2rfhDIzEGIuzaWe/TyWrDF7ZiwuvTXuq6rzhVuI7PW3JaStakfmwsZHjt34qjrV2W1tW2P6zuR7NSRlCT+p8fE91P8AaEjWQFpOp0Fb2nYx4bEQTqdkROG2WpL785QEZCzoTnmnvUegqNZLPHlTpDy/zkNpZCM5GvfbyxT/ABip8KjNpWvsVg5SORUD/wDaeuZFn4abiN7POjScfNX4VzmzTviac/xSaDoBue6wiSV0YObV+nYDdQbbaolxu8hTKF+gtHYZ94/Hu61VSozZua40EqdRr0t95rRPj1LwqlCfZkP8+/Khv8htSWOA3a4K7rOBSvTlIPNI/E05mLcwOlux8rRzI4prcQW5n3Y2aOfVNXWxxodkC0AmQ3pBUD75JxypxrhthFnWZGr0rR2moH3Nvdx9aumlpctzMqaQNKQ+ruHUfL7qYMpx6wyJa06O0aWtCT0Tvj8fOucMZiS0Mv8Au3+3bdYxiZsuW+O/2WVsFsFym4cB7Fsalkde4VLNpiy+IVxIeoR293CDnGOYB+yrGLizcLGQNnnQFD4q5fIb1xawbVw29PVjtnhqGfkn6k10JcXK5z3sOl5GjmeJ/C1vneXOe0/4jvzVauztOcQegRXVKbG61HcoA5inLhaYyr2zAt5UCoDtMnVp8flVhYU+g2aTc3/aW5le/UDl8zXPDyS3FmXiT7Sl6jk9QNz8ztQ/FSsLnB1hgyjq4/hQ6eRpJDry6dyqe+29i3TEsx3FLBRlQVjKarKckPrkyFvunK1kkmm67cDXtjDXmzxK6cTXNYA42UtFFFPCYilpKWrIWts36KY26H/yNSX9kk7c6jWf9FMfA/U0/I/uleVKK85iPmf5rCVbN3l1FlXbi2DkYSvqATkiqmuhWWSJklBwuja7ro2vrMNldqvTZ4e9XJaUhwDSVA7EZyaYst3XbHFpU32rLvvoz9tVYpRS/c4cjmVo42e6r7tHlLa0OqurlxCuRH9FhsiMxjBA5n5bCqSiimQwMhblYKV4omRCmhdsudi+hzSlWhQVpPI4Oasr5eV3RaEpSW2UDIQequpqroqXQsc8SEajZDomueHkahXl9vbNwjsNMNKy2QorVzzjkKlOcUsuNNlUJK5CRspYBCT1I61maSs38OgyNYRoL480j3KLKG1stPPvdvlSbetSFraZUVOJI5EgY+NQeILz6ydDTGRHQcjIwVHvqmpRUxYCGMtcP7dvM2iPCRsLSOCvbzfkzoLUaOhSE7FzJ545D4U/MvUN3hwQ2SpLulKClQ6DGTnyrN0VI9nwgNA/tN+fVT7nGA0DgbWnb4jhqtrLMqIp51oDCSBpJA2NcX28R59oZbYWQ4pQLiMYxt+NZulqGezYGvD23YNqG4KJrg4cDa0dvvsJuzphzWFOaNtIGQoZzvTk+9RZPD62mglt1RCeyA90Z6eQrMCij+Gw5/E1u734oOCjzZutopaKBXSC2JaKKKsEIpaSlqwQtbZ/0Ux8D9TTk7/CrOe7603Z/wBFx/4T9TXdxz6G5jnkfWlFedxHzP8ANYmn2Irz6dTScgHHOmBVxaTiIsjBIXy8hSgu3K8sbYUP1dKzjsvto9XS/wDKPzFWc2QpmOVpSSdwB1+Plin0OKWlKxpKSAQQduVWACyjFuJpZ55lxhQQ6nSSM4rip13GJaf/AOY++oNQtrHZmglJS0UlCulopKWhCKKKKlCKKKKlQjrRRRUoS0UUVKlLRRS1YIRRRRVgpRS0lLVgha6z/opj+E/+Rru4H+yOeX1FcWj9FR/4T9TXVw/wbnMcvqKSV5yf5n+axNW1sOm3uk8tf3CqmrGBJYbjKbdUUqKjggZ2wKUN12cQ0mOgpqg46+paFJCW8IGoZBJO/wBw8q4glTKlQ1EfmVZSe9JBx+FIxJiMtaBJOM53QTv38qQvRDMTJ9KIUE6caTgj5VZc7wZAQaNqNeP8Yn+AffUGpdydbekJU0rUkIAzUuNKgizrYKEokkKGtSNWSevh7OU+HPrUFdIOLI26Wq96I+xGZkOI0tPgls554O9M1pvWFrWoNJVoRFcSGVuZUF+wU6tONt9Kj31XuznkR5Tbk1LzqtGFJ3zzzuR8Ki1SOeQ6Fv7P4G6qKWtVKfis3MtyHWStLjoaxsGRp9kE423z8OdMszYqJUhbrkZPpC8KCfawEtK3zjqojzotVGLcRYZwv96LN0Vek2w+hPqcaCkobS8jOoKSEe1tjZWRgb8zmq66LjKl5iDCAhIUQMAqxvipBTo5s7qylQ6KKWrJ6KKKKlCKWikqUJaWkpasFKKKKKsEIpaK7UW9DegK1YOvJ2znbHlUqLWrtH6Kj/w/+xrueB6K4Ph9a4tH6Kj/AMP/ALGnZu0Rec9PrSivO4j5n+awwFLRqyTsBv0rvAIzjpSl0R7SiI2P6flc0UDnj40mfpUpoxsZ4FLRSjHcK5JxQrDFsPApaK41nblXSDqIzU0r+8NXSlKUoqWoqUdySck0lITgE0qTk+dTSnx2jgilrpwBLDSxzUSD865AynyoUDENKKShO6iPGpRYR6I25vqUspO/ShHvDVGorrSMVxmppXEoKWlrnNJqOCalWzhd0tcajRqNWUhwK7opM0tWCslopKWrIWvtP6Lj/wAP3mu5+0Rfl9RTdrJ9Wx/4K6nH+yL8vrSSvOYjd3mv/9k= iVBORw0KGgoAAAANSUhEUgAAAdkAAADuCAAAAABQJCJ/AAAAAnRSTlMA/bWfQ5kAABfySURBVHhe7Z1PaNvY3v6f+2MWIotgsngJXhkvytADxXgRQhalzOJiKhhCFhdzQSXMYghZlRjCpYuh1BBKFqFgKGHAg5nFxfwMIRRUzF0MoYJQCjamiyFcgzEYTBhwMQUFbQzv+WPnSJEzGcdO4vj9fqDS0dFXR9/mwZZkPfoKvdmEmKiyBClLkLKsdy0oy7/1wHmE2YL4DEztB4M+s+Ol8/8wmxD3UVmClCVlCVKWIGUJUpYgZQlSlvgG95I2Fo6qQHI5gpmCPrOfN5aqT5Ift591MVPQZxbN3RTwKNV8XsBMQcfZZApAFKh2MUuQsqdPwPGAWARAt3bcBiBbba9W02p7CDeHd3n+Hq8hB9SoscsN+ja+aR6D4/0CvBGz/fTHZmoXKOwBvInYqwRwfFiG5DC+U8SgCc0jcHa3ASQLZTHbWpTTdZS3Y6mfH2wZWK9C8WsCx6+xvJ38KY77wf29P+tYFmP5Dm/lWbbnMj7puRXGmN3KMNbp8abV6jFm8hDXNjst2fTTyTFW6dl8FLfn1hnLuK7Fe1zRVe/lWEkOaHeYGK7niKnDzPp9uT97b5VtOU6Wy9npcQ0yvZ7FTN4p5JQilKRivZ5YFv1Z1QyS5wqKYFvIzMfim4seV0S2xDKHtfjQjGtsir24vJfuvN8s3ejKyot9FJ818MP+81r5C5oA5oElYBH4iEdA20OfswiuBt6bJDgnwANE08l1COYgOWkiBhgxFD06g7pJdh5vA1iJoVmGd7rx7DcItBJ/IHq4UfxpB4r/xjGEeeBD+7997QG8X3rSb0aBFwU+QReR/no18gJAyt4ktSLKXQDLwCe8fdk83F1Anzb6RLtYTUPx+wMM6HYx4Gkae6kjSOa4/IUfAHzlTTWI5xdxTon/BTDo3Phm2YoA+AgscZU34vgCSFnQldOlNprF5AoU3kkcfQp7sf0oFMaLLS9yvIE+1X0DwDxiXGQA3j9ePUttJKH4FmgCXhMpgz6zN0giFVsFcNxEbPUU6IoWjg8wD5TbeA+k/vjPEZ4AkJIfLQMe5L89NA9xjhEB50z9S63IFiJbqB4Dv6wd46S2pEaAsYuyhxPgOW4SuupxsyyXF+fGrZ64VGFWjv/r9Op8yji2OJdl9QoTOOyceo9vk+tp+DLH6tlilldTedJsmVnXEVvUmaDS4yFWzjTrN+9Kpase23Y6UuWKzf/eFcftCWXzHcdu8d6OU+cTCcu0xKyeZbyrLlTSuGKN25+pqdzYFhLWxUgdgQx17IrbI2XvwKOtlA11dthAD/GJy+bISX7/aNeA32u4gJE2oEgZKEc2McXQcXY4JUvwpyHu/5mnP77BDLG2hqsw6C7eWBCkLEHKEqQsQcqSd7HdhOChUYUgFsUoEI1T4Os8HkamTtk/jooA0ouGmidHU5aovasCseXFyBT+UlHq+0TyjGV6I0J1Kjp1k7F83Z3GXyrmdDOCUSAaxY9NcPb2EFt/akzhGVQXGp/Ht41u3+HrhVdrwqbe7vFxAxNAD+Q1+g14vnSCbuRGrXv13j1MjuPV4sLh5ySw+2m3+fIfbW1d1v7ou/w2tvW3sZi7OZY1WcblTStjZhjL8zUSs+RfrXqz6qZp8CZoiVkWn4/+PRcctOeeD2QzM2dlXbVakQ+mIprMrPT03v1Dhdpi3/37sxUxtcRCfrRvY2FqdXo9S1oks+qv55hmlg8WyCjPVKCtk5D3lytiU0XlYlITuIundmhxeB6ZgMe3Z2Xl2opb4csdvnPbv1r2ui7Xvu4GTL0OM10eYo+ubGBQPZC2CatMpJ3YHe5GFht1xEaBoULtjpTGFBu44q/a6uVMxx1NWUdINFC2xBdcbV32Z8Tb0vgqlLbdjiVlrjDbb3q+mNSklM3UOVklp/D4colM5cgVkjnq5ijfd8m/WvX2RPJ+U69ILSe6zdGVDQ7qDgbqaJuwXK3sxCoVvxvZ5hnqvfuHCrclFpM55MRfYHRPhS01UcqqBW1d9vmjxQ5Fwh0+VZqKDG2+VpueQ0lN6v5sJM6JQvLD/kbjSHl8P0Xb7X1srIDze+M9Uk/9q1VvI2TqbTYx54l5A6OjBz3DyWCgjwGbsOJrIBXlRn4AfNR7D+QXbrdxzg8plJ9vxjEi8zLLPqcAItq63PX5ozmPgdrH9GLf6YX9LoppSOYQSOpGvYunr5spSAx8fFcVNsGvwMmrauw7w79a9aLqM/XOVVVzbw/XRA86pweaVzZhtbrPvE4l4EaWG4XyC7erSG8Z507HMppnGJVkrInPUSiOgK1z63LTnxE48WS18O1qP/nVMn5LVPehTc+BpG7s18W9c49vd6e8VnhZfVbGPLBWKDe33/pXq95CWmoZNPVufBDEMTp6UOiBtE0Y88FMw25kvXd/fuH2LopF/WmJJfGyhhEx3sTwttz4Apw23nJR0hesy21o0miWk1Cs8J0VhYIeNDqpm1LW5/H9rbjtIQEUIYkC+55eHboirv7r3NTbjEQixo6HsdAD/c/AJhwYcbgbedje5xBuPwCO0Kex8WYH+KmNEYn/+vLb4qsmcPDq08avLwy/dVlnBMEysGGgz49A8e9AY2n7y0BtndQElZWuXs6ZnPs8vnFsGWJ5Sa2tAUnDt1pvEzL1lhvwfokZuAZ6UD1QdGATNtRqtZ/hbmS9d/9Q4fYH4Am+KGGfv4zzXTRfjCxtZG23UEgC64XCZiJoXdYZqcg0b5wJqdWHNhUFytr0HE5q/OtZm0kqdTXP+z2+JTOXFxeMeabIdPwW4MuvZ3PK1Dv29aweKK8aanVeTYe7kfVGf349y8xS/9LRFp0V2a5fnWU4Yd+W2rqsM1IhdcfsyeWsul5y5FSbnnVSE7uedTuSgYHX9Xl8eV/FdlrnMaJHrw4YeS+Yelu2CLqOskMH0jZh/+rhbmS9kY4NTQViUIGMc/vt0ZXVo3G0dVlnpEL4dGCAdpxexeTdAdPzhaRm3m88uht58rAJZ9RirJUpkd94DDfy9Gb0+eQ78huP60YeHzbpjEqmVaenP24UevqDIIcbQcoSpCxBypKyBClLkLIEKUuQstxi7P2ZBRmcWgMDQi5fj1t/PUxZMWOqU1G3sqYlbr1ytC333IKcV/c+sxaf5M9XB3zHtrL+Bu/5akewNlFrqGrQbSgr7JxcArfnt+WeW5DdvJg4mRLLco3sEl/KMcfn8tXW34DxWHdrE/XtKkvK9m3EJb8tV1uQhRfE6eXsiuX08lm1ZDo+l29HW38DHmbdXdEmarojcItE36DROAVOEKhF7HcTnzb2lxOFFSw+hWRzEdrl29RVi4MeZu0I1iZqeqvLLWLEu6tQaFtu0MtcWIgdpg0gBUXK7/LV1l/P8HmYdbc2UdO58a3ilc8+f/4VQtIuBgS9zP8qrA+xrLdDVYu12TjQrU3Utwkpe7T9QoqwgsZjbcu94CaOo+gdeNBol+8lVYt93dpETcreJvN4AhwhldC23ICX+ayv01HB0I/X+Fy+2vobMBvrbp+JGrcJ1V3MWaUsy7pBW+65m7h/PZuTp7bayatdvtr6G7ie1d3aRE1XPbelrC5z3Lpgy9Vu4oEj2eFi6yXt8tXW36DxWHdrE/XUK0sON6UsOdzId3xvoHs9H98lk3+8oRpus8faGt3Fu1UIUpYgZUlZgpQlSFmClCVIWYKUJf7WA+cRZgviM6iaAd3rIeg4S5CyBClLkLIEKUvKEqQsQcoSpCwxWe+it/c0gUlBtD+ezj0IPRvU/R2SuVgEmlCM/9W/DyPjPtdjT/BlpPS7cZ5l7ZIZekFXXZTLsLJ8mu30LqFi8RjTqrT687Gf/rAYq8+Osq6dy4f+OznbHR448SyzzBZjWyykiyPrariy1MZlVPpS1Blzxr8jUKvGUMas0PhHcfFs9QBBFreXDrrDAydLuZhMATCe46cuhmGkUT3BZcxD8XUiZ1Dvt9aHPgzcaHRx7/CeN9+sbW68PEaAtU8vC48L7aGBk8TbxvcQJGLNQwxlAYruJX/fr36F4TUa1z7Odlir06+nUmF96rJKksXyruwzXfGGCk5l6r+NSywj/yPmkC9fk+Xq4cBJZam/TSVZZg75Nla7dOXh2DLNylXfxiUdNfpxNp+Rabhy347LLL7TOm/mxH6yXHkrI/ZSMkWVralXVr13uDX8zMGxWKYSCpxkliWhniTPWyFlbcfJqyevbeb23AyfhB8KtTl5pWyJlcQhu3Ot46x3sAo8RfMEnNSKASANeK/xTyCRKtYQwSoOgXdr4M3pwmto2qqnikVVVqSGMCuFX0+eHYQCJ8hX/xEzzG9HhweIfAHQQBHGMk4Qon3KaUPQfYmnMH7E4bWuZ6vNxQbmY81/J4C5hxAYKZw05WXXw/JxAlhMFzeM6k97mDa+vNLtpU3ZA0nkknOQ48NmOoFQ4OSY92ts4CIvIsDxRnF/Batzjxu1dzhDiHRcCF8Ep4lYGzjF0fp1lP0ZqxCUN+JIJCDZxbE60C+iC87T4of5lIGpI1q4/HX8bYTWHb1tbhzGw4ETJAE0E2rYywqZrGztbXwyoovPF75fqoY+84H5KZqvACQf4BrKNqrlKDjfN8ub4Vd3niGiTvQOFtJzmDq6h7q9mALH0KojiPe+0Nz6u+wNBU6OeKzZUMp+xPcYziLQju8Ud1Mo4yLzgXPjRSQL177qKaaiEFy48PkWVbF4ghW1tlldxhSy6GNwSXEmJL94nOsWlgrrn9a1iv7ASfIvFDxwys3kUwCF9WNcpAEsNIpIyVYoxp9PTKlQq41+1eM6gxNeWSdU9DBLLtvqRfMZ3jQrvQ5vdJh1D36DyrDcsFPerGm7lwVONsuSGtc0W+pUV5/Y2nJfHT4riT+3K3buuMEYp39lWR+8X7UkxqqMfNXTYYK8GEgwqAxcUXlkRPUlkQOXNGvnp/96Vv8G7vCUOXnL6SnqlwdOOkvbtHJZlhHCiusa1hpcqQ7IiKSyzMpaFWZlOuGYSv28eHNWqGBf43p2UABJv2tWzPrrKo7coezXa6Zc2V6GtcSkHvjEqOwVbihwwlm6FdtuDRby5qB1Yf91h++5VXGHxOg5j3AqHaoHJXEzZi7DKhc+MVl2Tj4YeLNZVlh9AjGkrKJuO67+xIQ/s4HAG84yU59IDCkb/jTQcz0zyb8P45hFqNLXLjnciFlSliBlCVKWIGUJUpYgZUlZgpQlSFmClCWoOh9B1fmoOt/0QtBxliBlSVmClCVIWYKUJUhZgpQlZbvHnDYkDdW+93jlt4XGGJFjov+wNQiOBV1cQuPgbeHYa6ss2nIBPq5fw62etRizZNNljJnZyr3/3a5uWqUcK40ROV6WumKbfM7SzWaYla0Pj+pkWaZUyphmNlT8bfynPyrMZBXVkOVM7ruyrikev8sxZ7zI8bN02ODRZHapVlmW75cGChR/m9TvxmuogXOcxizwvpmKACt4PXbk+FTfXlXvLbYuFUiGi7+NfwY1j8c48ABv/+nlxdvCxcS6DQxHlye7G97hIYD/QbMxZuT4bKFY9vAnvMUaJOlqsPjbhJ7riSerJwlUkzEojl9jobqVNoDyNiTJAnDwMvkFrxK1ZyLl9cYqn+wUAXzmTaRfBGILezIWN43X1m0jerHMU3y0yMmz/nt5+88eGWs08QCS5S2cAIn+QvNgfbwzKEWd9WxRqS1b6qjjrC7e1nNbrNTJM9tfTKxjsbrby2Z4gGvLI0nHyro61lee7MaPsy1Lk+t3MWbLkVh+xMjJH2d7HZOZnfBxNlCTYnjxt1HTuURZLmnHZXWlrGvKceXD4DIpW/R2mBDKEX8EIa/LOraIsliLb8GD/LG9nAgrscpdnEHVz/XKjhk5vrJyH5k/VVav0XqWrqHsNxhKJF38OJ+Md8EJFm8DFoBQMbHm/Id0JAXOjxv/WUc1FQd8sbo82W2XgwqWeRo5cvLEd7fLD9fxFUOZA07jw4u/Ter52afF3yLf95U48xdv68JAuJjYM2ALkpXYXto4/Cfgj4UuT3bTLPqaoTJPo0dOnlRjf+9BfwdeOxpULAacQrGzGSr+JsLHPM7yiSm+F9S3cYVZuqpR3ez1bN3LUd/GdbFWhdkipqdj1YWZbN5xPahxI8f/NlaXp/0d5JjJ7IsZZAYiuFyDkmyrhgof63r2KzhrSMZDxdu8Gv67PLyYWHxjvy2Lkz7F2/I6AH+sLk92F3yHJoAmknFdHO3KyJvD2IlBUsDndxvbjUBSGyg3IChuGIHibzr8+p9ZNyfOdOqspE4W/cXbcszJOuJj6QSKiVmsI9bbuUr/wO/ymT9Wlye743pQqhzU1ZE3k6XNXH8talPWjC4Fk7LVL5AlsxMo/qbDr3lurHYr92TVO0xi6+JtJWZme7Lb6g2KiakN8uIPYsrEOzKdYKwuT3aX9aB0OairIyefZYUJZLMklc3zaYnZF5KqmCyTNa1WsPibDh/jqqdfK8zVVdx08bZKpR/gDoqJ6eWOIxZ4mClCA7G6PNmd14PKm38xcvJZdgR9+dx+l5lxQ0m1HKceKv6mw++oHlSeOU52Gj3a4XJQd56l+kVnhKRE+J05yc9w9PM6lYP6a7SfPXkxQlIyfIyrnvFwS/kWPf3x1+iYNj/k2hMO179BTRZjDX8RYmcBZRQ2Rwyf+hpuRKOM6hjhU6ssES9DsDBi+PQrS0THDidXKrlSCVKWIGUJUpYgZQlSlpQlSFmClCVIWYLqLhJUd5HqLt4+BB1nCVKWIGVJWYKUJUhZgpQlSFmClKWKmhIP3sHbAw8cqqg5HYxfUdNkzMq2etmMxbIz8YtsS9XJHCFyBn43xpDEHPlwfYe1GGPufVPWnUhFzZm+I9CMRVNIG7hfeBtv2xOoqDnTZ1CNZeyWX/SLYXoI0O22u57X5Xi63OZUYBRWCtvHw+pkzl9VJzMYee/5BkM5i+BdGogCuhhm7RkUh19FKx3dA7CbOi+3KddvtYsiIo47I5FoH75e/y4Cia6TuXBlRc1g5L1n+HG2VMpYrlzQxTAd5rjMkiVOVHXFOmP+cpuqsqZbZ5nOXZ9BuSVZ83tKKmpOHte99jPvJzhpvl+DoIHiurFcPkkgtQJOeg+COXivwPFe459AIlV8mogACwYWEIngjjHW1o5fIZ2CwMOANnxEC/ARipxqjhqb1/023oxg5+XX9UAxzLmHEBgpKPbS1VC5zeY8vmIaaNS+rC9jjIqaM3ec1Twp7q1G/MUwEwlIdiE5iKS2L5bbxBtMBceHWN0ExqioOcvKxoBmovD36E5xN4UyLvL7x1cQzEFyhohUNoJ2CneL9/7d0vOoXjZS5VOZIRLwEdF5DomcZWWjQOPbvceXFcN8/atxXm7TkOU2oZjDndI+/JTeN+Dnu7KvoubRjysIE468DTwYGBl1ibIPbK2PfG5sqzKAWWbmmRsohinOjSXqPSOM+ctt9itrdthd1nDrZCvTWlEzjJ3jk/E2HL2iJqv3WibXM1AMM884lX5INh8st6l681m18QjMckXNjuM4ajRH0AkJdNUGjpq5/flYyvY6ErmXVi9QDNNVK1SI6/rLbQZ7e5cywxU1R3+vlp27aoOKZTJmWpVWfz6GshODKmpe/V4tO3f1BqoWsjyOODomd/vV+cJQRc3q2xejnAgFN5jXheI1KytU6esiu7h1tvaKyScGBnS/YCECJD4D5cbmFRtoUeenzi1DrKew3caAwuNXz5/V/voGX7Wo06Ys8SKG510oynufCv//22feX95gHvhQ5nyYPmWJyBs0d6BooAhjGSdKtas2ULRPOW0E6HpToCwR30W5oI6Xq1uPGweDl42tbF61gSS9zknDj/esOg3KEqkN7B1jXt1feYWlETZQ6qq5Zq+JqVCW+CGJDQh2tjcLa/ERNpgfdm5cLmI6lCWMndjlLxvTL9kKbTD8cNwupu9cWeIrPHCir/pL8NDeF1Mfjb3qRnf4BjgNfyF7L3Yid6wsUXu0jaVH4CReymkaGzsvfsXPgRe3R1PAWXgDubgBPHtUazxaBbYf1SD4JR3t3vJbXai2zNXv1Rr+srG8eckGHYmei25m2xmWd+iOwG3AbvE+RSWXy5ksk5+xOwJ0n0L50fZXV+7BcZbYjWMUuttl/Lwze/d6iMhzAHMzqCwRvaE7AgRVMyBIWYKUJUhZUpYgZQlSliBlCVKWoLe6EJ+BGb3zSVlOg7IEKUuQssT/AtsMmES+oKSjAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAdkAAAEVCAAAAACJBsARAAAAAnRSTlMA/bWfQ5kAABXKSURBVHhe7Z1BaNvYvsa/+7gLkYUxWVyCV8GLofTAYLIoIYtSZmVGUEwXg7mgErp4hKxKBOGSxVAiCCULUzCUMOCL6aKYZwih4OLVUMYQQkHBdHEpFQiDIISCggkoaCN40jm2JUeZOhnXseL7/0GlY/uze+LPR8dHOj4fvADmJRbm3QFYAuvzP5hNiFl1lvibB+BHzBjEJ1A/S/3sVCGonyXIWXKWIGcJcpYgZwlyliBnyVmCnCXIWYKcJchZgpwlZ92dNmYHt/m6ao6hnCVnP9TeYmYwf6ktXBT2b6CcCa6eE6AwZtz56QpObycz2/PKrDVKHypnd05F+3gRTdxtDjffg/O+k08DK3iJEYTK2T0av99YxZ6LGN3uSdd1uz78QdPsIpl09x9/2XoCzjvcB/APdEyMIKK8+/wdcdCtNede4D1/Z9pPAWyc1AAcnAflYqYEYDePw5eYP94oSlFFFknAbH4s/p8EgXuMBQBzQHuodu4JBkiZmDJhuCcZ6Tv0sxXV8zQmi37KVpjhOAZTbd7/Wp5nsUDfYmXP05kWVSSin22pqu6FWIw1+AuxypDMUkLKMWXC+tkyk1njZvW5qs26+/8Cfq51PufgkwbmJUhIpxEwB3eLi17in0AuX/s5F1FMHfd9dXltuG2izwmiZKoIiSmTRRWf8Hrzh+y4R+PjzoKJ1GLnbQ6CTgrnGFAqHgP43FlMA7jfPMyFiukjLZ82782nESKFXiJK9wADFvIxZaLY7+SzObTHdvY3FBDQ7H/4XyHCfjq/CeAC8/BZQFcokkJm/dn75w/yWfSZBy4AdIEUhliIFGPKZPGkBJxibtx+1mAW38tMdD9KMMizmSbKLdXxmK/XmeL51Fk5VCRmPKtHu1qV/x3WyBF6VJm88awtq47nWALnr41na/kMAq4e+LzckhBwD8cugM9YQfLI7T4/XG264PyEDoAOlrIAqquHiIOYMml0ny9vS/iwJvjwV9qs02KKzUs6Y5oda7N6IA/0DVYP2rfqJa7NCpxGfdAUrWBj8OMRY7YXJ6ZMWJu15Irn3Kw+l521WUAleA84DZ3f1oKtwctahd8fWKtqTHO8qCJBzoY4qlxWmS6KjFkjld+/kka9XGk5lmGpCjOuoRN28hviUNzwvHpjrFFP+g/4SECWFyBJwV7COoA0RLkgFPnlzsVqBshFFUlE2jW/5LYlUby/nxmt/M64pVp+GQcvsbxR+O1aui0A1VJx6eIlXmWBnXk0UV3HDfiv+5Wlzozbr6QmTn3UmRKUDS/2TSim4zeCNuoE/Z/BOOO02dnn7RROgDZri6vwefIOAefAh9fgrOev1vEbS3kA0vOnv77JNhEwT202WZV05P7ZygbjbfY6Ooexusfh9ybxl9HESQc/gLO8cW3dZyDXu4H9ZM6DIk6BOXDSq9fWmYODbwadblKdJVKIcH4d3Xnsvq6ZMGeJOeB0yL4RurjHEuDuPHz+YzNRzhKLoWM73evqckAHnBMsSUDp6OO74mY7Sc4S6TyOwDFr0nV12UWY4BzhMYAvHd9hmIlyllhDU1hSW4s7Ky5RxHX/QtWFT7Oz9DOAV3tZ93cs03g2WZVsMNnyd3XZjo1n+SWKuC7YikuKsn9XgK7IzLhJfcjZ26ikLjNVkxWLGxm9JiYuUcR1AQ1ZKWtMtXrCln/bJmcTV0mr1eItzvZxvCgVOa4TOHqj0Xe9rjlenVXI2VuGTfgShZjn0WLarJ1dpEsUc3iRRRtL9A1q5irZYprK6rN3FY9Y+XiMm00JuCPOEtIKXREgJuAsQc4S5CxBzhLkLDlLkLMEOUuQswQ5S5Cz5CxBzhLkLEHOEpQZTVBmNGVGJxCC+lmCnCVnCXKWIGcJcpYgZwlylpwlyFmCnCXIWYKcJchZcrZbPeG7Q4HZpczoGUkWrosMJkOTGVM1lTHNussXtQ1ZqZdZfRzl+JWMJnm0OLbT23t/itAavCS0kRe6+XpQtmewlr/1afGl4xyNyUbSnb15ErRzq5nRFaY16rJs9BbaY7KiW72996eI1sWf5GgqUzQjfKGbO1tmDU/zPVUHznoOY+W762yd/yk6ky/ZqJStaynHr+RwkocIueLOGGzEp0h4oDi8xIzYC91otswcNl93q2tIY4C0hA6Arml2vxkiHV07W6inxugkaKm6Ut08nFxmtNtuu+BEkzzwaxdACjgf+cSQ49KVL3Tjftb2LEX3LC9sszZvsxWmyLLO5T6x0C1ernhGsPGi6gYTKLfRZh0jxBL3iKAbm13Rf1pluW7zUkw5biUbMhs0yFiSB2+zYt/61hOFBxVeL95m7egL3XzdRV1x1IYX6WfLTLZ8gxzPUf2N59llxdZZeThEWkRHe5rKNM+Lqh2L1e0Kr9xEnB0rCdqp887ru2dG64yjD24ZoqTxQ70ROxrHnxg666niNjNiL3QjZ3kXq7G6KIrvxqpvXzn4e+viv6yXPYNV+hGmjsLYoMzshu1F1aJKDdaaUj9rDPzSrha0FKURU45bSWXoOFUfLGJcCUr8wNbwqYTOxp8YOmvLTLb52zj8QjddnW8Oy1iqzUHwUwr/5OnQhbmHZvsdLuBzmgWGQ6QFndQfxXQeUTVnHhNkzCRos322uoyYckyOeztXujrJAyd8M+qJgvSrQmdnN/ZCN16dL/dRQv6RBMFyGoLMwvP5xw/Ef9zcjoVIc54CG3F1FxImyFhJ0IcHKKwDE8yMjid58G0xC6Bdw7XI7m4276/GXuimzkLCVc/aqe3m0eylQd3DgP8chTb/kTYLF+uX1DhblG4zjuESUr55Cu5ZLh73/+7B88yVynFZ2xM7CQE5oJMbJHmE341TI544IG/ulX7AeeyF4J7NS2OeNzZryAMmAo7WJJxHQ6RDsmt7J+ZJRO228WUZ0+HbmdEnr9fm9tYzk8mMfrYEn6Vn4AwneXBSI54Yv3sNqdgLvX6w9qD5V5w9B87CoouTvWDrVnNAqt+HbqcRJY9Pza8R9b+fHh4/AhdPiXy+eQIc4FcAZul4rQtO1x/P5qU/UY6NtPcin3+xJ0EwnORxZQBI/IlRpJ3F+Auhik/v1jbNG69crbOA8Gu2oik6U1SNfWs866lMdiLqMpM1kUSt/NdmRseSPFqM6f1v46MyyhvMCUdOl15I5mvQ12+eI2BzvB5GcGra0h1N1u2ACjO4wnH4VpSDc9h2VO3pehiMMAVnOUaj5YSBDKOUk6hkmOQRDlmN3v5bnzeh7X04jMuRIBU+EGp8r4QIrS72zrWyDSgzOp7kYXPC/bc+b0LC0Z2hFxLYsup8N2d1T6DcQWfVidSZTe3zZiuaQ6kuk4NN6/NmyRXPcRKbEEHs4q/RXVvP4/1cftbmQRE782g2qzOX/UGYTRzPYqoLkW0iYH7mnCUysz7fmCBnyVmCnCXIWYKcJchZgpwlZwlyliBnCXKWIGcJcpacJchZgvJ6CMrrobweyushqJ8lZwlyliBnCXKWIGcJcpYgZ8lZgpwlyFmCnCXIWYKcpbweF+7+632X8npuG/fEnWRej6JZnqYqTKO8nlu+8l5mMmvwkuN4McbP67H8O5jFGHPuhrNOMvJ6xqdSDqoillosX6kYP69Hlz01+W02TOFJVl7PaAwemmUZXki4DuoIZ8fL6zGXsdvcimfwxAN7MNWMntEpPDdXTh53p3C0kDr4Za2GIZ4AOMUcRjBWXg+Pxohm8OhXLnDsy2VZYRVHPF7RuGIK/WyYwjOFvJ4bo7GKOF4oXki4DuqINjtGXk+9rvLwrmgGT4u1HKb4RhthYA9XlwPXtV50j2Mw1b71fjaawjOVvJ7ROLoe9vGN/rFfUa5aBzVsRfE6jZnXo2kyL0czeFqq5/nOOsyIBvaI7x+eynRxr2f5Jk/B2TCFZ3p5PSGj0rcGWVkN5jmG3nL4NlwHdcx+Np7X428F61vvii+qCChsPDT3gwyeufu9rIxBYA98Pnd4rs998M6rY5pfMT3M9tnjWArPDZSTo73ZAbDWBuekgx/AWd7A58LTNRefnz9dO+HroK7i/Qd8gzHyegSPaqWiFM3gyeXA2R0K7LnAvEjJ6cLnFXqsHgPFLdwio1N4Risnx6veTrSWU/TbUHoVuU/Bm5V7t3o8J9ZBRXUdIxgrr2cR+JyrPsxGM3gQC+zp1/ACaV7zNLoP4fP4UeD2JLl5Cs9o5cSIh2ilRq6Dmhrf2avJAOa90sMwg2eYl29EHe+J2n7GCqI8wa1ycvCxOJyJ8lMzmtfz4X9XrqO8LeaA0+yodVBXVvAtxsjrKaJaQyaS2CP+YTiwR9rFe8Cs5XOYHiKFZ3p5PaNZQzREaxE4hWCniygZjoQbcPO8HktmrBXJ4LG9Si9Jc3g822CqxrQxxrMzm9cTwgcSPAZaoDJVFAzm9MYUnsy312eMvB67ZQ1l8HhO74FoYE9wSxfC8F4vxozn9YzGqatq3RHlMIrW08rcZ352YNLOjg/l9YymwXhcVl0Wsb0NcVyhX1nelLcHWSSL/BvkN3cev9tLBzewufrLT0XkdzAm9MvoJFTSarUMT2A3WnbQ1zl0NKZK3r2jMUEz3AhylpwlyFmCnCXIWYKcJchZctY124cwD01wYjOM41OMhSoUJwIiPqfiwyZQ/PJDLb8tAaiWls6wnYusp3pw/hRAMVMCsLsQlDdWzYK/iYqbm+AsVTEliPh5YzEpU2dqdIax59llxdZZ2faiU4zFxGJPU5k2JHYsVrcrrJGwU7J03rgI5BabbcBEDdIyPgNILzxIpzCXRsAc3C0EpAFJcmtbu+tDYimDXHoBKSQL+gaVAbCMdmSGMS5PxCoVw465Vkzn08NiYB7Jg5yVEHDBZxhv4wE4zQWE7Kfz6FEolDIAhsVdSEge5Gy3P2FyZ3O9+iTbm8x+LzrF+Bn6/PHpoPQaGBLjbDGJzpKzZwCOkEN0hvHRmoRz9Hi5FTUuu7Znmieh2G3jyzISCDnbBNqdfA6RGcZuNQekcBFOMY6Qx5fm11D876eHx4/AtQmDRj1qmSm2F5lhrLErfzLLyxXPU5nshOIykzXPZj4KjXqmVp+/Iw622qdvcrxQPF3Iovn1XmlxexE+ByXk/gAgoRBsJVHGVuG+FIqlFeSQFg8lCmqzXgytLvYOM+5oc6AzFeY+0GzjMllwpCXcUei8Mc43cIrLbKFHFXcUcjabxTQh6PosQc6SswQ5S5CzBDlLkLMEOUvOEuQsQc4S5CxBzhLkLPE3D8CPmDGIT7TSF60HNU0I6mcJcpacJchZgpwlyFmCnCXIWXKWIGcJcpYgZwlyliBnydlu9QQD3J027jhu83XVHEM5O87+XjrAgA+1t7jbmL/UFi4K+2MoZ2QFEtszWMvf9lAYM+7mdAWnt+Ohn2XWij8cMqychTkVMWd5nKLmtfqxqDqTWfkuOttS66JQZ6r4Oy7ZqJQtLySmnL31oOawaXarJaTBeb+RerH3TMIluriYk+ACkCQAJubTSBDd36tPttLgvMN9AP9Ax8wiglRtV7uFFXDiykTgnoEzL32no7Gl6J7Vu8EsmzH+6Y8mQQ9nRbdkWWEVZ1gyxTZrlJWGM2ibvIoe/ysuY5Xluu2NUE6xzTZkQeM7ZVnqiqP2X6uiep7GZMfrL0DuGEy9tDB5i5UDU7VhydScbamqHnVP+OUxVrkywFnRjLhyJvtZ3sVqvY+tI7cC00T0uUght5jWK/PI8v73Dk9lelQyJWedusydCjH6fv1ZpVqK0ogpb9NZp1Up1y1PvMdWvVxpOZOZlTqHZSz524DjzoJpphbxFoKOaX69vDD5585iGsB9HIaSqSEt54/aXUSQ0CeDqzDbZ4+XY8pbpP3Lb6nsaX7naRtANf85m3r5izmJNdyQ+ygh/0hCwG8oIKC5lkXAKwwvTL4J4ALz8FlAd1iyegwUt3DLZNafvX/+IJ9Fn3ngAkAXSCHO4QEK6yOUk8X9dX5PAvIFpICd2m4e+Hmt8CY32TRwoxclL7Py4Ghs94/GLdXhq2/qTBFDhvKwpF6pVBrTGfXo0a5WZWXRiRrxQ7cY+cSVE+4ydN2JvMeV3pDL8BpM6Q817cmmgWtqf6DHnJizsu1xZx3xoMb0iGTa41kr/Hrc4KPUlnjTKkorJhFElZOtZENmjLVCZ1VRHWaE38plVpmks06Lr18tBjyafdlZvb9iboPVRQUT4qzAadQHTdEKNob4ksRsj2NreiiOKSdYSZ1xBv+7zFTehCu2PjhaaEyeoLM2C6gEbwen8afj2QZTNaYlZDwbx1Hlssp0UWTMGqmcbCUVxlHCsYiPUrf4odH2OBW/NIE1yQViVXFIQJYX0FuAfB1AGpGFyYH8cudiNQMgF5UkBmnX/JLblkTx/n5mtHKiHPd2rgTOyptXxzg+RnHjHH1S6NE9y+Iv8V/3K0udGdOuJOvheBxD9//VNcZYOdJmxcOOxmTWoF9ZXoe3B1lMmbXeTgLnyysg+2Tr4wvs5YAOOCdYkgCUjj6+K262aU7FNdjNYto8W4LP0jP0OD6Bj/RkEfOLMME5wmPuese3GObdcJaQ9l7k8y/2JPR5BcFi+l+ouvBpdpZ+5o/sZd3fsUz97J2sZIMxzeH7Rv90jyXLVv/ijMyM8UY904OcbSlM1XqX6hqyUtaYag1OKfh32HfSWXLWMvx/rZbh9LzUGw3L61HXHK/OKuTsjFVSnMFuMW3WRj3EHF5k0cbSrH03JtJ7L3Y2/W/SY1yfTSbEysdjbEuYPWcJaYV+10OMctY124cwD00IuqbZxTDd7knXdbs+LgaqUJxQKPHwwyZQ/PJDLc+P79XS0hm2c5H1VA/OnwIoZkoAdheC8saqWfA3UXFzE5ylKhIFpYF7ns5Ufn7E8RyVX1Cyy4qts/LwVGMxv9jTVKYNiR2L1e0KayRsqEhrpRaB3GKzDZioQVrGZwDphQfpFObSCJiDu4WANCBJbm1rd31ILGWQSy8ghWRBv5/NAFhGGyhsPDT33+ECPqdZRCgVw465Vkzn08NiYB7Jg5yVEHABZBaeb+MBOM2F4anG6FEolDIAhsVdSEge5GwXAXPAzuZ69Yloqyedexjwn6Nn6PPHp4PSa2BIjLPFJDpLzp4BOEIOZg15wETA0ZqEc/R4uRU1Lru2Z5onodht48syEgg52wTanXwucNLFyV6wdas5INXvRLfTiJLHl+bXUPzvp4fHj8C1CYNGPWpZzCHXmKIpOlNUjQXEphrrvRnJKpOdUFxmsiZmKys06knKb94FW+3TNzleKJ4uZNH8eq+0uL0In4MScpGpxpIoY6twXwrF0gpySIuHEgW1WS+GVhd7hxl3tDnQmQpzH2i2cZksONIS7ih03hjnGzjFZbbQo4o7CjmbzWKaELTuIkHOkrMEOUuQswQ5S5CzBDlLzhLkLEHOEuQsQc4S5CzxNw/Aj5gxiE/AjE5EoUrCu0sQ5Czx//on5tB6UaRlAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAANIAAAA0CAAAAADa7zkBAAAAAnRSTlMA/bWfQ5kAAAWDSURBVHhe7do9iBtXFwbgF+NCbGPZRSLSSKQwxgfCYkNYVITElfBgY7YSDvOxpDDCxo0HXLhwnAwsxsViGGy2mbCkCALBYhyUb6vYeGAxgStECntJcZGKmLi4WDaMUXNCfJiRdtDqB6zdsbzsI/ae9dyDlqO5c6/vReB956CkD+KgpMNI2+bcPN5f5xkE5gpZCWsXJAzgdIVunaehXYvIdt+1rmFm46gPPvBcn6cUEBn5aMgOpURL84BDSNV6tYxdkfkWjS0A+cWr3YGuvS2pAzSbXWnif98qZ+Lf2s0uBrSbHQwYmYsjiHzTqqb3LCmbSLlELntEHosa1VmwT7ZlKWZFMc2BZdnkh9E1K2TWcl31cgcGHivJERaFKT5LFjk1Q5ZXMxaxsEmzqBNz6FDIAQUh2eyTCqRqRS4zG9uhgLlmkW22cxMl1YPAJ8ewYMlN7Vlqt3BmEWh9vphplSAaiGisIbOALaBUzAAoA7dxEZgvVZtAFhfwAHi4CGSTuX2/P36wjmwLAgX8ld4kXidXGvn0qcYsgQwL7Stdsylg5TOTzewosqTDl2y2tUtakyI7mZsceBLiSz65Y+9SFzt0R1yZrIGz0hSBJk4DwFHE8rmb3+NLAPNLELjzFsck5tCR8OosHqlSIZk7qHgNlQ6GOYwk3DxTQhK6K6dKzbuIHD9xOt9PmqxamI+bdeSRtFy9U8IGEuYg8BZZSO35wvqx8ojcWA54nYXIjpvENzYaSEKnghIKl843Grh0qYxb59YBXLkv7URtlKRZlIeqjPVNSF2vIT1V6dJIOIFGF8AWihBYajUWMDw3puOJ/AVyY54lQ+RwkrHjmZLIl1CLBnCdajxZTXJ9UpLv+55ccimIn6mQNVEgby4zXu89dfT3LcWGHDZkD+RGiaSZzbtQ682iYyZxxyKLkzyqcbKkkMiVYJHmiWwy0kQrjcdCkc/CJdu1FdmOYT9efbhOjktulE02u/WoJ5nL0tnjBCzkExldUt0KiELepol0siSJrgRPwiTG9BrWmiOOHUUdaGatQubQvMPCqCBKM8aEHMY9yVxhYiFHFKnRJRkKjNSwze9XSHRPgor7axLfh7YU7y7XG7NfWi4XATzPo28dhQxi/3bw+u/bWJVu5BJ53QoSfshjnPyPd+9msYs28d3o/VI9Gvo+94XUH6cU8w0LRYmRp1XiFU7e8GjePTV/zK62ff1OFvgEL9D3EgmVi0Drt5WV1SIGHDmC7VcGE+RvdLB7TufHLLX30GgAW3iK4eaywPw8qpVf88BRoINY5yskSG9/S7333vwfQKE0tKSNjWsSFlqtbgajfV3FoyXgVWLJzv6JoZ5VkIZRJcmwk+toVvEyj9in2GEOAkelpAlOrqZxl1pSEmLtPASLsL9eUHL3Ea28yXXJk/5oz8IzxyPL9P4n3v1p4zh6HqOvhFY32ikDLzqdTnNtFTLT4w2Qw6zprKL1S3yXHBIOsyZBtvY9pT2/t7IG1GfXWXiSPXM8IjeexG/cAIAMkH8CkXmJVfyBxvFiuSoravEJYllENnAFs+eyde6URB5GkWWUa9hYVsg7BeTzDAodZ/RxiiY//sXyeAcjF2eQ54ajS1L9Cc04dR7k1Hi3GWalQmmme5Nxd6meSBxk9vbAbxqT71JSagd+0zqEITZv4v4yBqR24Detwxji1M9ABul5jnIJT1EpYQsLe1NSJoV6Rh/4TY1nAFm9xiKe2iGkbvKB33RmoSSFeeCRNM/x2do/xX1Q0kOcBB7jBJDDytvLQHtpaQ04v/zxPEuTD/w0BfKzn773UCcjP/upJNeODmb3UUnks6J7JkxhEk9JE7n2//DFcjeFGS8lBVy/eguVK1m8F55FRjPr8OCbXgclfUz+A9U58CpB9rRlAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAI8AAAAzCAAAAACLAARBAAAAAnRSTlMA/bWfQ5kAAAQ6SURBVHhe7ZkxaONIGIUfYQuT4jBbBVcmRQj7w2FSLVccy1XmpglbpRGkDFstEaTYYjkY2PI4EBg3gpDKIDiWBUG44gg3sMWBTdhiWU5gDIJwzSxmQeBm4KSZsXBsxRYx1qXIRxiBJKTHe/P/yp9APSwemp5HPY96EiFErFJikSKVRvSztS80/UQp5cuK9MQ+J1dr8Ii4VpbwUGX4DpHDXaJAKelGVeUliLQdioVKw31liIhlivX1mEUV6fGZMUhSojKC9GgIycsODvn6tqQaPUwQRZlPrjKyuLJw0o4xCrRNfiV6YqY8LcELrD2hshDF2iUmjax5g7awAT49xyF6N8BlCxkfsAfDEBh9vHx3dnpRR8o+BrjNRvQMDtA4wTlusIuUyQBT/kHz6urP3sGeloNmemKOTfQfinUJxSG3NUXy1vaRLpkgfeJl8poUnSnPTbMBNI7wPvVpjp5Orn6IX8Yo5EmBml8P2te/wbC3/7wB4O1PbZTmWt971OviFTJqmDJEUye4DXw1idVX5iUdni4iIHKECDlpayMWqNI4wmbj5EVlG19Ans2JJeaWYFW9S8c2KSLfPIKErtDSgvr27VHeXTgZhYlDgZQyDqbt26FolR7PvDjXkxDx7MAoVqVgRMwY4/Zzhb55u8XxpdGXO5hj98+4VrsZ7ewCwy5aKKDW7p6/QRku8h3z+ikMrfbVMYDpnqzVYPiC15gnS4iIJCfdM32atkwyWUc2/IDmDErynzINu68K4F7x9zQkxw1iJ0uZEVO5HikjwWz2gihUOZJmkav3lFNwj+CJKsxrgMFFC1/RxGSEp5jS7SLl9BlsiQ7amFJ/jxnqWEXrXee4gdv8/u20hgXyr21MLFvImfVH9jmRsLlxtQ4LBun4i/wZjpo/A5/QnuvD23Wg1ULv5LKBjDFyxj9ihr9mDRp/RklGAHZ2F/vzNV7WgAF+QBEvevjjGPimYymR1+cTlAdHbxb1fEALmPSwj2EDC2xD893t1+7iLp51UR7sAMhbjq13XeJ94irwb9WXbxskiby+NodHTJp6F3qj+uT56dGz/UfGRFxKGfl2H4dE0fqjz51IMv0O049aSMQTXUaxdiPHCa1+d/3RZ6k/xI0eKbUjUTT7C7ecoiyMorVHn6VEFBZ+3xlLCh/rrz/6LCNx3eL5ImZeQbz65H1g1iCxIm6PJ8V6lHQXnXWD9UefUu0bhddWnSlPyFWsK5NFD+LvLTzMSsfLfCrFFjbKpPc9cIjuMB0Ry6E2SsRMD/F4qHLiCv0pHn3Q7c34c3JTtT/Fo4/FJfF/+XM92IEx6AWmfLzEvxX4U3L0UZJFtKS3PsGmKB590Dnexd+vlvhTLaGbTanL/KmUcWf0BSOM67iDLVRK5+Vlt3uC0QPJKySzBhXXezHDszOcDdHp4Pxs8gD8SeIUpWS6ysf/79yP/wDBfq2ObDK6kQAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAJ0AAAAuCAAAAAAXE0TRAAAAAnRSTlMA/bWfQ5kAAASUSURBVHhe7Zc9aBtJGIZfjhSLi0OkCqqECxPyQRCuQorjSCWyTUjlZsFcldJkmyPFYW7ApDoMC0bNgqtD3IJxsyCuCOYWgps1JoUJXjCCBXEcTBCBBTcDp29n1kharyQHW3KRBzNGMyvtu9/P7LxQ95nv6r6ru12imMc4yokzpZQv74u6TISK8R0iR7hEgVLSTe6JOuErTUL2cEyJ4uFoJ/dCXUCZ0oTk8T+HWK5vZ0tQJ1WWcGklsflMQhkE5Sm2KchD6C9aXewQxYLIVR6RZ0IXKgNRmkfQllpktvDY2eQGkmwvkDYpxqHkquwoikJBpl9ditQYP+Cu6ffw4jXQW31t9VoAcHmCgnM0jo4+dNbXamAaOMc46q4JSZjqjykwAZNjZSddvaB8Et8Su8vKmdmcYIOHFnCKJsbpYA1A7RW2B7iOUXUfN4fswbDHn/ZzJTtHp5uGnYM+mN+6mJNOY9UMBxgOgIWCC/A0sAJ8QU6tOrMycYiKPScmIhFLnnaEklFA5OQVbNJjB2ouEvJ48HnDECrgsqeiKwLTxL65q6BgWs+6LpmmzhyHbK3Z0V8l8vUv6sYKaT55AV/uU8zf8H1Pi4jMPSiQUqYBUVw08xR1GUXFcwWuZ0rUMzKMuoz0fGZTqubAIclDlmfDM2nx9YrB8aW5vaPGeYARPjfWgXMuhf724RbW89poo4kysFrt/XeYzS5qPFhA89Cqg2m2jjbzFY1lFbfHFqbsKIGnbP1cwk9Jx8Yvcm2ePLmKrr7AkI38zSS1Y3UNwlPTYnf8Cs96Z9y9x38doZE/6QEaFgwDfPn3PdqrYB4Bn+pm/ieM8E8NM6j/vrtbvugjfsEEo+ouu1uo4zNw+f5X6wTP8rkeHsLQbvP49glyVoCTFnJqhxihhpk0d/Y26xjn4OtbC1MyG9tKRZxIXyhl61d1SkWpEnlSylhwz5oUC/XtyFK6eZiS2YtWnq8+/ujy2/Hp5DthpQY0m+i86RYZxczMDs4wLz0ul9XKzB6/AOrA+YftOj6Zsivzcwd/c8t95RzOzOzZG9yEjXdV6rjsYDV6ew9f6hcjU5a4As2PIzpWUcWTNm7CIxgGljVed4nNo9AbNxUnRJt42uzGjGcKL+JL7gqPbDl2Rhl0wDzGRhM4QEELvUte7QP9wWBwsd/GxnPozK7hjhi00ftzNHY2DXE5JJLjxySmNVOevcIJi8dzb8vMlt2spzcEKINkMrPry5yxE2KBKrApuTUzW3azCYVz+Qpp25kqE5F/i2Z20s1mrjun60lt7zrN3m2a2Uk364lsXk8m3XJzuoG6CTJTaZRWm9lJNytv4hhlxcx88JE79PnYXW1my26WgVoELrlB5lJSbWbLbpZ5gAUw6OJFC/+hXjKzwyU2s4WbfY4J1AKISOiCqzSzZTdr/OwCOMVL4Bjr85tZw0LUdfEYOMHTGWYWNSwhswkJbbjCsMrMGje7+J41m0hMIhTVZlZ38zLUOZTqg35WbWZ1cJehTh8dUhMZ19FzmkwVxBQvRV3ZzFa52eWrU7EjVZlIZMtXx6QiLXeOn6ky/wM04UdZr+BWlAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAKYAAAA0CAAAAAAlTRzjAAAAAnRSTlMA/bWfQ5kAAAUJSURBVHhe7ZlBaBtHFIb/Bh+WHMKSQzE6GR9C6YNifCghhxxyKIaFUHIShSmhh2ByMl0IxYdiPBBCDiEgKCKwIaciEIRcFkQPJTBgelnhUzFZEIYFUwprhGHMXga6s4MysiJttNaakOIPvDvztDvz73sjj34J6rPg/yTzUualzEuZlzJToUmUivQ51SERVRvAEKWmH6QXITPiRCzIZQY+EU+VkjxUVYi5R8R4fuRJIduPL6TonIyukKVFN1AVEUTF4xGTupt48UXI7FIhLPUS05Pnk6kSosiU3ZsY4gpq4CpOkfPbwwaA4U7TwVmGg0GGgsy0bGhiHAO+O+zgLKoGBHF99E1qzQqIyMCVCoh5nk5TwD3mkVA2dDabEY2y6JGsv+gxMV3yVGkYmYWV5o00ZlyFJJX09bwBS/PLKLEhKzMUIiA/VQafRP1Fd3Cc5SV3kZP1YXCB6+5qExigA+cmDgA8cHXYhmD58+2b13CPYVjBu/qLnhIpwUeZpdS0mG7EXCVBHHeZTk8iZazfbjZ0tuiCRqGAeP3ZdIHBk4eYxuo2Gstbu/gWOQ3nuL2zfjuzIcspgFs/YzPDNJagGexC03bw6F8AN7ZRjZXDrV9cFDiY5HHn6QZ6ALKXV+8/3f7x+zerJvThu3wZOFodPfo4JpvXt77s97d+dYDNu/3ju/dRkeu4eQuGBnCMcQYdbAADAAftZxncm9i3oQkGeijNEZanrs2IyDRCL1WV4WM3cRJ2bZqRpUqIhEz1gpMexTakDCFRolSan7qje+Op/5BiIml2klhVpyVsO6LAnHICo5txFhHzU0E+9ygcD5lLR/hCFUhi0zfLlMjux5WR4x2fmRFzTDwWsVJJlHdkJKL0bMhcapD2UaPpMiUVaRZMqkVJvEgtCG9NBJZgcIATYPjkuYMZZJuw4HEDs2jsPn/uYhH28BNm7OmsWDNdNZs4juL3f7I0nzxRC9ANPhj9CwXDo97Ovb0XrzCbISxwUcpwkXQeNTDJkp33ZPikXTbzbVjwZtW+8Ddq5hBYXsU477P56llzeGcDmiwDHMck0LRK2dtE/TS3p2fzGjobRiX6L/pY1+XPbgPrD26hnK/bqJ9lW6wiT2p8Ixjhm47wiKtPTIv0DnfFZvOpXbnuJv4A8PYePjXDNg5/B97LvJqX3LK28hrIOms4F3v71aTsGfaH0LwqTjZh0P2pGx4XXYqU4HH1ohubvoBPn7TpMYWzvBAXCbXyY3QemTxQC/j0SZsufb/k03tjoz3srF9DdV53mjgfzn30D/Tc97YyjHjp7gKYJRN38LjpYF6GGY72jlBi06v49HGb/sO2A2BW0ZUkEmq+tRkzojAg8mSZTa/g061NL/Xp0guVapE0MufAJ78rfYpLbXoFn+6T+LhM4RExGXHFdEPMZYBDLVCaz61jHiPkqkWBznGkZYoiU4mNWZk+9z3i5l79+sdlyjQnP6lUI+f8ciYlXm7TK/j0gPikzBpo6byEFE7KHJlA1m2RmT/xicXSxqzMxMgjOVXmEmqgh6+APr4ps+kVfbqLCZ++OIPDpoOss97o9UpsegWfrm16/TL3sQ4c4EavvwE08Q/GOQEyHLX1cQX6cf7Cmo3Zi06BYa+NnSKN77BW//ebjJJiUXJZbtPVfD7d2PT630JpMVkSf8ymz+3TI4oqyPyUNv3CZaqIpWohBJc1y7x4m25l1s9C6Uw+398s/wN6ntEGtQoB7AAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAQcAAAAuCAAAAAAAFIMxAAAAAnRSTlMA/bWfQ5kAAAaGSURBVHhe7Jk9aBtJG8f/hCuWFEGkOIwqsYUxeRqhKqQI5opDZJojxWEO9iVcZVKFLKRQEcwtuDSGhSACCuEqcYIjvLBBXHGYWwjGIGFSBOMBIRAIN2uWwB5qBDdf8upjnWwUDvPq9c9IM3pmnmdn/p6ZfVbCWHLN/4kO1zpc63Ctw7UO1zrwMAw7ph6FgoGuK2MnVHQSaWlEq6xDyyMiUxdV5nNZS7xATd0hcjyXqCVVcvkq7wvOiPQaCEUtMoo0TCMx8T4g6siC8RXWodVipDZGwhrkGBsluhKQLwuHlC4NZswpN7AqHNob6EHQrAKbkMQ7WxYUXdgQnOMWBN/3m5hnvCIklDTIV6s+cqhjlkNgWvWWCYjp/cIoWdX1MKxYazgCsP8YXWxA8l+sQ9ED+u/au8+e/lqAZANdzLIyOhxvYh1doI3qB1QtCEZdGE5ROjj4s1lZL0BREpZZvsGKcLKJItArvqjjFHchGQK3oejicRWo7W7vPITkJoa518MIV8Dyo2jegVXCx1cPiziAPd+oNkjhB+zEMGSuh3cvIVkvlsvQjPYq1SUW5z406xt3i8jLsAZFHdtQ7Ka+z7/LN4xeqQBs9N8e/oZ4cjxYF40o2XoZ4LwARSHzfhFxj8gPA58crg2ON16CKGwROWEYeDJ1y0sSBkQsDEUGFDKiMEyms6N8cQJf5gVEMgi5xkjEzX1DtKp2kzh4C6PDJA4xk3cNlAzCYTmIGvrSFH6Rl9HdI2dugrkETRzZK5RRElfO2gQLdSO1oigatGQ6qXCIX6KDZwbiKzF9c/HldUj0zL5eh4TR4LPuDhE5gzEXXV0SMD3fDjVUo8FpRCamuMgc30BziAokZbSfFHt1Uc7Tg1WEYTiCPWXNy8jSxeg8v5NVrb+u4TPs6y1vH1mo1dLtX64ePJKNGsuC4QRPLskn+cUzClEo91mijAZPSMsYI1fpGbgOMXWQpNYUIl8HTJcep5RAbDqPGLEw53oYt+TQlmTAOllmz18wIT0eFKEcKtOfEu6Rz3kgxjigQLY5um8gR8eS1DqrQxTxkJnjIY0jAzk8EmNjfJx4FMx6OYHCmY6WjkiTONPkUafjRIvG0Esu08EjP71qQpPBNNQQPE/M3b04XgJPP8JGU9YUMpi9OB2Hk3dxVkdEg1kvR0ELOnSmThrOO/zileRaEd6CXK2G8Mw+H0ZNlKE4BdbOMcvGic7Tj3XD2gMA77FVSK0zbP8E9N/u7dXvIYNYX6pQbf/xCFNs1SDZbWKOW0i5Lf4weVnIQbEWY47MzEbrMATuQHEAbAznHW3YRye7zVLfHKV4cdTd/hmpdYabBaBcRnO7nXXBvp4HChgiL/GkvI8p3thphw/ID/oA1uwsHY5RKUDS62LHWtC0iNHz9tM39qOuTnWtqo36zUeId401g80m9D885SPyMzpBqTDx0hVRvkc2H7bxhWzVsnQ4xCYUdVQeoIgFnrfNEwoQ/6f/xrbv3t8rl3eVNZubQOYK/9bktjGKyMQk+pvDpgiuvQr4DHfq+ELW0nt5qsOojbIq99qVfQtWqT+354eyg3mOPe/jzIYFnKXWDN4B68igWG2f2uqS93EpvZd1C9ixywDOABufoXAPS9J+Vv3FAnBDn5I4i4fHv//Y3K5L7avojyCI/xZ2aE6BV7Iv7BIqwAFKm9NWQzwEhnEc917XsaUGl8aJzxDHIzwpvYiBJp7amPY6jWOI9lN0ReWv7h5QQc/si3X8azxD+8DkUYwMbmswk1VxknCdbpPLGiHJuzZ3mOcQ47NWRUgXOIE2pXEmeRR3yFVfmKbtmigiDRch9c3WZPpLkgR+I/j07dUzExQ6RJrp/ibLUfaLn0ki+Z6YD3zROvFIvWas+t34d9IOqddUZZCMI8ZUJ0Z8vBwR8wOP2Cfdk85AlbgkAkvGV0vi6lQwpMayIdSS9PItJ1yWmPvjKyVy3ESVyw+EkxuprRotr8M4coMrlYGJVRCICbitpWN0iGSQpXUwROMrw3yt4vKvG4Uvj2+P2P/u790+C4LAJ/71kTrEckX5p107RoEQBqIA+gWLLRdPINtu531yBytLGy8QsEmzl7DwAnYL2QsIkgsY0gTSBARzgQG3CImvmW6KX8xMMSUi5AQ6/IXpa/4CQeERIRPKExdtbcWJTXzC5Huwfpe5/wWt5+mxsMxzsGwMW4M2J5M1//QX0KoBQcI5TFAKQdY5CBfqg74vbgcvc+lWGzWo6wAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAT4AAAAvCAAAAABfrvlmAAAAAnRSTlMA/bWfQ5kAAAdvSURBVHhe7ZtBiNtIFob/XeZgcggmhyX41PjQNHmwGB+WMIfQ7GEwU5eQUy4amjksTU4hgmHoQwhT0OxpaBCEZkHDksNgVrCEAQWzhyEgCCEg0+whDF3QGAR9GKhgAgW+FKxUKsuy5B63E4aEjT6IVHm/pZL/Lr/3qk1DvwcNn559jX2NfY19DY19Ioqi2I5llJKYYR6LI0OsdIovG/tqBJyI7JgTMU+kA8VDE/AdIoe7REFmrisa+2oIRmRXHCOSuY/+XCSWHhOiODsx0dhXJQiYMUcr5pOTh0hZMSQvOzlk/PSZ0hX+iE+cl90dnCFlOAB2kTJ9dLdlxTG6SHmDq0j5YjJEFf1po0j5ZoklTDr5Mgwo1Jb8cx0SkzqDkWpW3xLn/dZ1vAJwdA9j7CDlJ2xb8QyYvBgdfvPgSRsZOxhjmU/dvpNdbGMMjDB4jUELwGxh0Sm2nj//edjfbsOwlUaW+QyfNr/sogOcdR4f4xQ3zXoErhWp794AODjcf3QHGVdwfunVN8PHz/s/+/AGWlt4+8OdDp6jWxWxDaB9G4+msKxcfS/+gYztTq+HnNn3/QE25eQIOds7Nzv4gDz86yUf/myrDexMnr38F6Y29bUWIra6+aLDmzYM7ZWVVwpO5EWhR47IAw7XmyOjgMiJopATBR+2F77k9GFWdH2iSOuIXG0gEtoQUKoa3TZ8vPauUDSIzLbZiXHPXrAxRH4+M0X6AxLSpfxTTvayiHg6dK1ZmlNkRQqklElAFOeKQ+IC+zhxc/bINcdAv5d9iojrD4hilOi1OETkJFpQol1KYcammPxctDi+tDclR1eYV96X6COjh9H9ztkxeqhyhlYHOeczdGvB9cxa9jx7s/oqK6KLykQb0xoc//MA6zjK01n3VQsHB0Vq6w2e7xkxp9UqqjTuo4o2iGLfTBRpn0iZmMGso5gxRq5MR6HrECNHlIIliDx7P6EtggpMPy85MWKRruiMi5K4PBEni/Dzu4SUYi50jBjrspBnj0S/IwmLV8a5VwuhlPqsfaFm5n9KcPKECDP7EgozzTEvTYcBMVUEK/ZJKSJWpL7iPiIkR8js4ZjQilNY1n0hfGKyJJYn0klIgfCICyVDokhqKZgrlHCJCZ04LFK6LMzfh0U5ZS7hauxIXSfi6iL7OHkL+xRZS3zzCJxnb8U16SBJh1xndpIsgqJsn2WeL0r3EcQX5UsSJRWdKFKFKEoTmUiiwzwn5d4qim121zEJXRV0XE6+QsSi+Kf0ehJeNznwlb7APlUUSp8oTpbtC7jWglytBMseNI7NyrBBHafB6uqTMSeKVtlnrUlxyV/WBZEsieWJMlHN7YvNRyNiOkMyCs1HrSqIsn2yjL4U9ZcVhtZLxzlwA4bnwM45lrjZBbqvfjkcbk3wFugBj1+N979eBJe50gZ6PQz3Rx2sYGL3RG2UpxmOMRzst08WYnki4LTfgqXXH5/08PQeMtpHt7950KsIlmkxuIUST7sohNfYgAmA691Vu44T9NvIOBvjUQvLdDrA7OHowdPu3vgqMG21Bl0cX9nD9DAPYgW7Q/xnD0u8xcVs9zEdtR+gzAzziYDxX1Dwt/0fe+ej72C4tjX59+12XXhb2iG0/4vVvN7Hhtw9WGXfS+zCcIz+l+igxsOR3TVj+tXkabd789b3vd5hEaxzBTWuIuNPdgc0XZqmP8Dg12Hni4VYngiz4RMUfL412h89aOUW379z9dH941ZNuGrsW8ONY2zI9WoTZlNfbM6cTM1hxIqcZEhMTlLZURBFZhgugvW2WXtE0erS4doMT6Kiu8SNWJsoS7Ba29xnBtzWHcW57fgrgq28vxshuWpeOpRPFMokDhh5yr737Cw98uXcvtCEhdIs00Jiqhy0yDTGpZTCLzJ3cR8ZkSuVaVxk5pi/rKcyhWVxMZGSLpeJ9Mmzps1vnnCKTZXwpBVKTpLQvx9EFFr7GFncICk30cIExXwxucyPyHES4TDuEBPlYPEjL3DCSlssirZZOOQ65Jd1g1MRi4l8KhB2tcbFhZGoC3bzuTkq9PxQmaEMPF/oi+B2RhRlXS2pobbC4utkmR1VPhaVoGV1d5BHSpOIKJYV3UhV0U7kUygN3GSLrK1dXFg8phUs7F0Wn2ReyInlbbcT/MbOX8WJOeOC+zClPxp8bgeShI7I0zzUNZaFiHy9OWb9c9PNEslsGOs6678qah/jB3w89JHT3gJOMRmd7qJOWZj+fX8PG3M2/nkK7GJ0jmcYtLPhEdagVyPdUH8sLHJBorR0iUtdZ0lwA/0OxES+KTrS/uYjXlt/sMG25SPn/Z/dy2ogJzbvvwRRuJF9DbEpHYzcrD4QhZvkvobpw62jLrCH0RStZ1jHkn0NZ19de9IF8OVdHI4ev8Ra9IKGmLjS0nQrkccDsUnpaBCmYETOvNrHxC7d9zXMvjPd4gmA81u3psALfIvf5jPMaXg2fvMKeDPpA78i5eT47ueXtq/hJ0wmyNm5O/xxOtz/Gmv4g4alYTYrfbN7doo/d/5fK2/zdx2NfQ3/AwA1NBghBQ8CAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAXMAAAA1CAAAAACWp1SLAAAAAnRSTlMA/bWfQ5kAAAgiSURBVHhe7Vo/iBzXHf5iXBxucmoiERV7qDCKfo2QG3NFkF0tebhRdQTGhFRHyrwmXGXngUkVDANGzQTj6mBACIVJrnJMBg41I44UklHx2C1slMCgs+AFNQPZ92d25nZu827nzW2I2E/wbv7svG9+3/vN95td/VCtGxv8f2m+0XyDjeZ5ce6hYvYniVNpDiTlRvMBUbJ04YgS2ewwxZynaUSJ+RAvNpoPB0Fi8YiWuSSjtorILIlkcqP5UMiJorNHUlJGc272CiLjKwlTb7rmXV8NsNWi1ENxvrNkROrMERL2T273ySU6JVU4ZJ7Py0eZzyA99WOtmnd9ta+tKkGRHkhWXfC4WjiRUmY1d2FHLuEZDZDoqSCiuakRi6WnfqxX866v9rRVkQgqYhGdd2nGVBXRmfii+RLITCNy3sMpr8JRsHqJc0ZUeurHGjT3+WovW1VFlRNnStUXtiYotdzCRunQSvtCaDCneTyIuaQps0usWEKRp35cuualtlylh6W+2tdWJbVSOWvlK+dlWcYU270m5ja4kyYhMUD94AW3S5zECSWe+nG5mhcRUSGIRBUTxct8tbetMtZsJ5Q18lvwM+vjCIVbJ0ZxrXl4/VCkEjOfZGVEhad+XHaeM+JpSSxOS0bLfLWPrXZzVzbOkruz52heUJ1/TnutVXD9kFGVmTh4VhIpT/24ZM0lUVaVelDEl/lqL1uVUkWcikqmnedcNCpbqIa3oDoNuZOS0n71o11A0kTTVVXG9Yd89eOSNc9I6CHWwabLfHVFW3U5HvG0oLjgdrquyZRkNjiPMopUJWx+qYgrsyBs/szLVetHt4CIvFJEUjE5o0999eOCmis7ykK19/0QVLghIbnMV/tonpv6wImrBcUZEUVFpSKzkWtRY8G0CDa/SsFEwkk4RRRFveqHW1sHHROjIk40XbFa/cDybzFxrBKKGAkjHTd8fhCrB0bLfbVrq35IaR74xcVXpYae2MCKavyA1+LKPMtl87wUPetHJZstZhJZMKXjUf764de8jIReL6ZzI7PXSpZeSBiK9ZDoQVRpvtxXna0Oj5zyWpjz1BVxSP1wyGIjpmaydr5K/cD5kuv3eOEuiq0TZhfSKNW3kWjWjJLEhNf1VY+tBiKm5sW17K6IUGH1w8aitch1Qivu0thTP3yax0Ze4T4r3ZdZ5hHJEZR6UPqe7c10fdVjq6FgjX1KIRdzIgmrHy5IokhWkmTFaQb9PK1QP9CqkNoMtV1K+5QIXgdBzK6EqLxwzjr336rjqx5bDYakvH0/i2eD60ddOaxqZb29Qv2AFpcRGeN275qJrQoiqTWza5BSTzeQrPDY6pBQslo7VqsfbwM4mH50Zxt4gQ8BHB1sP8DOlj4MnPwbAP4FvBwB14BnIxi83kcLn47wXzH6/eefb+MsjvFr1PDMuSK2fFcG8frj9AYKWOtKaq9PqVQ0d6DIgIjy+iXIQRatf96i1PXVNGku8sw5NMJ4/XH6A/1RBeCL+1/dxunPdx4Bx394NP0Id75EC58d4s8j4ORj7B3A4hQtbMOP07MfmrbTyTPnsAjl9cfpDVR7C45wE3iMMYAX4+byhx+M2jd1Zb41Wx80MAtSn3iKi+E7PVw3F/rmbE8dDi/vsHyv/oqfXHvndkfz6WS8BXwNfebRp3Of+3jyx79v2yW5MwLwssmC7X/gfDzdxwqwj01nzrCpw3mH5+tq/gzvAydHuAUcvzvCVRj8cwL8oEWeAns2z/1P3q37K+UbWgifOpx3eL5Xk1meX19wGvPinVdlRFTNxnL+Pq7I/aQjKFKm0uoDAdjAfaOHEVVkrCDKsqiwp0iLnJLZy+wH3Q8v/bFBSUSx0zw3315TM2oU7stPxqI4jigu61XiAe0tZW5RlJ6+wYDukobOwzYM58qhxUTCaV7Jwo7KnROU1TxZMZ+BkQxob5GCEUViNorS9n0M3F3SpvOwDcS5emiSsqW/KzKmurlKSUB7i5mAyqpSrjxIJoftLmnT+dnCOXuEpjhf/vu5ZHF3HeKg9hZ3Y83/dyVMDdld0qbzs4Vz9gktFub4WzgPo68mRziLz371m4t/rzs5ea0Hu/vJ3hZa+DEsPpgcojce37gJCQCHY+AuHGo6P1s4Z5/QfnlgP760yHb2+/W3uLaPJhkKYiqwb7DbXeLg6Pxs4Zw9Qltff0tEcn5jWZ4nxMsqsG+w213i4Oj8bOGcAaG9hYExneDDe8Dkxr2tyRgAnqDB1988fIDtCQx28Bw9UdzFz/TERxg/xXgLLTzxsQ3EGRDa2xgYz7A3xmPsj/Et3gdw0tgccLANHO8f3t8FgHfwPXri27u4CkyvfhHjuWFxcHR+tnDOgNAGz/Mn+IUedoETvAfgChaw+1vsnyIMh7ewtYOXf7o3wje4gRaueNgG4/SFtk7ND3duu+EBRjgP14Afwn6snu5sAzfxl6M9nD7BTTgEsIVydsnWqPkUYz3c08a+hwfHGLnbaCDdI/k9rvX1rzGAWzj83RYW7dzR+dnCOT2hrU/zAreBv+nhGX765YtdYA/fweCVucXTo/v4xGTBc7yHXnh9qCN6F3u7eP0QO60TqOn8bOGc/UOrwuDvbykosX9q8LxHg4u3u8R1hho6P1s4Z0BowZr7+1t4ZM84qB4NLv7uEtcZauj8bOGcIaFhTW0fl93g4jpD/V0m6w9t/Zq7tkF/32B4Z6inS3HNoYVrHtz24ekbDEZMAV2K6w0N1VrQyQY5fGdoQJfiekND9Wag6Qz93+PN19yfXRvNN/gPdwYjXt1GXdoAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAcUAAABoCAAAAAClX7TcAAAAAnRSTlMA/bWfQ5kAAA4RSURBVHhe7Z1diB1HdsdPljwE5At+sGFnDENyHS+7HPDEYwQRMovBEE3BBhQUGPuhQXnJYGwEaVgFZxaFLVCWeIMC7XiFCI0G62GZJgaRuNBIYDCNBj0YlXYGQpYtfB+m2bFA+1DQFvjlQOZ036amNvdzdD/m3vQPpqu6uqb6P/W/1fferpo+QLNPzdy4WLtYU7tYU7tYU7soE5p1ahc1oqUa+g7MMp8B3IMamGkX8y2AmzDb1C7eWwLY3+ng7u52C/4/8Ycww9z84N813D7L2c1rUHJrGXZ+Bmcur1xpFmXXz8LOuwCwtlGPxamQt3a2X4Xu7MCrbwPc3YWCD//x8Gcdvjk0bf+XG9f1pdaFW7AEtwG+WDo8cgnmGTqJZFpFUiBiiNSdMCaLiBHnY0kKMSWRWoEh8QFJBmNEY3mb1t80Joc1KgkDRBQyVsb2thozohiRE1K6dFEZXfoqEK1Bg5goqebdxRPzvtj6On8IWwCw9sdv/V2jCf25B/cAfgsADy4ArALD6Q7AKQB4YZ93myv65g/O59Cd7ctr3z/1vWb96ebZOPj20WP7YB9g5ZXXX3+10YBB+Y81AHjpjftw8wI44DmApwDwOyh4W+/vX9mB7nzvw8e/3ipOvvDiYv2+ODTWpIlcr66eGQ2JEsRorC6XqsxYxLC91chpVBzp9z4sA0RkIbZ+XxwMo1Uk8ZAwSrShY6GFsMQgotCcSdpeKUTL5hoySCRR8xE1iKw0ZlVBqHRWu9gda1RcvOgDGafP9KqP8RDZTguTgnYJ2xhEQpjimEmFOzIIVquoGJYRC5wR/oBgEuRP8q+/+u/7ALD2/MsLjeYIWuRNo0hdjlNmJ19YLus0XN3hPmuZ324BLP3grcafLNbvi+6r37pUqaFZwpokCovrvjJ2Fq6omiiNoyQb7dVTua9+Gc0qRsdSIIpwiBehSdvYSbqYYRSGSRJgPKIPL1LiITJS2tDs44blukz6DksbIwZSBohCmkm6aLH0L8CEnhW2L5BKGUvzRqZVMSxl3GtYShRZ2acp0WRdDEc2d46Y0VxjVHtYKm07WY2YFOnkXaxOyAp8rDH+rr+nUzJpVWb6jT/LNeYCd58gNR1cdGOxV2eN3MV2i0ExKBWWrBMlGAihiTTvx2R4o7GN4YoykBjyr6dCBBjbdlVZVDiaJ4pxvWiMyEYCC2iWsSaNJGKQeaUhF7ix2LOzRukiYxQTYECFgsTGqCwlmLC1lsgGqC3JECWlmBIGFLMxiJJIs/cpRpyTRVVD1rBcL6/Qkg2LxgQm1saYWJp9MkM+EQ9RVd1KslFgNUaWOnXWqF3UkhGli4SGFKZkES2fMqbSS4tWWUpDYhdt4SJvSKC2gqtSiJqrZkSWNXr5iNtJuIJBLFxVNJdkAYZRxC4ySUQGY6KOnTXimanlZd7+eB9K/giYFiw9eQKP4YuLvPfkSbrWWAV4DoFpnAPmRQA4s/8I9pcaAIB37y9z1W9zaOPyf3Xqh61H/wXfADTP3b13pvEU5pR/1dfPQn4DSh6/DEyXzhrlzNTVrVtFe/8DpznJYRGYr2FfAk/bAHMeIKwMZ34O7s7W02/gBU6/C7b4O6DEyy9+99ILf3laF7/61mWYW3buLp3lPmxz5yownTtrlOtudrfgM07zfXiD0ydLULAAK5vMBjDbe7evfQw+ldpTz0EpEJ7n5KPNzY849fJXL7+/eaH9wvwcbu99CHPIQQt+BWfYsKpgv9mjs0boIvOjcvr83DLku/CbM1DQBJ2zybvANKC5fuNg9wA8nvBsO7zWBM17v4Y3oAutLVgF+Ipzu627a02YS/Z+CXfg++B4sN7o0VmjdHF55Rx3auunS1cAPgl2Hr5ZTpg31uEewMEGVAjYu89KctfCHYDd/XPLjQ/hU3bq3DLwcVelzFfpwQ2APP8shTdhPlnYuroPr5WGMfnNPwPI4Wm3zhoNVGClkHGI0hJRgkKSxUMCshJDiar6vkgUoqhm9zQdgijDCAP+PcVVJXX/vigxkIHGIMwEt4IMzR0SuRMMFmiJFaZDZ418ljhLVZpRgWZ/LFOUa0tu36bVXjXTTlppKrA6zVxV3vj58sZFxrXTrDo0f2jDW1tAUmjLxGg6dNZJmetHpJoB/jXPli6eyP+Zan0KsL0L3an50zJprIyzs55txUYr5W89q1Az5c6igYlppqlX+CsZBBjSANTY7kemu8L/6hYArFyBvtTkn9z54Cx05u/hJ4vTWwOnhDKZpb7U2AgDTd3I1lFN+orqpqOF5pwr61KzI9Z4s/xzjYkwSKkXCkM7URfddHQmTCAERv4UtcKSwJWS5ALNm/jo2gBys/xzjJE8DvuQBSKdpItuOlqHImYfpCs7sh7gaE2rUVqyAjN7dG2Am+Wfaw+lpgGIUdrJueimoxVyziJaV+bWAxyt2Z7TDpC8tQFuln9uPQxRGhqMTAg9MRc1Ck5ijFSZCzB1ZZxgVrroSslg5FxEY2LZVh4bkwRceR7Rkj0cnAilndAdODcd3Shzr0Duyqr1AH5NeBG+bOXbGkrOn7/2ElSz/P8Cp2Eu2bkYwO2NJgzOe7cevNOazDM23HT0AhTYo2VuPYBX2rgO5+VTPuCtDeBZ/l9ceHk+PXz3NHs4FMufifOb+SS+L1pETiRqW70vZkfKNClJ5RXVlXLivS9ShJnOyCAS51OaM7Q47ppSJQIzic+oChMigyFRwjmFsStjR2TKR1KvZuWirbYGVaRJI9pila2leSJ9lnXBVqIau4vedHSMYYixK/PWA3g1qZrq99YGuFn++bHRJm4cHg8l1rMxu+hPR9tUW1fmrwfwa1al3toAN8s/Tx5Glp6NLERVPx91mh4KRSNAYWin4mKNVUIkNBqyUKjJu1hjYyHUKIc1SjtpF2sPUSQ0Ukwg9GRdrD0M0nG0GtkJulhPAac0DrQQehIu1gtSM57GH+MLJLZTHYtI8w+ZkMfhGElFoGsXx+2h1DRerMSkdnG80/iGxk8q1rPaxXFO408EXiNXuzgG0mBCHro7crWLI0YLjAxNkmxdqNrF0U8fTpoEpZ1hF2sP3R252sVRYFWAkaUpEaO0tYuTnMaf2h252sX+04eWpkuEsa1dHME0/nTRIjC1i8efAk5OiBQpahePhUKh6MRQj8VjoizNAHPiYo3NBn3eTU0OJ5SPz/7tjw7AUY/F7qiITiYxWpLCnoSxmH8KHdicrp6RSWrt8ANJxyTt2koD3tzfyTenHl269c4p6MTFfJp6Ribp/LsHeRC0xiJtF14BWICHDaeMpkMmYm+3hIhkYKesx7+iHlNSEKRpKOxYpCmMiDIUTtm0Itr+w/5FcGz/W5m+vwp/sxptTFkPsxvw9gZAePFYkj669wX8+ZXGOKQ5nLJekWxcYf/oNsNFbFEoq6xO/d8IUFM/+p/7mHqM0WS0dWNxaEmmSDLLZDZ79tg2rquspSzNiDSPRYOhU+a5KCIRoPSfZlOFt/Gi2/BOiRewpUd4GyKqMl5YMiNCica/ESypBxpxgHMzZng9scQwRBSZc7G3JK9lv6ukKjQOHQjIKfOkmQBRxYjCllHBNCZOmeciO6gx9J5mU4W38Z9g48LbuIAtPcLbaGLKjBeDSWNElgU7EkTqQSmjbLrjuZ20Y+hJOaNQOhf7SXItu67iTcZ9iDRcICBfmS+NQgwTG3I7kbD845T5LvIBrueeZuPC23hPsHHhbVzAFuoa3oaLvYxuSzMoiDTnHapH0DjXSsZNdzy3kza8HorYB4MBMWk0iCTXst9VbAXScIGAfGW+NNuOvszZMJBonDL/++KtRqvVeh5SF92mDG/Taj2GL3jnSevTtcZqww9vUwZsgUfQakdsgftl3d0WtDlsNvcfwwILnF6H96G1sX4WfL6FvvCJOp/bSRteD9yBv3ClZ98bQJJr2e+qHKK3AbyecnIHV+ak7cHaKuR6jRv7+ZU395pOGXifUZcPJMDvwEW38cLbVNFt/PA2LmAL9ApvoyG8wPU8WncBrj54f7WDPz3JG5Bz2vHcTtrOsHrgYH+tAfAbOA0DS3It+13V2H5+9fKwgYB8ZT6/4pAnO/A6MM2mU+a7CPm91zYBPr7RKJ9m48LbQMX2Yuv80/c6dOohp+D3wts0IK8G2T8twtVrjQtVVa6ZF3/20tN3Noa+ecnaG93PXTG8Htgr4pl8DmJwSa5lv6v2/vMX4ABf7sDKnDS4A02Ah/BqJ2XfAcfeTy8BwJdwxkW38cLb9IluA90jtjQAXj8s50x1YfmmUCguNDt0UhP60//cw+uBr+AUwC7H3TmGJL+rfvbPPeQOrMxJa/FlIt9aWdze/j/KPBcX4K8BdnS46KLbeOFtvOg2kP9+dBvoFd4m//xo2J7FJXjMV5ulL3mAfwIO7sk16AM33fXcTtqweri1h3CwsXQJYCBJvhy/q65WNgwZCMgp86U94mtpC17ZfrjaQRn5K1pDTPyn2VThbfzoNi68jQvY0j28DSOStCiszhRxojGMQ0UeIabUFb/pTud20obXk6EMhFtk70vqL8fvKlnIUEMFAvKVOWnVR2GDKDspA6/Qam39p9lQFd7Gj27T3vWi2/QMb+MaKBHClvUN+VgMqSeu6Y7ndtKG16PYAa4/sCS/Zb+ryu2wgYB8Za6r2u2bjsqApvPPxAYVdSQS2ZjO3V9PhKavpOl3la9sJC6aBFFpGh4tNHVACTOmc/fXYwXavpKm31W+stG4GB+i6BhkUcf1e3Y85+5PFgSIMhlI0vS7ylfmIhTVlB80YRah2admvlysXaypXaypXaypXaz5X3SinuSIU0CqAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAdYAAAFhCAAAAADovtRLAAAAAnRSTlMA/bWfQ5kAABjDSURBVHhe7NixCQJBEEbhX7GAK0MYEDE0MrQCMfHiq8DQemzA3NhgOexDMLlwQBs4BGUdGN5XwYOfXdiVJwT5n4FZjbLvTFxaKBHc9ZbxTFA2VUL4OCuYFcwKZgWzYqYR/VzXoma9VJQKZZzW9rQrm9WtPT4V5IcyjD2tzS7u/jA7DB6jRhnfEfutpKZTOStGhTIu4Rd7ZxDaOJJG4ceyB+GDMTkMjU8mhzCsYAg+NE0OQ9jDIlqwhD4sZkFD2MMQ+tTE0Ax9GEILwjKHEDAEs+Ah5LCYNTTNggefhiYGk4uNmcMQYjABgxkG3BiDjC6CVVU5+suSLRF74k1r/KBLpapy9VNVy3Z9/lWN5zzdBE5sr4znho1GFzzT7dvdti1VUbVf1EDqjZqGKNKZDdiwpzrs38sZbEolZ7F8EzYtfmiqqtosqa5Mg6VVp6IahlpyHFaY11VVb7K8kOnI1UJVlpRE6lCJQU3n6L7OvA5DnZGxpuxMNkbO4vcm/EbBu+Pj438DGOcugNzhqQa8320cZYpFnNTACmsva9rtV0PwBpffAfCqge+O3D8HwHtAy+1mgYscLg/cg+Y2PCxS0whFOytyZ16He6HOPGPjXcmZZIyaxnPdupnNZv8EIKEkgTRSKUDBP/FMUTScgRVmtfQe8CN4g5R2BNurRk5LAMmXmeQGAOW6BSQVpFgZksATxW2qiabhinamKClggzpMhTrzjEGRnEnGQM7it25tfNjdAdAG8BlGQL+PIZC4vkUaNnDbT4+Ap0ACuHqBEZiegVeDVT/ZBtfLJ2MghdNsC1NiTROTnvYBbL1BiEKddUfD6Q5DnZEx3MNZTKa1e4DyZQoYA9hAEri6QQv8/OQEAGxWmABLf2UpU/pFw6vWIKRhCODd00QLI/CGl8oNpntqIUrRzsYp6jDU2dbmnTEkyBkZ8zmL1916Q8dDBQBe7OO4jHECOPg7AKQwAsbwiaqne7v6T1mM8PPr8slJ1tf0YsxOwxTtLCF12F7AGRkLOIvRtCaR/TYF2O+Q2QMpkQFuWfm3b5WkmwX4G54nqRqSWsW7U+XNoZ1qHEw3jcaA0c7kDhdwRsZ8zuL1lWlH+ywN4PvbzGkKTGNgCCB1iFoX9vcZPhq1Pn4AtEkDXzUvEQdth24fJSUK5abRinYmdRjlbIygMzIWdLa8ug0utPmh/f9bt1qmbhZ0Nd9z81Orw4KqGjpbO3bcjCgSDXg3VO3wStOZWrdymSxvUNM5uq8z6jDUmWfM54yMLeAsSpW827PbI7eaLzz4uhXzLQ6q1WpPDOTAlSVSx+lVqx3H4dNaGtR5E1414G1FNb3K92KqoKZzdC9n1GG0s0nzoDPKLuAsQnmBshlEocJVT2u0xOA9pL94OTPZtHJr6qOOPOy3gZ/bWIHi4wwYzcbR7UYffg3bte5vjiMidfXfLH49PccKFBtnQBJctdcADp/wdN89y2j/2jpUsN+C0MU2Gi4We519tY0FtA7/XpWzgqqW6LPV6qhq3rIMVW1a7Ktbx62vuMVNtTpwWwwcp87Suqr3HnP491p7GZycnZ+dgkvG0fZrZDf7RVwDyja+SGWBFOfSKWRxe/6YQ9TWSl8c5YbjzRyEJjiaI2hgC+lcdh9MCY9LZwAlg7K92GfrarRW6gVLu+CScfQYSANvwDS8Y5sTaLlxC1v5lO7WtW7O/wEgiQTQBwAbti0j7DGAj4DyCd2taxGOzgA3AOy/vf1KO8hC6HOOte1baMrj/2xdawTAJhw9odWtBvD9iwau20/5HQoo36Fm4xp4tV7gPHpnHZXL8OHokkDQdfesI5o0GbE2CrreWczZKt+E19q8BJOC3Ut+ECn2934ebW1i5/3NF2lehhSg7bZGbz9XEK313boO/x52ZU7Z7gZA5rBBDUj+AGIimzZslswOzMVCIpvkM9KmLRJy93t6WKOq6gXDtErid0vTcBP5A8EfS2uw0g6P3ZXDdJ26rpuq0fECdvWKyOUN3rHc5f3vCbLpSD5DbHo2RCW5M+8KO/G4W+dMq8cp2bxWB/V8RTWnQCbDlZbFRlJo4JbWGfKsMrDplvfyHGqKRO/wUnPAeuM5y3LrO5bc5QKDRzhV8hlmc2JjUOCVxF2tqj5wX6YPnFhPq8W+rvUmwQ11p1BtGnX+OFOew2p3lnS3zsmrujNRUwQcGI4Im+CsujLQ1TzvzOSlJTbiFZ7jN8hA7nKRwSObks9Qm5O/vCQqhTuWNt1m3HZsP1sDnPKXbvHZ9vnOFMikeGEIbWsoD1HOAaAw3dtpstnvl6E957lue+hjo4uIbEo+Q2wKc4CPu9ZsjFOYaN/VcUwfW5Y5Jc43Mu9zig9kUiztRHs1/LjdKgJSALGPbF7dtDJ/VgCK7ZW7XEBkk3xG2EzS/MrubjY9+BPjJ+aIUwL45nz/5CQIMg8umbzh2MniqHyoABRALJNNVvri/P3t6zORO8+xarnLBUQ2yWe4TVJyyt3PW5joolgsvorntBKnFAO2ibL9jmdb3ygUdptKKce0NPkaKP8FAChMVyabSdERinYSJOoyXNE2yWe4TZLkzr725n17Z2dnO57TSpxSGU8G4MO5IkBmMOyWblctDUAKIPaRzTHaQFaRYnupy4VENiH5DLcJVjP2cdcPzwA7/utWj1OWvODgim/dGoylrat1fqQwXY9s0oIxP+A5c/l1q2zTkXyG2izxYpF67gaqGvN1K2lQr3YodLbenB2U66led5o6z1GYLpNVrzYtL2CXwnOD6b0Hj2zKPsNtypWeu4Ga77GSjhmvaV1ePVXt5Ss0rZ8UeR2o1iSnd9Y7lPr00/Wf5TDdT0hKToGQpmBZdRtdhPDzIGGnrS4IU8v0Olhqr+4XnIpudCY5g+n3+QtOxzB1QzUGHiZnanpgWiLXRKcNYugeRG/6ni4KovUF3oRXoLhOK4v2NfmOURT0a3lgWibsJbVacc8KalVi6ISpZXI+E62vcFrX06oLPF4RjXrsliUwPUWuS6Y40+vE0AlTmzI5t2ah9dWFf6+VPkW3+wtw7VEwH5gmcv3k+d0eFsTQ5fDgEZHz61lofXWRh2spm8M9CFHQL4FpmVzT5hpdj6FLmPqjtCvGTLS+wsjDtWrjn366AFKgoF8ZTBO5JhFDlyH6Boicz0Trq5vWtWqv3/Ap2EH36bcfswiCaSLXnoihzwkPno3WH3Raazbatl07Pj5rA0C/0WjU2CJt2HDV7jfwOBW0Lau76GUksQt8gLaNGgX9SmBaJuwQZzJDlzG1RM5no/UHXLdaeRZVkNfNetXguzlUdQ5+q04n7x5NyzCtx/dNOGi7aTLbpiud2a+EXEa4s4JRMVXWeCrotxAk17S5hszQCaLL69aZaP0BFziWoVu+DX7ZSkuwuIpaZ6V5awXTurRtp8JHmE+H4YRcRpSz3h0M77DjgInAtESu6YwYOkH0OfCa0PqDMuE8HxnV9B7MtTgd5qWOyYtLamEF07q87erUtM66jAdwRgz9MTHhWg270xv8KkD6ADizgW55HwC+RLGL31jDWQzVi0KmEzqFHWHbp/DLePxbXSx1t+qq4d/g1z0OxL9zsyQaqWp+6buVApHnM1SCpfN+0A2x7b9bwy6DnC0vYuiP54e5Dh8JYc00zbzKQ4XFsA466sCbD2sZi4FAZGs2QyVYOi8QOcS2f1pDLiP2P8zdAGn/Br8AkAPwY/koBa4t4BrLK/UK+AD8ktXkjYxpiwWxs/CXwBjyJsPyJg0RtmVFX0b8/3ujxnFjW9O0bQCfTZZZOLqSoOUYS0sORJ7DUAmWjoKByFG2fYq8jPhPa/egfDDE3Qa/9tlf3+1mgJcKfmOx27Pb2gWSQYYK2Iyhvi1zWMqzpzVuSQQN7wKjUNs+hV5G/Kc1uMHvD8Xbo48vkdVASmBpUSDyHIaqyLA0KhA5aNunkMuI/bRuiTFNIvueNvgdAZmNXXwtD18Gy4oCkecyVBmWBgKRo2z7FHYZq9fqFzh5dshzAlNQeXxXXS1YTokWA/TA0vI4whB/H0NyPcfk0Z9V9gW16Z6z0gLLGY7IOuKrco+vTAqscZhtp8Tb8Q71sMuIf+ShGFN5g18mUy8Y+kBeBdWXsugPRJ7DUAmWRqxbg7ZFEW/SEUcz7DLiH1CaV+vyBr9CzWrdkuOzzWUsBgORZzNUgqXRgchB2/Rq6iVwGf9r73wiI1v3Nfy49mDpQZQMtqhRqUG0XrRSgy0yiNiDo3Ro0YNWk4pyBkfJKBLKkUGLbrYtgwghyqaP6MFWTlOiSVuj1jpENCklg7gSlkWztE1iKSrWJNzbddv9Bs3Zu9at4/5OnfcZpPXsjSfrT331ft/v36cnfL1UG/xeBbc2lqV+V0R2a6hjjT3CrzHxPeHcq+93+Eeka9WWN8YisltDHXfsDL/G5L0yOV5f/8Oy/9GY+n2uiOzWUMcbe4Rfw9LVqkKpDvBxCI28F9IqpFVIq/gO4CFGUbLfRyeU6gOO0LNVSKuQViGtQlqlVUhr0kwxhAtllTTYPwhS01qTsLMyjogTH8qRPA2LcfNpyFj5jnGygEEWsMzaaoUK7da24av1/HwbQ7hQZgm77xJYJEgMa4UpDOJCpb2TBEv0CQ6hrzfh7EDcOLlc6GCIUqP8J+hSyJEVnaK2+fgJ77ceedhhdRXCdmFXV2tm4m6f9KbsWYu1VtgtkhVdrffYuVj+O8YI16Z3c3q2Zid3WA4ajRRT9JbnWrmkJ62ZOekfHFa6v2KJcGV90+NCz9bM9BoraXETU6TPG3Wgh22tfbjFFC7UFFseERUM8bYb1Ov1xy0svzLVu0CF9Tp2cKGK62/68WmriCHeEEUAprW2UgA8LOFC1ZejhXWT4fBUKDWACqVC7QghrUJapVVIq5BWIa1C25aVTKtMWmUSerYKaRXSKqRVSKu0ZtisaQAXSvtbDWzWNBDKQDoTyxG1oy+jNfyNuzHhWwzlkplL55YjTG7WtBNK+1vdZk07uFDW97davgnv1T59uaMs2bjVfRvqU23vpf/aQLJv01kfwXDlL13Z0PptqNp/K635AzvJXDrjWj8tjTPieEN98l/eDZZqdpK5dGN+mfvO6GbN8Yeyvb/V9vetZ/6Lwd31ma2r1YW6qvl+7dpAsm/TWb4JXw2Hvx3XTGl1oY7P7q42/D1DWl06u59b3WZNO7hQtve3Wt4x97Z78xFuojJ2cKHc/laL6WxqdZs1reFCaX+rhc2a4w+l/a3q96l5KNSOENIqpFVIq7QKaRXSqj4pEHf2D8KJ0qo+KXQqpzMXyydaZcrW2DS6ynT05Yu5Db82QatM6pOSNKnCHFXdhDM3NtMw7BH2UuzwjqpH8uS8orP6R6LU+Pi/E0nacbvya0Bht4gVTmG/RWG1omfr6Jx9bWwe+/7x3ZH/wk4y3/f3Bp+W/CM9W0cmefb1Au2xNc8sl3aSQeHPXn6VZqpn64iEK9OvigAEPMIUHsx5MAtdac06kSSOqh5c8oMlrXmG9KU160SSc+4D76hghiq3OKQ1S2Mz5B70gmoRMyzyEfgMD6U160SSgC7xs8IqdpivdEM4ZD2vz60ZG5txVL18HFU2cxjiOcuNKFivI60ZG5vnlDd73+cxhbfduCxl/0tDhdI9/0qF0okjDcgzYagd0WlE7HSYLDSW99GPgCetE4bnqcskpFVIq5BWoYEpSqZty7+HVpmEnq1CWoW0CmmVViGtSWf/oMcYMBRKA1N6K5+L8UozYQxYCaWBKdfD3S17w59jwTcQSgNTLmj3oESbMWAllAamPCgXvoc+BQzhQqGBKdm5rvnHhm51LpQGpmTm6vWeXzuz9ARzoSwOTHHbb20v9fcTur0US7hQcbdPelP2LG6/NX8TXjLyJvxtqGvf3zgeDEwkc1wtuWEfpm7CLuDG4O7ute9/MqTVhdLAlGy88P2zrwc02NHqQmlgSjYuadyHPhSwgwtleWCK5cXDx1Q80jbVPHZwodzAFHvbby23+p/0l6u5IFqvYgcXyuzAFPsVtevjo7NrayuvLtT12dXA1jv64Pp/GIz/lUn9PjUPhdoRQlqFtApplVYhrUJa1SfVwJTx90lTzKCBKRb7pBqYoj6pBqb88/ukaTwcmJJoYMq/PLkDIGnzV9zAlFb+X35git6Ew87+Aq/mgfoiwfL5dnSAGQLafAxoBtKarU+qgSmTRbG++aGws6OBKZNE+LiZkqvTjjUwZYJoR8F/wgxEGpgyQbg+qQamTBCuTzpJA1N0ON5L/8Xekv9y8KVA/6K25G/Y2qwx2PD3NobNfjUPs/VJj/yju7NP5pqHV0fHw3jSqoEpKpRqYMqkooEpGpgirRqYopuwkFYhrUKF0rBzsB9jgzT5KXXnlIbSmv2AUm9mpzWNBZLw7Ur7BoD4aXvmdrlDZlQovfY3bKwy+V8YrhsOlr78u5f9hBwVSrlgDhOcn28zhLdRJQfz/MzoqFAKaa/He0oYYYohvOEBMEUUMjIqlHLy81zu5LRQxBZplxlgGnqjR1OhNGisbq5G0RzGuGFILkujSYXSsFmtQIFFjOHKpDGjokJpizoQ8QBjeHyFPCOiQmkclPOQBuUcxpiGWyCBKUZEhdLfmAW6LBJjC6/CZ+AWSoyMCqVA+gulcBdj/EgERJSLjIgKpfc5TdO/dfm8tokR+nALUKkEMRzyjJFRofTY9/3Xe/7SlZFkNX/Iy2GtdGlvwz9T8zDbAaXXd4OzgZVkA3c46bBWOkIwadUJpUJfowtpFdIqpFVIq7QKaRUW9+A8xCJKpjXhP4hWmYSerUJahbQKaRXSKq1CWjshFrAfym1YDlLzWk+2PmMIF8omydOwGDefhsYP8El+xhAulFXWVitUaLe2bV+tP0UYwoUySth9l8AiQWJaaweDuFBp7yTBEn2CQ+gDlrWGBw3M4ULFjZPLhQ6GKDXKf4IuhZzhZ2u6tjuNNVwoNh8/4f3WIw87rK5C2C7sYljrTr0YYw0XKu4ukt6UPWwRrxV2i4a1BskT7mEMF4p77Fws/x1jhGvTuznDz9akWQiCd9ALYgzwbajcYTloNFJM0Vuea+WSnt2r9baadEngYzKLAb4NdXLvIGwFv65iiHBlvQ4XvxzYLr1c+/6xqWqJC3Xm+4O7a3/PUrJBbRhnb8xjeb/j34cptjwiKhjibffmI9xEZduLhw+BBq9K2MGFWn/Tj09bRQzxhijCYVXrBwByGMKFqi9HC+selmilDPFUKP0no0KpUDtCSKuQViGt0iqkVUir+qSOuLN/EE6UVvVJoVM5nblYPpHWkYl/xizB1vr2E/hFWkdmN8IqSZMqzFGV1sx90jQMe4S9FDu8o+qRPDmvSOvIfdI1htBuL//aXF55GmKGU9h/uPA4QFpH7pPylfoiwfL5dtTGDAFtPgY0A2kduU96j6/02JpnlkuskEDhz15+lWYqraP2Sd1/eIQpPJjzYBa60pq15BpHVQ8u+cGS1jxD+tI6Yp+0ewofuymccx94RwUzVLnVKWr/x5Lrnn/0pVb6wlDp5divDX/6n1R6yUpAl/hZYRU7zFe6IRyynseh+a2j9EnjqHr5OKps5jDEc5YbUbBeR1oz9knPKW/2vs9jCm+7cVnK8JcmrTmGEDJLCXMUi/q+NTukAXkmDGntNCJ2OkwCugk7Hv0IeNI6YXieukz/7whpFWoehp2D/RgbpMlPqTvQMiQzah56MzutaSyQhG9X2jcAxE/bM7fLHb0yZW4e5u9R8bDAAsA9gLQRvcrB1sw8GVHz8II5THB+vs0Q3kaVHMyTpfiq5iGkvR7vKWGEKYbwhgfAFFHIyKh5yMnTtyf7p4Uitki7zADT0NOzdfTmYdDcrtCMqhjjhiG5LNUXNQ/DZrUCBRYxhmsdxoyKmoct6kDEA4zhudd03YT/EEmzEXALvf5DgnIe0qCcwxjTcAskMMWIqHn4G7NAl0VibOFV+AzcQkla/xD5zS/AXzaLAKS/UAp3McaPREBEuSito3Kf0zT9W5fPa5sYoQ+3AJVKEMMhzxgZNQ9bjR/YarT2d3OYoN4FKqzX4TmNShS8KjIyah7Of4gKuXT+vmfrGEsP8LbDy9JzT61+JVOrX1+jC2kV0iqkVUirkFZpnchGadysh1ghaabgMkpr5kbpZq773IjTsLMSpOAyqlCadTb6yU21/QMmWPgmo67WjLPR015U/LBqq1DqMupqzdYoTQgKCWaYwmXUK1Pm2ei9tZWItZ9sZpTWrLPRSwd/ZfVg22ZGaR21UXrLV7hk1mpGac0+sL1TKFrNKK2ZB7Yn0ZztjHoTzjKw/YKy7YzS+kcbpUAS8Jd5gPc8NJ1RN+FMnBbyANYKpQ5drRkGtodRA4ehQqnLKK0jN0rpUbI3F93LNlReWnO4Xd9GDwDLLlTP1l63mmPSkNb7H9Z15qGOPdTVKqRVSKuQViGtk/4m/BCTKFl27izjK1k2uJtAxH8BNjvIZgm8a8MAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAVsAAABgCAAAAACWbo7rAAAAAnRSTlMA/bWfQ5kAAAylSURBVHhe7NChDQAgDADBF/Xo7r9aR6htgkUhSHB/Ixzzi85beeutgiddLJIbBZt9MwptIznj+L+lb96bC+eXrGxK/aB0DSUgxxBQF6KaM/UJ6kA4ih1iSgKivoa2erJDe70HBdzaT6bBcUDQ65HiCGMMl4JwudCqoAoETsQdBTnWg8oRa/Oiwk02j4V6kYaPmbG0u8mD9LD/DNbMavVZ+/OX/+7MtxtSTvMximKQMKd/+I6BMxXpW/8LB/YvZdjjOA9YLY6XeFFvJ6588NYJHLF1dzdhT8bBOLpiHI2Tatv+lYW3UMTWPdjC7BSNCW/rn7WFm2+cuxFbt7wukWXca0Kth+3MzTfz3Yitu1K259Fb7OkTviOnbqRvI4icn9Q/mWcAA9B98UQ9Hl9i1ysIrShvK8sTSwbOFlnDo9qDJMIpytu95cRHKlpKXy46i/byPYRSxLaSSy9CdwGvUd/TjXT+TwihiK2zbKdA4sRX7fFUZnMPgRWxda5PzANgopENEGnRQzydqyCoIrZ3sUQWwCFYcuikAaTs5SMEU8S2Ur5tgASm2yz1GDCT+DOCKWK7njYYSOCS1erUjSvFYIkbsd1rThNOJnHlsgsLv4jZv0cARWzdrQUDgiG4xFVyYUYbZmoV+Ctiu4spYijbLcPZVgEjvY7hlqt2wgd4+7qDu7lAk1qFIe85+Z0uHlkYTjlotgy0jgFgLA6w92CFC/DNfzm6AS7EXIO99675ZusJBysbOjvqME4NtBe2r97CsMn9qnVYbQOYOAeMjAMvXgOoAUCapSZMf6rNpydqgJGTJrwAY5coQFC2d5xFxmWuUDbQZvpZqv5juLi+qByWkTDZeTADslrsGM9rGJ2V+GoBvjisYWKSnUcMagC89AJMXLUuGmHYXlyY0sH6y83tWkOUsE/zp1jGTEPLBFLr5Ske+wbhVQOMXvYspHeExqtqE5lLhNePbWX5E9pXidx36/b7vxwWsuWVUy7ThlYu0dWol5H+2NAqWTl4ATofJA/UObjHHt6bRjC2a8+FJVCcAKwZH7gpUImvnb5g9UoEjVfjSTPzoSkHAP1lSJI5Urd1ijf7gRmE7R2kAM1uKSg1xYcb+a8wBNo7JTtt+GYsqUOXUm/Pq776pBWFFwGyt4KwZVNgPLTdMt7aHAa29/L2jKHnRv/jYKWCfb+btH8s2PMqQH9nfFZI/8F/7lCUZg3aYoIumvw6GLju5BduGABTL8v7HwefytavHnXKr4XMPJg+zZcWWMWIOlOZ6s8cX7Y4r8y89JFO1VMMg9daMTPFz57j0CweXMdrLfFVx0Nbz16iHWiaL32KQd2FIX7762U/tsSM0bDTNHFl128wYB0UMnE1o5icupy+OjWAx1b5XReflpdiXKu0MCm5lBiia6zyNR+2RwC4tmLrNaIsr4PRb6lgsHJW0nGiQofBQJJ4SEd2u1yu5DMxCaXsCsqL+s61gtP/XOb8OBtDmLMsufvKoCcPB+urveeQ/odSwtjhov/ujPfY5E37++atKVfIdGvqbbh4F4NVaVL5j0tiSo7pucwwVqyboq+f+oiKHoN3Axz6+e2xbDZkBqok8gytgfttcVwHx3o4pWS4nQ0jKI+JNxlIXHnVEo91R+NlH7YJ2lsJpIqpv9jCYGV7TMhBNbsl1rrhAniNiVf0MYCBKSdEsYFJ2UUMEj5sTUFKBKJITG5c3j54zVTBgS4VTmda9Lv+ovGJfbkTgHewcuLOKZMoLkREgbt+xYcte04fUi66udTEbmJ4PIoB6wftkvjmipFROis1PwYmwLnVmVSzAUAE0M8qJPIS+jO6TcuHbarmUk76ZSY5DlC/hgHL2ig2xDcXJspUg2NSmnBKn4eYS6b3Xdqx809nQdHl2H+1kz5sL8LhmiHofqvNJ93mLAatOXvfpROBlK7kZMJIlUlGqblj4GP2EBRAoBc7UwDhx+AUoVT7HXzYGnadaCr+xKhp5+LDUQsD1wa2XGk+Skg7jSzD+0HvYbv4wASM9eY2BQCZNzgogEhYIsvhegH82GK+rJ9PqUeNCHMGoL6EwcvYmcw1cHa9nxxSvy/TXee7SQCw/nZuiwIQQo8wBRAvZOWNLXgB/NjaaEBCpxqugpqRkQ9e5v1MfruhLVVJecvUo3NLuckdqxvgs1kKAELIRbYTYILcepS//LkVoF6GtepHcl03iJ59MSylSPfT/MT7phF40t44KSZ+ntQD9F/7peCuc1hL/zpQ3QFwk141sh9evXqE9dU5YHjoIvH9C4ZShpFJU73MvpH0CaAypp7rPGmCngXzZYt7+6saUb0mJ8ZULBsiVUoFr84bl0goco+9Ou+8bfQKkDAvxHQGSqF4IZUM9SzJj2ZFGT1g0cjNbcxhyHT077+Xe9xe4PLXr17U26PX4gRWV+Xo8+Zp+uLMAOL+BAIbkO3BCtXR++Cld7fPfYZhEuE5LqJzW8wIYwCeA/i6DSBhzge5r+bLU9MQqywmA7gjbsyxx1MUIARb/KJ+2+jl5Ixr75SKuxaGVg6+BFDqDKYN4Huh7wf7D+AedgYpAN8Lfz8Yybn+3UWVKMEkvKLIGfwZs+h5B3O79pgDDKBJtVjAg3qV1ypkI7TB8xbYy2VjZ/ureqngbk3eR2BFeQt8uLDZAImBSYuaNIVsbU1uIIyivAXWCumUfk1HI+G1dsisjfIW+M1GcVtZZterJI8L2fBoI7aY2+Xr8rKHWuJwH5Uf3EJ4RWxh7VzLP3JBNSHlLqlnOewmEUqR35Kcu+V0SloQohsj9/E26zMRW6Dy2zatWUjLHNmfGgiliK1O9+l+e3Ry/J2RWPcxCl5tI9NzmSNiG07Ov7rPEjUBwJ5OWuihSP9v7/xB4ziiMD6YdDk7wZ2Ci7hxDl5QUAgEXFxnIsK4cxMYMKRZl2qWFFY3IBlXS9qB1NrgzowRxEVgQsAQYhJ4cEmKuBiSKoZnOeWD7LuZO61vdTEWiZYz+8HNn/dOK803v9vZY3VzfBrFGLzHyOuvYR/RwdtBg7eDt4O3gwZvB28Hbx3/Dxq89dYYKPl1l+thn/y9g6bY2lWvsQ5//EU9/vTs98k/fHT33fX76oH+6OG5CANxS4hxVoXAGJBFE2REklakSJTLtkjyayyvPUb6r8+30VQO6kU8aG3AEXsAsMZCScxRo9EaKmIECTspPUIWMjswWgdu5HPQBCkd966IAkaHnlQv8NGhTU+jpuoch17V26JmNsBZASpmBMvMIGWAkhkLXYt/EjUQmSOApAKBYQfIHoipBBKAI9TkwDOTAeTe5SwUJYCOHXqO8VlFT1iiZ4Iv0JOe61Z7G8ExaZN7pMU6LuVoIAVrCHI0iUop3opr4m3JDIYZkCsBv85WzrwOeRr6V4DZCGyXnowPQiH0uJX01JkeTvTwnJ4OPl1voQhMuYegpXLy+wGkacGxT1EDQQpi6yWHLnlbIkeHWEtaBLTwFjES96s07wgLeiZAmZ45PhNADxIlKWWEL9JDK+hZic85lbTx9dZ3t24qdXNzc3NPPVVvpz0mjtRCf6sLKfpeun1+dO/8ttTjfOv8zlhtvPPFvvqou6/e/v4nV/veLfuh2m5341+XR011RX2jRJeaxzXZmUCioy2V94T58jMpL17JmyEqdWPn/em9++pp5xPhNP3z+arrhICMJVRcu9p5Dml+68Qtzbit57Negp/BWyamRRkHK5k8lahTMwMgP9+nIlhm9lCxAQA7H6GX8OKlWeWoTSOMdbU8Qvba1FUaYQQ+5tYYAEcnvneY3lLfj3cfNBOjRFfV4+cj+Rz6NenFsVKPGojHKfpAfSDR2/fVkqYHwsZvAm0cP/n4OHE0Gn148KvqUz8pge/bZkDXrz9rxnJx/uo6n+qRlG/m6LNU/f7Dbvfy9+62OsyoXm4l7myoverCjZO4RcEqAHKWlz5COZvUSlLSrCXqwaWTKC9zi4J4BAhUQbCBuT7mtuyZ2wp8WrqyKLPaOt9qwBzNq7WO3RFKV7glZG9b3JK07clrmSuc1YEX8lBasJQW0aICQ2lxKwuxtn2FIlFIf52FwhqEoqxgYpkkbBBm0jX3Kg2W40RHXqKn4IyPtE9HT17Luvio9rV1WxFDZBEAo8d5NLTfl1FTzXsswoDyHGY5WE4TpXTfp9tiAiVxm57CJtLa+Dgoyn+lxwg9JtETJWx4FT6KXyYAXn958Lx8z5+Eng4+FDByBiNT06UHqUVPqkjyr+Yt1gAeed1VAZ49PufUy7Sz88cTte56qC6tzE0PlTqc9vN/Neuv2gDYelUWnVzTD/fLTql+VlPFg87C20GDt4O3g/4BHBSsL1VnhOUAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAcAAAACICAAAAABVMmQaAAAAAnRSTlMA/bWfQ5kAAA7lSURBVHhe7ZxNiBzJlcffDsucVF6WnYPdDb32wUzDGwSWfWhtXeYg2oqrd7A0h2QbajWwMBhSOxjGCzabMDuD0ArSFhjkSfDcnEK6TYIsdBgCmtVhtw+CgBrGsKIDtedgMeGpOQkCtl5EVb+OzOp1d2dVZzUTP0RVZHy8+Ef8K7MjqkSAPdNEFmhgJBoYiQZGAyPRwEg0MBINjAYapY09q0QDqwTHZNrOJFJhaTWmy2qgyRCl0fRqZxHJMLcS0SypgRliRe8CUdkZRBQWSmFuT5mX4EhslwB9SrwB8AHMILL+4Nzjx3ffhtPGHokEsW8JidOHqFbS2CZaKnssuNnSwaJotJaxUh1FNrc7HG2Mksos+BFqEDG1hELEnPpNMclEZSskCiQy/6cSx9mWChyptGElf5H5WARFSxAx0dYzs7WiKpjYAqeoZqQJEomqoNKwubsQdj9oUOjDZQ1RPNrcl5lEYGl5tHWNHm4XjsfqPEHPuCTLhEAUMgwxbwOlmwpC+fBakKEpKkMZ0r1WmrJzqlJa6wtIj7RBJX/h5oVKc2WtofnIUbCDjdaV0cJ1YSSWqkBMlGlGmuKs0ybFUofNjUJBMW0mKERYqHLEVOusIUr3MbOGRus6tkVWoLD10bLGCdwuGI8VJE6SW4aEKPeA00GIhRs4QFS2RCysRUTjXhU5itq9KusLfB2uxAW8NHJvhiLzCiBsnVA7N2JXoimd2WYkpkAURtNs1ZtjSW2Ne6sXVi6vaIhK90frOxaqwCwcbdiJh9sF45E4iYxUZ1B6uSoIMe9FzN9ByN5jgFX4FsB3gRhNsx8C9ABeA3gEk4JPATamaaZ2UbpmAHeAqbWG0fswpVeP1GRrE3b/9WfX+wCN5q+tQTna3hyL/6JROFsUDYtH+wUMd1e37v5bfbTNONwuGM93gkr/9EOA0SewscohjsXRDPxGcPUD+F8g+ncf+Bn62dYWEJTdAzgH8N/guLVVXri7DkGl6cXtPZjwBADee+/DwI16a7h/8QI49tbYQI5U5xdr8HjnH4EImvuF9PbvLgHA384o/GKGqHC0w/c+uAKwXhstx2G4XTCelRsAHw2fgqff2956c+f6f/Y4xAIMXFkD+AyI5wDwvekdub4CjqvXrsFMLl27sPPB3oxKV6/u3Lk8BOb7379048aN3qGtn977yXRaLgLDkWr0xjbBL4Hg5p5NgNs7fYBmYR/g4e3b92qiaqN95fWr5ZvcYSMOw+3C8VzevnDnw/27dvSda2/ArY9GHGIBBsLbADuuiz8CrPX5jvQD6ff7+4pHAF/RTTopuAY7b0FQyV9cvg7wIQ90nDGGKzRa3353au5nrwLDkWps3/r1GpTOC27uWbkAu1foslHYu/vW5tNzF2uieuFov9u/fGX3g/poOQ7D7Wrj+fed6zf/GRx7/T70t67AnfscYhEGXr7gHyrwMcBNgJUNfzl8J/g7tL7h0s8ALoEvoFHu7s36G3gO4E/TZmuuDQzfBKbW+uK+ufdeg8MiMXvv3+iPdWbbAGFz4irA60A0Ctffvnlza7UmKhwt8SrsjG4Pg9FyHIbbBePZ3nsIGz7DlX8JsEphOMQCNvLWCLegLhHLyWI0MVYLaTUiKvcqjV9TG7dy8wU6Q0xsUMlfqASx1CliYVy01FgplPXUW7uVvxGudSX8qji1thlpihKJsSZBFLLWXKM0BtGYgvqsFTp01hDFo60oRdcFBqNtxglm6eB4VFogGr8WJT0Dv4StghAL+DXCUOeCZsShBOIAy/pGXg1w4JfNFU7ITHMjTyQVb78lEtJ6ZrZWA6yhONKsjbzNfFBuTjWR1GW55RBcaAnTFMWjLSZlKUVpjpbjENwuHE9GlmfTjbwUaUHhaiGOzF9ZOCqjZ0/h2+swZfgUzq8ED8aez+6dp8SIM8NKo3p+z8emZp5Ga243urz27nlKPLtf3l1tRuLmvkH45l97MOrBrEIgmqJ4tFz2oNeH5mg5TjhL4XhgG/phL0BBwhBHx54pDG9yXSryEpwt1tZ5N0BE7BIRif+pKRoYiQZGooGRaGA0MGKigS0xsiptd4ikUCYaeCKMqooMEZPs5DOo206+yhPEtFTRwGOhVZkJRMwK2W7qBpltjalygSKrdDTwaLddniJikldzeHSVYk6zrqsMMSmkiQYejpZlKhBFVso5TbtCaeeHKuhpWqhoYAOjynyANDt0280NI7J5C5WFQOSnaTTQKDlZqFRy7rOSCztf+Gkqcmm+5gbyQiWXyi6CCtXCtBcp4tJsMKCLJ2aKiCkvVBaAFqVdJNL9SazU18tAemK6hUohtV0saWoXC28wzNfBQKPKLJksVOyC4R3E4tFl5xsMOIVvVFK/UFHanhIKK3tqqGLQ5QYDFrm187ddVsrTHZ0RuT1VjMw722DAYhcqZRdrtVx00KmW3WwwYO7jKDL+RqUTKuyqZ8UbjDNooJGVX6jk3a6uNRa2G3iDkZXqLBlolMwzXqh0i0lT2zGaNxhLb6CW4U8/3VPwDqJbE93TVC6vgUZVC/hGpfvfIOb+C0apltLABX2jsvjfILrYYOSVXjoDtbLLSJbYVnT7C0b8X2kSlV1KVJkipn9hgxENNP1qicVNNhg6Gng4lV1utMwRE3OWDYzowkYDI90bGIkGRqKB0cBINDASDYwGaqPNGG20JdRf+s7HUI05YpTljo/Wl1KcPkWxTRnH7Y9m2b0Y04g1M4JRnHmIgQrHZMX+8V0iwcJMsouMXtXBtC0wEWISNhfosCfBR7WKXsKOiYS64L4q9CTjdEm5sqmwoZUDtNPKevuTY/ZQkgwfm/ueLZiTwVw7iV4tx6KUSFBaGUzOIcMA60lQkyzKk5iTooyqJv7A7tQE6QqtNSkaqiGwNKbA0tiT4KPaLMWs0bFRAnXQl8bSFFi5IZak2RxUJVEaHNiCMjiXA7TSynpTZ5zAxDgZ1FfQ9yzBnAzmmiRmhnRpw7FsSYalqIPJOWwYbKCxZoDoyqkkRTXty2Bmg3TuPzDKfyTdJFX2hAxIKJrKWNvoOEPFfRFufiSpoKqSiliVTK3FxFXiXBbbSiszkJhamxTUE8vgvmcK5mQw1ySpcBkHY/kUogwmZ/YwwjswqxCpXFBGgbnLVkpJbyCndaFUmXg1KX0cypNPCkUtXHxZ71hiargvAg1NgtOoxtmYHFSlCj+JqQp0cwDW2oJEZag1KkxYxoD7Vk3BjSTPtVWTwQax3BGiVR5MTnMYNQMHaMrcUlBJQsjhzEVIkkFCySBdiaTMUfLRnm0M9H8BZnSMQrq+BtO+jJ8E1+dYyiDJQoV+EgOtHKCVVmagFBZlajAJZHDfTcFhkufa5SbKOC85VoVJc3Kaw2jcgTI1Bw0sMZ/c7VZjZoN0Ro29Gv/Iq9oYaCafQ4WDsGOTogr6UsInpxpDVQQOarkslrW2NNAKkVQaBywj6LsmuJnkuR4jE0xLgRyLU8HkHDoMPm7y/V/0gOj7480/hUswwedzeljCZYA/ACW39x5eWYeWrL91Z2+4twqPw457G3Cf+xoN4elF8Jz3GofDhsIXoVYWS7WHbbRyB1u7O/0eJSYytofcN8wUPNpm7TzXRP+3T26+8QoAx5oa8Nt7Byfn0GGwgfvnpd+A35OOTV9pRP8ITrvU3h138clDeB1aQVEuwZNHX/bqHe99DK9yXx/9ePt/xl197qx5i6ruvfM8UMXvnMti4fn9x6S1JX96Dj+Ezd4IWMb7tb6bgj/6F59szDU34Vjwc7g/Tt37h4OTc+gwZu0DK0wzzP6ffWCGg2ygMEmNESiMbb0PtCmFCTomRGntpK9BmqPIrJnuAzOqWtn6jm+MDHVzAN1KK+tNbFb5nvZlWO57puCSk+Fc8xyEsdJMyGByDh0GWIcZYw3hrpTUtewwraSa/sc0qulzT8SkpZG1jjmi74tsUVyfcpSpKeRWnMsBWmplvayPZXDOTMGcDMV5GrGs8SmenMOHAbZBJH6ZHYkGRqKB0cBINDASDcylPTqJigYuF3pwnEOXzACLaOAyUWFq7HEoMdXRwGVBD7A6dpu+qKKBy0F1srspx9xEA7vHZFid0HiRqGhgZ7AL2p4QnWIZDez69itsC0ocmGhgd8jWD0ElhIwGdkWGxTzu4dxEA7tA9YWyc0BioqOBp47JMe9qG9meaKASfWXnRoGpiQaeJgXmXX0e2hMNVImobMBZWstEAwvMTEdfyLUnGqjTvlxM4ASraODCKRe33jB8ay+IaKBOF3qXSCFUNJA5e3+nTIpFNLDDH47aU+FARwO7/+Go+z1KSDTQpC1OHej8p/pooDrNX8+rea9looFVu7VF9z/Vxzvw9L/tiQaeaaSKBp6USDQwEg2MBkaigZFoYCQaGA00StmAoxzYrJS0SqpTORq5A3VLbWB4iNX0kGCJ+yg+Nzk8IlnnAh0uN0syf8bu7KORuXJ7OlC3vAaGhzCH5x4blxmcm2z5mGF78JhgpFKFaRitQmNtiias3J4O1C2xgd4wazALzj3m4zn5wGY+Zrh+MjO6QoGKG879aGRmoeq65yU4Nk+GwyfuHdaeDYd/hE8OHs/5bHeN3l+DR0B8Azzrm/D70d5XMGEVAC7C40m0L4H40fWN4b2P4TlXng8LVdc9fw3H5jfgGcHurRcvv9j4e3fR8wdmPodX6O2b8GdXYwUm3Hzw06w2m/CVi/byC3CsfPOdlc0f7HDlOdGBuqU28GX4VQ9GfQD4Nly4s5/Zo3H7tB/939AHfo3bPYK76w9+yhM65hxV/o8VHw3eK29chgdB5bYsXl33HPsRymcar/KBw5zZn56b/D3gY4ZhuB2edvwMAP4LNqihmyw+qpgrz4sO1C2xgXyYcfPA4VFwYHP/tj9m+CsgPgmPCX4EsL27uT7zaOQRV54HC1bXPfY4hHsj4w8JDjKn5yZby8cMD6wRKKxFwi/U0xwTY2X9aOREYZLqoHJbOlC33PtAIjwkmDPDA5uVmhbVjglGtKpS9WjTc5xNULktS6ju7H8XeuLPblTXfh/YnuEDgAdDOBpRXYttxKL4/Dp8DutwXKK62dgzSCT+HhgNjEQDI9HAyP8BjCFt5rxW8wkAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAYgAAACDCAAAAACymNONAAAAAnRSTlMA/bWfQ5kAAA8nSURBVHhe7J1xaNxWnse/F/JHIajlKIF0/vEyXZKDx3WIIbBxSgkUGp+Wwh7+Zygn8D9OUsoSOnCGhpJCVFxwYMtNKU0KgtC9P8yA2cIiagcKJrraCwevzC4HW2s77Jy4acCUVVcE8s+De0+a8a+yPNGMZQl7qg+x9Oa9r97v+/Ib/UZyBgXiSFACQZSUiSiBIErKRJScxHi0P0ScqzOYJNYW35vrzV65g6IZNxHVq1/fA66dB6Aa9cs/w0TB8Qg7WL+loWjEuHDGmEONCYMzy+WsefRLE6BRYwKprW09xG9rKJwTGJcg0QA67U4Q9fXa6LU7SCM6gAjomHgfiZN0Nts97D8wzEG6m8rc/HwiD712O8DT6AWBDBoUWprcfkWihm/Klm4LYTNJS73gYX/TYBG2sNgATgeIfrfwDZ21hCLZR2KbRSyEUW1dl9NbdEiI1HkqquEO9NGYaZOBWH8ygBu6NmjF3gIzTCUgA3uXZ5q6LidxElOMzCF8Rng6a6qstITnhkmw5caXRqW1pucoX77wHdZyLWlOtukA4YddwjItpouIeF9MHKaeG3ITRvfVsu3wEG7ornzBuJpdapvKQaT3lU/bs1nDUQKdObH+RADbd/VwYIB8aQq/wXjMQHx5pu4KX/Z78SnG4BDOiIaMH25dIaL3ZJMxK0qUF6qEQralazN+QL9L55bcRcT64mIRzthSs6stV5MviBDLFH4UyWTMV7GbA73acmEzPxR4zIn1xwMYaucwtR2ghngYlAwklme0ovOSx6YYh+yfEb11QAMY8AUULwEvAhvAaaiBYFetIXlARKdbnf/8Jgjq6+wVa/gGeAV4rX6thkfA/yHiuX6k3orSaMC9vn6wvaaFgsqVeH/STfABCIQOqngBOBszEF/e1deAYAPTNZpiTLJfNf01amrAf6PPswAHKsuL+OxfvkNEMKVh/wO2lrbrQBUE9eHRHjFu7/DpW1VAu7m5tNUFuog41fezA2AJfwPQq0Dya0Rcmu0L7gDUn3SD4OHF5zmCPW+8mc+fqcQMxJc3g81Pv+825mJTFHrVlETbHZ39avreJ18OFnwRQ3j+cn3ljU56X8SrV6f57Q7Q+/frK3N3MaA3eHM+BjA9/ery8nIFivrVqwNbZJj6k3y3Ok+roDVVK3ED8eUFwc+uzuE3nwWxKfJMRPKMOKN8hH8uRJ5o9DZv3HkTEdvngP0PODszW+/eBkF9STFemnkb/AZwcx2/nT+DkHaHzgjVdWlWcmmgnwmnIMOx/mSAj9+p0CoQlaBeGCVmILa83qVLmJmv494qTZHzGZGkOg0EodeXB+f6NlBHb7OzjvO7dlZ/PuQAxTnw4OMOdqG+mDgY/G12gzYHaqpjCtg0ftXZemEw+1RUntpvkD7aDqzE+pNuLs7Ek1aZjupX592Ygdjy/hjGrAA9miLvMyL4GsB3PSDYVo0gwC1gC8EKrtWg+CzorQJ1PPndQ6AaGu0FWEM0+r8A6AAEfwe2ezgPrN47jZB4X0wMSSewgWktav4n0F37eBt41K0GHdUFvA98EqD97vt9PXph6QCCJ5Eg3h8LEHwPXAbk9lGAPkrwaYDejXdiBn68PLwUfkxvyP7YFHne0Dkswt5tCOEabHBrJTvMfq+QjaYwIxEj3N0D6OZNNNRLRbKPxLuzmL6IJm7KrRFeulv9w+yBRWfPDZ0gQaw/GYDvvRtzdSYVrYQBWp5w9Ial/NIUud/Q+X2oIXFtR+2j62zXtqMXjjPQe0znYcM1mRs7YDCF7QhFsi8uppCC27bXj+GFShrj8oBIT5Ag0Z9wE+2IMFbCgENBI4njJ6bIkIhsMMb2C+/t3t34qlWS/YYu/dJ2B0m0qeqgdQX7UfIP4lD/eQuS+k2UZLmzzs6lzyF5BgegRBwJSiAmAMbEocFb/k8rEa51iIkQh0eLsabzk0mE3zJYwz9SiSDsBtOb3k8gEb5jMmZxcdTOCMKzdGbY/mQnwm3qbIHTIo9UIgjeVCXKn7xEUEkyDv/TkOVz4i4w3XInKxFUkppcHD5M5INH75vJSQS3dNZwBHHUE0ElynT8SUmEbxnMsHJbDhN54qirKHcCEpF/sWXFfLQd70RwS53bIldYEZU15xKFvEtSERfkTBSAzxfyLFHI0TkV1wlIRN4lCrmXpAlKBF1FHZdEeBa9dSYqEXQVdRwSYdNV0gQkoqAShXx+SSOICUhEEVdRyOfXlpOdCLqKsvgRTIRvL9Av8ic9EVSiLP/IJIJKEhfEZCeClq2zxmGUKORTkiY/EcTh/DsXDqkkWZ4gJj4R6SWq+EQ4dJX000sE4Vo6W6ASVXQiPFUhbUFMSiKKL1HIUpIMKkllIiS+TSWqsEQ4dJVUJoJwD3oVhWwlqUzEYZUoHLAktTxBlInIfhWFw/8qRpkIuorKKxEulaQyESOUKMPPJxEL9MvfMhEjlaiczgjHEUcRlwnB+RHx4hzQC8TxhzHPZ4wfby8ncfyZxl9x5c+14+1lEhLx0YMN/OLWcfci+riuL+L4vuf7auOJPfhKrHbcEa7jCiImyBNyHLocbjMXaOlkJaMXRDtH1w1mKSnr43K1NS21tcO2ZYb9QljM0HUuhK0EhskavthXIPGbOgsRByXuSGHwHzvm9MQ+Ox8XBN+1QksnKyKTF0R5YE01jRkKDZ+zpgpgME8INzzEN5jMKA8D20xuGizKmilU7zCBr7OW71ssy0UvOVJBuM91ZYsck82cXBAOc3xmCIu5tPSYlQxeIEQ46gulVDlrNeVMVjSrr6ZjuxH8MFpTjbZCLQu3OuNDBNJSaMMWWYg7EibjMcdkMx8XhNMQghnyx6Wlc7Iisng5AUmnO6UBYPgvAI9exC4BPqqjz06n04HiXxuvdFZ/j8dQ1ABcxNdDBNUreNALHiMLcUedzubKlVrMMdnMxwVxiiHkCkBLJyvI4uUkACl4HpIz+AHA2vs0qq0+N7uIiA/Rp3LmxvOvX+Ag8HiY4M6ri8gMOVJB+NS/7XEMbY1s5uVCUash5A6Ix2QFWbycCDPdnxPPAb1ulUb/9Ie36MLs/v0lKJYW37o/92LswX6nhgq+xOd/XEYWIkfk4qt/Mtoxx9Lml2QzFxdJaOlkBQf0QomogQcAvsHLwNY1jUY/eDv5OL/OCmaBbxGxA2AL5/cXdNqd9XoV2YgcEdovYMcck83cXCShpZMVZPFyAoplPJAiVXyD++eBAP0i9n4l9gYIdve9e/1XXwDtrjxuX0FgP8RlZCPuSM38e5wDOY7ZzM8FTd+Hlk5WMnkRITZrmMz0hckGcLqPYK3YRbHJDNPgzGj4QgoaTWb4Yn+BpzPdF9mu4OOOFHrrx45jNnNyQYRxuGzQ0slKJi8QET53PLVsnfsKdalMD4wTsXZ0R+nx0I3gtmwMFahJo96DkXTki5jjWOR8XBA0Cy2drGTzAhHDbIkI5hb8WBgig6MCYSzfR8n9HBHTSKezCqy1kTPkqCgyLr34R8l1HgI4M4tJpPili/EoKZ9gViaipExEmYiSMhFlIkrKRJQg01cIrSP8JUbCKihsJmsnMDqdN05hD/MBioQcJOmRlUN1SWHT446vIWtiZDzdSvSZhi+ykskBYTrUTrrMLSzFPYiGrJ3EyNzszkERfPXtD/jbPwLn5jA/+9FNZCSbgyQkCflljVzmGTYZdyxroydijdc1SNoG+tSByvQKBcyBVAdDCH7N0We6Ri7zDJuMO5a1ExiVFZyDpGOg/t57U1PvLS//EsAF2MhIJgdDeHD6bn3q7t067t59iVzmGTYZd0xrYkQ8xhy1b7Cm3Pp6v7a1GBMFkXQwvA435Gv50zQEucwhbFpc0qRaG7k07SAkWMfLALS3Fm/fgeQU0KsgExkdAL37kGxtb2C3fL8JbF8AfjgNkMtDDpseN6kZbm3kRDwGzkS2qpBcwvqbVYQ8QTYyO6hchmT78llECoQKLnu3VRe5PNyw6XGTmuHWTmI8nkGEBjxSfp5FoSQdKGYg2Tgrd0Sg1v19BSHP5hA2NW5ck2btBEbkFBBEPjrUA/ydLOZAqoPh7OAFoAspJpd5hk3GHd3aWIk4HZ6k0BrRl217oP9aDtnI4mAowSdKj8cIviCXeYZNxh3TmhgVnbXUzjcYl7smc4QI96YoiqSD4XevTaaHR5i6HbnMIWx6XNKkWoMYlRZrDiZqNA2Di5AG+cpABgc06lJb+WrJrc2YSS5zCJsSlzSp1iBGxdf1Qct1vUGTNUQhJB2kaKOlex65LCIsxR3XGsTIuMxO9DV1TxQBORgLcllA2GzWIEaH61zEsXVXFAM5GANyWUjYTNYw3mOaRAzf9EVBkIPRIZfFhM1kDeJIUAJRUiaipExEmYiSMhFlIkqyPzgr+BO1Z9IFRdHbenTq7D9rKWPHCvF0XFNnzDBNgzHmpwsKwmKm3dJ19yljfOJKk8OYJ3eu3KULisFkttoZjKeMHSNOYAQ0ANUGtHRBIaytTM9C8jbeDVLGciTY3NzsQLGpCA6kIUZKRIC1JbySLiiGYBGvQ1Gb6q6mjOXIzsYH1290INn43fVPN3ZG0WR9uKKGb4FqQ0sXFEEHOI+Qi93V+YBWh2cq8THkSfXm5vXu7Y804CbWb1WBeY49LM/u0WRNxAPcqwPz6YJC+MvuNwEq6PZwm0YuvBUbCzTkDacv1WLpCfZwOqHJmIg/7KQLiiMANCjUTtPuDxsrgMZv1EdSn0qaJnsi3q4spQsKQ8OAQP2s0siZ2dhY/sz/z/ri2eromuyfEee+AbB/GSRBQZwHOjUoepjWgjM08sKeMeTOrT93b9yrjKjJnohAe+3isDJIgqKoTnX/UoNiC69Dmx0+lj/af/yq++EdPP1dSprsZ4SmQVFJERTDO9fvv6bCrXWn51LGcqe6vLjO5p/yLiVNCiINmzE3gyC/Lzh5uu6ljOWLw9S2yZjD+AE1BEZ7CrObLigSWzeaJmt4KWOFJMI3aPkpmiy/fa19BYWWLiiS2dn2d5ivpIwVg7Z0rZtdg/9n74xNAARiKPoFW0sbl/gDuIBLHLiJHIiFwwnnKNrYCAc2weIICMEmr80jZT5pklrtoQt/QGo1ew48K2M3h3JYi2P0P8JJAeixA+AUC2H9coxOyTmnzIPEr46Q27NjGgAAAIRh+PdMgg2O1sLO9ZpnjRBCIAQDGWXOs+TyXT8AAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAdkAAAJtCAAAAABfn1UgAAAAAnRSTlMA/bWfQ5kAACs/SURBVHhe7J1RaBxHmsf/d5h7OEYi4GTxrCMO5HDKUqCEsReWVa6X+MHusG9HJoGFhjUbP+xxDXEGzjisoEHHhuyLGrzgBfdhcw9HJxPuqY2sfdCxvZYJxDc4hqv1sJFeVM6EdQQuebiHQMN11cyoZkYau3t0lmbk7+dE6qr+qqrdP1fNTHdPFZLDCTEKZgkyS5BZ4ggUszhEEPegSBQsORwQxuZf43BCjKpZgswSZJbMEmSWILMEmSXILEFmySxBZgkyS5DZxlL1crUBA5pLGH/I7LWzv8WxG2evNdtSLy8s/PgbDAlxBKPCQhWfFPDWu4tiHkD9gw0AdhlDQIzUnXfOWKB+h4zFSSKZE0RcJvtL5Hua8DDceR8Zs442qg3bSeL7knORKAQXUuhdOhG3cxMZtwMkj3hi6I8cjIx7QmLWwUsMg6sxR/EEyKxgjGk/Um8wbtkOc2USqBNtp7a1W19tu6orOxW70urlsW17zOGJClXYYU+kzvUclhJFLCVo/VSjg+OwoHvQ8MLQtsMo4qYXM9t3vN66Y5e14NtH0VWxT2Y7mA4jOoojbttMWbWl5CotXMa0JU+Z95VZT512xlVBmf6wRKJCPRmk4V2R7dzEVbFquyJlqpmrMnYiVXAbV9crbUcm2+gWfBZ2151uOSJJLUtzFF0VJwMgs1KZTFNe66VXn0i9O1Qd0VXDtq2OWOj9sbRVXtIV3x+pcxNPVy9VHGfasq1MVlSIRratRKqkyXMS0Vd3pOtTe8xRdFc8AHrC7TGAyS3gZeA48AeknAReBL4Azl25WF96iA0A94qNxhWcn3uwgRMAplCFQtQ/xelyT6TOrW8CE63K8VEJKWnBAvAdNhqATuv2gNexUgd+nrKg8k6gWC69t123/VYaAAGNOQpTcT/0qec1AFtFtJi+25FcQ0oBir8A+PrXGzba3LpRK53Bt63dL22goUp/vlabOoueSJ2rKnpcUHJRPVmoAarg4iJMq5M6ACimu2ZUeCvmZWB+u5ba0TcLKC5/dnXzaO9RmIr7oSsVBVufSGALKBUngaY+XdpOE20WFzaqv3lJZy0sla/P18pL7d0PtRLg7evLGxcvd0e2cq+XO3127bqLNudvL9++vTwDzYRuWvMiUL1y5colpAhzAGndm6ruiUcovwNFo3MUpmIyu4NfACtIuQ1cwhzwSA+QP0TKGhQnUa/i/IySCCxVLzYxC3wyp3c3N2BDoQVfbZpIAx5rfbUPtweJtUKxgEW0KFzA77UtTB0HZubm5mZ0DFLe7aq70fiyWkr3KW51jsJUvAMyO/MxqnWguYj5GWAenwPrmCojZaWBT4EzWFe+VzeA1eos5gv4Vun+GCtNPAAuQNFEHSgVTORSKxfbr7P2HJptkyt14NoU2pRLV+sAPsOHBRjbtVXg8ttddW/dXMFP0BomzFGYiuka1E5im3k+syKdCJjjMUfqt54OS1HZasPx9aeO0PYDm1XSgCjNsi3zeZZVRHfk4M+zarftJQafVXzH4UkXgY7pqdtmjHOd4NtH0VMxferZCe+6SCBjta3NBum2MFebeKy2BY86V4dUpEJIKaRI+iLTLCmT1h6zrePbzRk4FyZhDsPUrXN4oquQ5ii6Kyazea4nHz7oG1uNe8Cf6jh00DMVt26USn/5CHuC7uIRNBoTNBoTZJYgswSZJbMEmSXILEFmCTJLkFniCIaaUpOgOwK56yfojgBBr7NkliCzBJklyCxBZgkyS2YJMkuQWYLMEmSWILNklmjW60vVa/+yVF1tNJ4cVl1auFxdqjeaNKPm6FNfX14BUMbEnbUaUDp55nhhF6sP7t2oAVM/wqNHK5vA6bnZmUN1513yWPSmxvzOO7eY5Zu/heSBw1i42zxkThDL7bDYt5kVH6IZNYXjhyzsTY2zWe4xj/dnysi2ol6vDvNFf5gImMMPjVkn9eiw3tQYmjVuPJHsggy1NKM/kLuGecyTh8OsYEEibac3NbZmuTV4PJUu63TbiLl8YBW2xQ+JWebGiUyE4zhxJzV2Zo2xZDAyYL5Uv30WPCnMZdGhGI25w5iTmo3j2KTG06wxNoDYdkSSuCx+cljIPDn+ZmOe8Arze1PjaTY0xgYhXFu4lnj6oO6OvVnOmEwE87tTY2o2zvKeXlo241lOSzD+ZiP1g/emxtEsZ362ju1me8WOxn00DpzAs+O+1DiadTMZk1Yl2z/cwBJjf6WC8/7UOJqNWSYTnpNUnCyB0vEP3dof42nWCrMN2TyRLM4aevCQ2cDKFOZ42WM9h76xdfA0Fv8VGViqXQBQ3lxFBt6r1elblgdOaGcKc/3WLy9bBw+ozx44N2xkoLlSgqJcbSIDP/2Mnqk4aBq1M8jAHzEHxWvpVgZmN+pk9oC5ixlk4I4NTeH8HWRgZmqdzB4wzTIy8SZaHEMmGA4YMvsNMlFFm0IVWZi4Q2YPmEenkIlp8zsLr+KAIbNrTWSggUm0mEQmCmT2oKl9HxnYQoezyMTFKpk9YEpfIwPH0SGjsY/LZPaAOZFxcN3K+8bsgCGzL9xHFo6uo8X6UWRBvEBmD5hXNpGF02YrY71k9qBZaWbq2stosZytM1ZxwJDZf8CXyECp/Q+gsVJCBup4ncweMAW7hgzMte8E3MVryMDtUpHMHjRvXkUWzi9D8cmFAjLw7z8FmT344Xgp23Dc0Pf8fowM1DffoGcqDp7QyhSmn6YInEyxXoWegxoByriGDPyyuorG4nlkYLX6C1CfHZ/njQNHZnwm0QpotvmRYK78s2aWvv3w3eolZOD9vy2D+uxIIG1XZgjzmZtkCuMJfUdgRBDMyxLksjDbF7bI7Dh9zVJYbpbuGLMgIbMjRMQC+ZQANWJ7T+uQ/giJJbPG3GA8FnTMPSFMuCxOyOyIISx7oBVujMVPmFsmHsW5ZchsIn3mxIMmABM9Kb6rV0f1azI7isiAOX6fNRF6/b1UpDmh6LPvV/TEbmR2RJGhw5gfc6ETnPsOs/2dHZkHVprPhQ4TPPYt5iivo2z2CJ5rCuVy4+7yVXQo/eTSDHYyM3Oufu+GCTv9T28UoaFVSkccLqKIc/mUKCl4FAmejAg0GtP6swTNNk+QWYLMEmSWILNkliCzBJklyCxBZgkySxyBZhbPDlM/QXfxCLrXQ9DrLJklyCxBZgkyS5BZgsySWYLMEmSWILMEmSXIbKO+2qg38TxyBIeU5oPfr62YL0/+/XSR7s8+AR7LnsXAOZejeX+Wu4w5QesbkULEoUqGz9f92TxmheMHrHN+Ao+5FcZsMYJmpce8WPZm8cCyYjK7O05q1dkOjRmLk4h5I2dW+swRyS4Eu08TQ2YFC5LEdjpJX3VfzpxRMxsxZ1DfFB4LnxuzR5CDxS/LnwCNS8D5OdxEGaNH89rV8+cK2J3i/KsL9y8U6B1UP8JhzJGJiOO4MyllxPyD7LP5J1XjOyfnotE49ckr2yYjPbBVGB8ps44tnv7uipPZHjhLo8S2WZ9FKs9LRsisdC0xRBA9lToPbOEMWtzEHTQ+mHoPI0R15XdFPI2C/3eXmvQ6203gBJ4dm7mfHYtV5Cg9SR5nnLhU2AGNxj1IzmX3TNxcjNZ3BBw/3xIRZHbw5PkjZTZmMmuo69Hn2UHcxHGMGL/K/kn14tl3ZnruHkzeRfP+44nH360AKH1v4vHEq4XmG1uYQQbS4utfF77aSEtVt4ujMA0cL4zbvZ7qjQ0svlrGKFHFOWSlWP50HprG3eZ9pQOnj+KHBeDs61vrQKr5PlrZJ16ZfoKfxvrX9z/fUDpP4AfHgFPTk3eRcuc+Wtknj72B4jh9F09IIUdsNLbCHMGRGrl56DLGvCASYuC9rdCzGXND8wajdybkdJ8f8UHFBY88hzHHj2lGzeHhud4VSRakWmw/Fhli4yDV48Y7ZjxmfpSlONfFI0lmhyO0c0UrVUZLBrses33zycBhTsjzFPcZ8zmZfTYfeQyxZVfyvwCFdnvA5+4QlmQ03LIDZDb7pzDuMd8M3jlvEPJE+swTyTDEthWT2bzIzKZES8wwZpVVbqV2hyVkMZnNCWcyyXVpcchz7DNX7sMFUAPNU4ECMvHZj85BcXoLw1BSDQ3P3Plf0vPG+VgvIRv/eQotvsIwrJxeaWIPnMMqmc1HDZlobr4OzdFXMAzV1/Al9kDhaI3M5mI685m9C83nTQxD+Uu8hj3Q2DxDZnPSQCb+cRmajVkMw6mVcgF74LOpGTKbi8zny330fhNAA8OxfHSlgeG5djMAmc3JXWTjoz//qg5s4Tjy03j/z7977Werwz8yu/hhkeZdzInvZo0UHgtE4CS5kZH+8kHAPJ4MgYjoGtQzfqIiiR3GvNwNeMyKOteNnVgk+eA+YyFdNx4GFuUIDvQtPJk1XPLQYm7co8mPRI7iDnOiZCjIrOfmMesI/c3L4Ol9T/BWZF9g1Lq/yzNYddleVqslszzPM3dWoAfYQD9UkfrhuzuNQ8/S/uWuLbYfqgh3/xqxEGmAw5hl7u+T2WfdaSPLnP/UHlNUvIofha0/vldJlaa4QcSTJyHiyLN1pOdVOsWDtC5HZTp+ZKTvs9m/SpAyew/PjP2oX9M4e2UuY+R7//xWX87Wt1tfPYLhhVcwPTlRyNo01re+ETDgFKYP7MnF2XuHbbb5wBbZAl2LvtczVpz738UmMnBt5Xc0a9B48R9f/ApPZ2nxygzGC1r7gzM/wyWNIBk7aAX/+KlqI+bRqi5jyNzHV99vYDDNhYvz8zSH2zjy1vQHP/vXucEfd3BlDmMKrbHlD5o2SAbMFcm4Qa+zBqnc7lAYB8r4mEJmTe9kTmjkishlzB1rr2TWdFGLMavihUEltcr8SCbjDZk1CB5FvueFUSyS0YbMErRKKUFmySxBZgkyS5BZgswSZJbMEmSWILMEmSXILEFmySxBZokRfSp1Fs+WWRD0VCpBz1QQ9DpLZgkyS5BZgswSZJYgs2SWILMEmSXILEFmCTJL92fHDDM7afOLCVShaS+v/mZzNuMMpXWs478msLKJNkdPq8XZv//ioOLNB7iHL3aWyNhg8/HW7g1Oo4hnwvjNgtvYWr+jhZZOvPAKgMnprcmt9urqrcXVyy/otdkHGVr/6tHKpjqzOLVdfH0LwFeP1moA7Kljs5PF7gbTErs1aEr8oDA7uMHHt/DF/2xsN4jXexvUa8lPThcPcBZcwXnCuexP7+uddx46jDleGIlB7cr2ROJuKExmzxwzdlp88GHzOPIcVZybBi3VoHhCg7pENLjBIOLiSQ2mQU7ID2qeisBjboUxW/Sn980s9xlzfJ55+W2n91xL3866LISMVWwQB6nVIM7YoMXssLfB0Mo6qY3kgTo4fiBmk5ix2ExIadL7ZDZytKrs8MDqWlmHe8zK1i1MAca83A3G3Q0GeRoUeoEQeQBmfRYmCWdOf3pfzApvmBXwY5dVZHvqr0qct0Ev9JTafA22S8iQufEwo5LD99+szZKWSeE4TqzT+2RWnyeeDINw1L+//Ktbha1TLFwW5ulFnRKxZcXDzizoyX02K/S4GzE/EXEcd6WfvVnp7mHGxMj2AzvM26AdbRfPu/x3bLlqOBsW7rhyf81G+mgrjPenn71Zd09/V86YyC3WlBC2m+RDWHtbzd1x99eszyJ1lrwd6WduNtpbccHylo+ZyL/Ek0EyJvZ2wPG+Pm98E3fQ+GDqvR3pZ86d89gLt45iFbmonS7CMFO6h1z8EbiLPVAs1fbzOwKCeY7FKnJH+tn3WStM9oJXsfycJXobdN28C6a6wR5fffZzNI5YlHCxM70PZgNnj4M543tpULIo72C+x+HUDvfTrM/4Lul9Mcv3dqIks/b0QhcwmeRjj6+zERP7adZmsj+9X2aTYE9qfYv5ud9CxXtoPGDWcKOxaXz/zIYOY17Yn85tdni1oRx+UQEeM08Oue6PDLOfZ1NC2MMvRRFZwb5eqRBSyB3pfTObxLYdD+U1ti2urkRZUT633LbiVvE4Z4OOKiHcIa9VcJdFz9ec5NJnViiHuDnkb7+N8kXORSYs12K+zNeg3d0gT/IhQpu54rmbbV4EVv611U28jGx9zzYrIqowlquEbtDEy0gleY4GXWYF4vlcRyDybWalduXTrIrQY8zuv4cWB/rdAX9qcR6pm61+nMTpb+ZlbdDq76Q8Y4MJV38z5sXP8woRQp9sxw8553IXJ6L1RIU9oHdLbdfywlhwsVtxHvlmafauBr1oQIP6GQxd4mkN7lZc8LRBvdh8xGk1cP0k1FoNivLjCXT+a2eVTpqnoHanvv7Vf7diT//NxOPOn+9W2g+enTLFTYOmhGlwcyV7g2vt2O91FTcNThb//8/22Jk1NLC1DkPr2bFinuLfbqGb6UkUMzdoSmSl+WDybn/xrRla511D0NwyBJklswSZJcgsQWYJMkuQWTJLkFmCzBJkliCzBJklswSZJWi9nvGB1ush6JkKgl5nCTJLkFkyS5BZgswSZJYgswSZJbMEmSXILEFmG0vVy9UGDGguYfwhs9fO/hbHbpy91mxLvbyw8ONvMPbQSkwLVXxSwFvvLop5APUPNgDYZYw7dOedMxao36GeaFQyJ4i4TPaVyPda8MNw531kzDraqDZsJ4nvS85FohFcSBF3tuNWrkhk3AmQPNrhwkQORsbdIdJhHSKTO7gWcxBPgswKxpjWI/UG45btMFcmSZCmPTvVrdz6alPlJk7FrrR7eWzbHnO4ilTYYdIdqXM9bS2KWErQ+qmX93DU7zZhJfbsOPZYl++I2b7jJb1Vxy5rwbcPoqtin8z2EjPGREdxxG2bySRgtkwkVxnCZTrDU+Z9ZdbrTEkdqz0xs4Xa8mSgu5yJlFzlJq6KVdsVqTon10US2dU/K0nipf/7Tt+c1z4L04Km6nTTEUmqWZqD6Ko4GQCZlUqkctR+6dVnUu8PE5+5ati21RELvSdOpK0yE1VAx3MVaCI7tXi6etkK0zJs5b2iQzQ8LeBrux2kalmoIt1VR7o+tcschKl4dMwewYjxGMDkFvAycBz4wzmknAReBFbL50rT9fWH2ABwDw1cwfk5PNjACQBTG9ULAET9U5wuAyYSOhebwESrcnxUqgGqXAH4DhuNIjQzQO0nwJqqDT8HcOId4ASK5bX3AFM1XgcENOYgTMX90Kee1wBsFdFi+m5Hcg2KAhSPgK9/vWGjza0btdIZ4NvW7pdaEj9fq02dBUxkO1dV9Lig5KJ6slCDLre4iO5W0cQx4GFqV7erQ14G5oGeqovLn13dPNp7EKbifuhKRcHWZxLYAkrFSaCpT5eyo7c1iwsb1d+8pHMWlsrX52vlpc7uh9C8fX154+JlE9nJvV7u9Nm16y7anL+9fPv28gw6PMA0dDevo3rlypVLAESnflM1Jh6h/A5SGuYgTMVktp9fACtIuQ1cwpzuoQ+AH0KxBsXJehXnZ1oOl6oXm5gFPsGcltHcgF2AoghcbZpIAx5rubUPtweJtUKxgEV0aP4bJrXH5u8xMzc3N6NCkPIuYKpuNL6sluZmdIftHISpeCdkduZjVOtAcxHzM8A8PgfWMVWGYqWBT4Ez68r36gawWp3FfEH18ZPAx7jZxAPggraDOlAqmMh2pzavs/acSgKFC1ipA9em0OHazakiMHV14d1XgHZIbRW4/Da6q761Aj1gP4Q5CFMxXYPahdhmns+sSCcC5njMka33tk778oH67fj6U0eo1jFsLQQVpXm2xdMiLSqiO3Lw51m12/ZM+xUW6tqYyQtaIT1VW4xxrlN8+yB6KqZPPTvhkbmYJGO9rc0GaUJsX2ziscoWPNq+otAOFVIKqfJ6ItMsKZPWHrOt43VzhlZCiMQgd6k65omuQpqD6K6YzOa6oHz4oG9sNe4Bf6rj0EHPVNy6USr95SPsBbqLR9BoTNBoTJBZgswSZJbMEmSWILMEmSXILEFmiSP4P3bugAQAAABhmH0E+5c72EPMMdj0eHkRKHt3ENpGfsVx/EfZ0zI2BuWQ2dQUZDcyDDhm4sNSZ1VWh12FpRRMpgsLCsnBh0AFSQNZAhsQeCG4h0awpVtYwUIPi9NZclKx3cNA3VXJwRFODsKiylws74SyAluZq6CxPegxkSBQWOj78/scBt4xfJnxaEbR+3/eUkp8I0D8O8uyxLLEssSyxLLEsixLLEssSyxLLEssy7LUuPNFW4YvVhuxCWUpev/Gf554d5KaN288eX7jV5HRb967rdag1ToamQ17897KV4+Oj+Xj4aic77461vJdg39Rs1Zxyrcdp9gdmY0qe+TUBknTV8dK8s+rOV0Ty8oP6G0P6k5lZDaqbKU0SBTXB9tOKxnKFYO/LdPEvSVk8XxkNknbv4vEb1fbn93LJcOnfsPcO6hNeDgRXbt2rSGzUe57OSQuu/d/5iFh3/KN/bX5aN8DEOIisAIsyQyDtJt3ZfhodU2G8w8i29Cyu5gDsIUPYNvp2SB/dXMyWBBYymxeN/Rq3IEFtAMvNzKbI/ZXILYyWxB3vo0NLbuJHUS/m741Mhvkn5kLMsTB1SCScWH/qZlPKrpOpVR0bndHZpOeVFSqqU95R059IMpVMz/P1p36oNUdnY0q62wPRLWcLr1eNLNs1WmNmc0q20o9aSrWB/Vi6qrVMrJs0RmZjStbz6czv5Y6v27gMyj/2j5W/ZHZMDvLEGHGRg4hxPKeiXdQ8tO9Mht3zpbqA1GtvDqU1weiXuT2NKVlU39IS8dRa5XU9flI5dWY2jgnQ9ycB3DWhziHA5VPKijMWDIcnGReQIQhCz+oLEudwkhmG32IYl9lWTpchMBp5kwIMbGjsiwFEHgx7CsWobIs9bIQ3Smc6KTaayxLMVJmcWzqECLb01WW5G5YPB72FZOIVZYlC2J/Esfi5xATOFBYlkKkZE9jN9Pl9ZelvvQVkxrLkpeOKEfR11+W98Z9OWokZcnCGJOIIBBqL0vt4XW4r/6cpZdjrsY2BODFGsvSxJg7qBiTEL6lvSzlknP2QP8dFMUYYxK29s+zZAGjEftIyWosS35q6hv4pIJXY2m6q//pIs2PfUHgQsQqz1lKP27KnEaMZ9JvcFWWpT5EQb4OJWApLEs2hqTp4RxEOA2NZckNIaa6o2dp/K7KsjQTQ8zihB9D7E2pLEs/3YOY9AEgxiWI3qzKsnQ2gDiDaOT1TzCpsixle/HrrwR2p20MRciqLEs5PIVwnwF48S5EH7bOsuT2IS7uAXg6BxFmoLMszXQgZgMAwTsQLwpKy9LcJkS2F6GNLMRf5pSWpUv7kQw5fIcwY2Mo6s0rLUs2diFWGthahtidzmktS94OhBvEwSzEVhFay9KcD3EBPhZkjAJXbVm6jIYMVuEfri3jLi6oLUuW50MsNT+GeHjL0luWCkGE8drNX0BvWVrK1GT4m/vHGAn83c1pLkt/9ttIbDTvYwOJ9ld3oQx/UTOtWhok8vVBXfGOLZZ9zZGznrQsnuxSO9K9F49lxbZTrZcr2+X8cctusbxduV2vOtsDbWXfQhot3VtFBj62bAD2H7wgg03cWlL/f/Gosbqytnx1rbAWAYi/LKxdXV5bedCAOrwap3Wd2uBEOX98KJ8ONaelfEsp1QrXceLzt7/GRvApTlz3voQyPGfTWnJybjutfF1O5W3V98Ysm68OhkqlkgzVkuarMTV6V2T4SN4IAB8024rvjSko2jJYEMi5/9JblmL/1xBb0w8hPn4Qs6wp+2evNSMZ38NTtWVpZ9mCZMZl7MpoFZpqy5LvQnQKlteB+HBTa1lqIwvx1YdY3IRY2G/rLEvpL443sIDsfoQhO/OMZU3YP9t3beSwC3F1T2lZCmYhdi4C8GKIs4HOshT3shDPZwHM7UEs9GKVZekAOYhmFoDlQwAvVZal0IVoj+6ftbGrsix1Zsbsnw0hPJhTlvtn+xBTOvfP0uMYojPsK85CZVnan4c4HLN/1nqssSxFmHzT/tl9/WW51iUYu382UliWQlgQvey4/bN9hWWpP25lwDtNCMucPQLcZXlG/+4Pst68f9aEc5b6clS+pZRevnn/7Pcay9LEuP2zhu3+INk/24fwYEpZbk9LP5jy1ZflLsvc+Duo2NCyXNA0r7Es9d78eRYKy1IcjPs8a+iTCu6MDvU/XaQshOwULkDEBpyz3D/r4lQG4gATCsvSxLj1hzsQ+EHlMyiyEI7un8UcRN+F+rJcsTV3OGb/7Izystw/K0V96N8/S1N7OCVNY2T1758l14dYSPbPntO/f5bOIJLBRgjgu2kLQxHOqCxLOYQQhe8BvHAg+sjpLEuFPsSFPQBP3ocIXegsSzM7EGcDIG5mITozRpTlLVSvjQOcg3i0qLQsZdGWwZ5+hmeuhaF2b0FpWbIzIcSVBhq/hHg2bWstS8s7EOeDKDgP0bgCrWVpNr1/9lukfjr1vNqy9B42ZLC8R54l40ZmSW1ZslYeQiz2FiH+dBVqy1J6W0AHsQyNnqe4LOUK92V4VFyNkEDgWZrL0ufNDSS+fvv3bg2Jhv8bKMN9PWn14pHsXmoN9y/lazq3lLKsyFdOwxbLr461fFeW5OnexETfBDcjoP3Jz6sAvAuftIHo5r+/gTY8Z0d0i04p79SSi3LZyZec5Mwdg1djVVq1dUnZXa+1Bj8yliX+naX/rSyxLLEssSyxLMsSyxLLEssSyxLL0ls4MY8f1zy00W9gJjKvLLEsyxLLEssSyxLLEsuyLLEssSyxLLEssSzLEssSyxLLEssSy7IssSyxLLEssSyxLMsSyxLLEssSyxLLsiyxLLEssSyxLLEs/ZedOsRhEAajOP5CKnHUVGBmJj7BHaa2A8xzFG7QC/QAS3aBZaKuF0AswcxAMjMDnoS05Q7tl/Azf/vUE0hs+Ic0Jfj6fUNOyu1FBgQS650Fqos8g6/FPgHcJWIXhRysic2fK5GZ5pW1B1Hna2KPNx7er9FXa9TtrQRbGU4vNvauGDSOI4o+p76kSQwWyTVOccWADOcm+JCLFM4Yt1muWpALlSqEIEVAcHCFOBeWwO50oC1P2pQLslIIss4dgRBjBJ4wRdLcKiviNOtsFVjI/NldZgfULGchw+oJdv//89/7MJ+ZmzkVhyvE1Nm76Z92gdHpaD7sxwBSeSShEcs4jad4vzDydng6jWEgJRZD03fjhDEWZpnLWJBlA72PhZwPmCtoW1M+Z4yHZOq8kFFMpSsIQQ+yc4QT/VKiIvczgkW15LMKlfZS12XjIj3IBi4LalQhBNXd+PrWQ/MdlZ2lSaNIoh73oywRNMnRugook7N11XuuEyNXT6kgO1HPiBGJ8gcJqSac/BwWNanIV6kqwrNEa48pLdycsEGNKkVnmavArztLCExnc0foNmR6dgRjrm7+RJljlZjQM8zXy67Kd7UGi4ifR8c6ov0CNjUx8lVqwklvk3ElSmm7gXDDWlU0cV0oDD6czl7l5+wnVeecHnN8CaANH4S7wGfArwA48PNL51b5W+zYS3HQh8bHRiKSMoUFm3pm5A1Vh1vAf5jH5P0l91Y6Xq9eFcKnHYUvrk9QhF4beF06PwEb/+SHzJtAbA6cfwNY6sI7/hoFHOBIvlohM6akEr9sO/eG1qzbVFs+JacI7ywvnwDvyPO2235ao8rFSOU0bnBn8bSN50fyLXAun72C81jPN6ACS8jtEn3MT3ql0+tieLjRstYS4VtvBN+HBZtq5O3WrM2OZ7PjDpnfe6s7O/Wr2JD9w71vhmlzO9s52GIH23Pgh+3f1vwt9ADlpHNwEP4o92RgBVhDCTJ9Dsjl7866qOI2rX0bhlqVl/cM9Y6q1FpqYafwl+Gnfs0qNmJndctr+/vN7SxazhPP6wKrnrfeATDCixRnwAYIJzEOgQd5onqnwLty0fIl4Ee8Ob0LvDULcgY8Mj5gU428RW1t4EQC++1il/gceOnVrHIO/KsH9ftPDCW+wotmf7s4ZhqiPGO6u/w+OXQ2poFAZ4iQZ9odFPelkJ40IHJ6IcMnoipnU428Rc2yXVWLD8r7LLmTOlX0ud5ksXFEZ37ONpv9X7wkSSL1Zy65gaCXvl8kYRApsxymRMoIM8HzHBrO6UbGkrOoRt6iKkQBhU0FUauKCUfaoAh1WzShs/VBnb1wgBbE5uRyiy9eRTA3asJ9tj7iU+B3iYvx+s1DXCYWrzJ1Rh6GDficrY+JS7h4iLuXu88tXiVkYRQFPLtK3Mj+Z9cOTgCAQRiKhtKrI7iIuEAHFhdzgIIzFAqSd/kzBILXqKyjMWz1UA59y9DxjuCry94VhMZxQ9FP6XFdenAgJvjSHpbyIQWXQmjCQnMIMr1m6UnHHPfg7CEng8CQkBzKQAs9eME5LmyPU1xyaKnKmkIb0/QgOlByicwW6kLlzFXQjiQ7YumQ0p1dK9v/DjtajzT6b95K+pJm/O1SQNtlBD2VKnnPzgLNc1I2QSiBmZnREUYuSdnEYPoo9OxXybCnSNmEYAbY0ORWC+wbUjYRmJx1pG0KiuOAlE0CknfyZi/IOjkpe+5QPRwY2zDyDpek7PkhDIt6LgP3ebpSpKwe1GySJeBKkbLp9pmaz9DPk7JJ+zmys3BXipRVHLOFdAtMkrILhO6jMHYRMBlyRcouAsFx1Yurzbnf8wcpa/JFr9vr3gJcKVI2Z508gWWuhkHKSo7DFJamSdnmt2D1+b3FwBUpOy9XRujlW8kkZYfn32Z0DzNDyjaLYRrjnOSYk7IN31CzdL45KauSmk+ahoYFUlYLFGndSZM1YBEpO0CuU5x+DTQpOwvyTkcu35IJKSs7LF1vJf+vm7ekrOIJdHmNv1JAympRswVLrtTilE342UH6/UGiz66lD8VxuJzK0jKP7LB/oy0pK8N7NfSURyOAJd2CJbcA0nE29av6XrbQpOxSvnOu60YRUjZPYMVp+V4pANqCnctsjZRVYoYt2GRdKVJWz7BKl+KqlCZlZ3/eM9GdDEPKWjPbFmyyu4/m/66s5Ck6xOm/nZm+snyg7VJi0FGvorKEfCDES4aZV7LNEuQQcTmfgyLMSdn0I0SUxeQf/lZAhEkBMYpiDMW4OPtWvqQCl2O+iG2Kayz9n4pxWdEoJ2UJk+pQQ9eVjHkvjgCAbRYsYxxFFJ4IuVvwZ0yGeLwDq/xHgKoyCh7+C5NkzM0KpcsqXAYVpd0kmDHl1zkYOtimoNBDxDbFNTIUWWULY9pnFj56kzMu0HN0vRs1RMZRWhnxriGQfm+MwliFPWc3Ds3ABw0eWsvRWGs4KmNFH4ULYIXcDlH5iLC+lMSsSgmf1Rrl7m2czqvr9KoPy3BozACHxjYEX5PWXEQ2xTUKzCuZZKDIUVc00TqbjTUMtTmlqwPxPuqIdy2B9JU1tiKjXFrZHGWgLnFgg75ocmNl31bKGq+scjyV6bjyPVSnt821/zid4dD634NCdErntjEEA3MR2TRdowkfOmTmXtlAz0Z0tcuEKCPedQTSH2dHUBTFChxEoYNPYL0oipMQ//Go2Ou2Nluw+g5UaDEIUQbhChwc/bHectElH7mCVSmHKH1z63Ix+hKOAdoM9ssJzAFvxTZFNVb2QssdNnzk3Oew8zF4lABTdE9gYw3g/q2rEe86AunH/mhP7gH8HqiuueNTeHYPADbePg0LvOUytsHhgb9hvsQxXKiOF+HP6nAPAuL02sXbFz5679AV/fDODjSO5y1ob0c2RTU6cf2ZgJXRm5t3/M/gcXHpu8OYLjyFCpsQ8a4lkL6yo8sPAT7drbgfrZ+2gI2HcIaDVtEtezCF0reE1fAN3qwOn7VCTKM4vTO6vwn74PANjNr7d6BZrEzZFNW4Gp3xePLDgyD257td9v76s0A3EIdp3nUE0o/ENN65DQCP4VpZwNMrEPrkQz9T8E0C2rd2J9MzoyMA+B4+uOSz/gI3fFaPOF2Mqkbwq7te8VW3PYc2O2VTqDH0z2XodQ+9bne3IODqw58fdC+8oDsuILDZG8W8awgkr+wq3AQYH26v7XXHP173g8/aLRgBTG6vnjaJG/DToxPwJwMeAYyfsXbrPowq9a63XdboNsdpmOxWhb8+gOvQPFambIpqbHXhSSX4EyjAn/hkbbrzOaV7F6C1DXsAky+uxbyPawgkP58douh7548Jq8N8VmBfYH42n7V97ISwv8GJRtHLkBs3C+4JN9+om88K5IIr5H3NkFnb8Hw2GBjb9KJGYzVnWYaYZdPz2aj0GV1HsS+YjHnbOgLpry4aJY2jqaKAvloqdwzfjc9yFpwX0apcnZWPsvoscdoqqazVylgro+DAzSDUFNsU1+jDGiNamU+Z6DBN1zFVOuZdQ2CBytJKLCKtG8+KYh9gv4AIydoUzowKSB8JKAu/bW2VTyFCqjaFM9vlMcwDFMuSQPuzpCyBlCWQsgRSlkDKEkhZwl/t27FKw1AYBeCjdOwLBDeXO+QdCm7xAZIt4AM4ufQBHERfJQ/gLthJHC906RSogw4pWQvC5RZDhx4Ckp805yPwL2f44UBCuMkMA9tuwrhO3uPkCRDW6/OMieF/WFukaVb6uszC7JEgjNbnmcncjX2a+jjfeiQIo/V5ZpQnAqITAW5dtThDarbNH+/xj2QGC6sNgC90zEmCsFmfZybXbA3M2xpd1SonCcJgfZ6ZXLOFC09WdDhHEoTJ+jwz2mbl7hNHnm/P4TkrTzscuUKXmn39KBxGKEn01nPwHa5gh4Ptsno4kSAM1+cZIxd7DGudh1EhTocANz/Zy4kEYbk+z0ziRCB+FN/8zajxDUkQRuvzjM5nxbRZUbOiZkXNipqVX4AqjFryIAgyAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAI4AAAAzCAAAAABkwm9/AAAAAnRSTlMA/bWfQ5kAAASUSURBVHhe7ZkxaONYEIZ/whYmxSJSBVXGxRIysJhUIcWybHEIBMeRyhzoCFcEl0fUpQjhBOGqEBCENIIrDQazHOgwV4TlDCGNjEmxLCsIAoNJ84IIaNnmwflJz8iyFdshq80V+cAzSMj2/+Zpxvox+P+KZzk5PMvpeJx1EjzGBQ57MjmR5XLuWzqRYQ2jJZQw038qOZaTlIiICW1kRJzzvj6pZwnfhVajhpRSDd1PANTt374iQ0FyQuC6F4fk8LBWwhgrMv8QNIqX09t5/aZ39NMvpzgVAcA5NjBOgPKayGr5eKI8vAh0MpuMdLvJdBLHBvmyvYjcTschUzaVSZ3i751BgHfbQFDZLgUagLCLdK/OP7xvQblFTBmfMc4LFMAVahouUdfwCZsAboFljNhXgIt642wLEKcHi987X3PPzKeLmgga0EMVOWztoZ77US9miDne0HonSHi1tqkCOHinYT6NckWGFoYBJUyyCgwqECgLViesQ0N598duF7u7NRxqLQD10xbmcg1NhG1gENTQuoAK3E5cIpt9gNXFOisy9IgLiByRmhQ3gUtNPo+muNIhT1ztOLaYyaMGckn0GBumJpctt9iPhBW/IZUTEVki6dTnczCIiRBx7hHZnIvsJGmEmciLyOD3yYlEYIxzL+K8T+Rn5PBEDrdFmg1jo8B9qd004sQkEU/wyMuXY+lETBTT5B0yRa0pysjxpL4mUZ8/mL7u5W6BzbOMOmt/oG0owA3eAWjvKy2US5AMQtze/IGziuyJKzXpvDrGOFIxA/X3kxMFk1zg1/saPcBbAB/wGluHhwgDrKR92xBxbx2CZeAaMaUD3L3E6LWCmVSPTncmBbfu9kr5cuTACrtlFVgtK5lZWf8ZCP4+Po4H6UuhPGEl1iBfJcxG3Q8xwaZ6/xhsYw24hAbgRstO32UFqFbRqLdV4A4jwjcY430FkvAjFiQAsFrJkzMItBJwjiqAvw7y1vq2gX924uooiFGukMvHOh5AbT9PzhU2gV4b68DFq0renbCMEQpmsn6GxUmncqiMTWWbOpwZRHwYWfzEoqeNLq+gjnxi4QVgk87G5g5Zru4Rua7hyS/nAuYTWYwx3xnmdMx/cxgR2amcDpHu8WYcBT6Rn5weYbhyFeYjnJYkx2bZ8XLBJX0vEipEjLGSPWEjuEQn/xFOK2XKZvnkSjl5MF2P8lZIzuOcVkrWZkWmOdP29XU7R6Q8+XCaNL06Z2zFthXNdqHMnG4hs8kXg4mNj4M8Th5PfK/D/Y4/WvFYqdl8U8xyz8zHM4g8i8jiNpEti+MmbUmWYZEpq6JPlgy8cKOVeeyL+8cjM99m8SUUb7SyTqsGVMvtXq7NwhKKN1pZp6UC2EQP0mYVKme+0ZJV+gJJkXLyjVbWaYWZH2SlWDn5Rit1Wkm+RBXSZhUuR+7QvyJcQf3zZgtADTdIaAO9QEvkfJ7aSl4A00aLe6k9Mm0yWGqzip87WaOVcVpE3HO91GYVKme+0yKaslnFj8F8pxXiugW0e7k2S8K/G32r7ztDXHncdKKn/ROAZeU9/yfxLOcb8h9GXU67Lkp32AAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAIkAAAAxCAAAAADL1tUNAAAAAnRSTlMA/bWfQ5kAAAQYSURBVHhe7Zg/aBxHGMUfxoVQYQ4XRlwVrkiRrxEqgkjhesk2Lq/ZYFIdqUIWVKhwkQGR0rAQ3Cy4FCyIEFijMrAg1Kw5XJigASFYEGnGHIYR1wzEM7MzrAadbxOyUgr94OZYgfjefH9m9h3U/4V7JZ+4V1LVqksu7kiJZKW6hkj53ShhuQpoYn4XSgqSKiSP5fBKhFK8Nkv7TMyUiNeV4hVvk0L5wErqhKhmRExlRFmbEtMlJRGxhFFqkxGTHDonMaWFoDgrRExKk1CbB61P1ZQqTUrVwEoaolIJvUgbUxA1Tgk3Sk3VsuvleYD/nHeYRjjFLMKf2AWAD8AmWsYAdjEH9N8u0eFzSpbhYz/eYqqXCJhjGwEb0FyhQ6Dk/LlhCezp7wNgefAHrvHiGL04/GLSLkeYuOiOBQCfohG6KIuoU6JaV5EXFBeNEglT1+FxoXrAKdNLrhuGqaLy7RH2CaPi5o6tiZShjIXu91iqgJL6SCn0SOQ6WEl5ntmYlVOSudnpTFSohJOdbxFzJzhAxtSotSQk9CLN3rJ2k7mf4jSjxNx+kpIVJ5sgEv6KaNqEyoZzc14aMmJqLUK4RXEnPE2cElWXtatBvUKJtMGrRGcmJ5K2YpSnSUKZtIkPktKXJq6dEg/LVt6ARLWrjYopthtkRKWWYJJRmQeLTLo0a68AYWaBXEZUxeRKJYkOwwpbKVfEnBLl2t0W3sF5zf1Hrs0KaxTPP9FupcjDf3kIzxNc4eRsPzx5vtbL7sWbbeARcAHHYzwG3GcDaxjvLzCZwLM7RkBHyQgfF7+8Co9TbNlD+gzAR3iweIoOv/kgi/fogd3S1uRmJWNcHvwwRngqbsLzCBh53e9wI+9n6M10P1Di4xxGkcu8B+d6ucQTl7g1fPUKvdlCy1JvXXlKN6N2duT1ji3d7AxASanszk7VCZO5yc/NbFeUSKuVqwEgvcMH8GxGERyRropl+uLgYBa93DCFiib4N5zM0eX1IugX4EugI6074axNUE6lrEruasYHMTuybla/PYo4lq2STvnyAcyOA6uvikz7Aka5kE5cNpTZCZWEKSzNDejnJS3UP8FvgFjgdZzZ6e8BxYrHPhQxEWuc2Qm9jjc7w7vRLJOiIPvyRzz0Ot7sDK+kpsZ0e27NTvgO683OYH7HMze31TMcWbMTeJ3Q7FiGUWKjjHYu+ngdr2RIImBjhdfBaHglfufLt89MST5AY79Psd1mbeuWlJwCOJx+A2CKv2A5BuYXkVVyhu1bUvL73uvnVz8BwLc4c9XZ+/W7nX3ApGtnggA1BIxEw4U3O6HXsWYn4CEGYgzHj7O5rUSnIG9m27c1O6OOpp9fLnB+BBzP0XKC74FbqU6chGbHeZ3A7Ax+2gv52cu0uf/dvh9/A+QG084Rjv88AAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAARMAAAAwCAAAAAAXjcFIAAAAAnRSTlMA/bWfQ5kAAAbvSURBVHhe7ZlBaBvZHcY/yh5ELpELxW4vEhTSxP+LCYEuOZTsnkyHQEkuhjJl6SEYL73sXJYcsqQDZemhBIYGX6a0PSxiwEtomVanNjBgtpARoodsNoeHdFhTCq87CUzR5b/UT0/RkzUa62XfCtPFP4MkW/P//o9v/Oa9mQ88zzng/1vOPTn35NyTc0/OPclylpkml6yIpbtmRdJ2LAZVdSaelGHKLEKPyA9Dj0I1ChnkzppVSbs6g646C0/CmBUZkVSDIr9kZuEJZ82qpF2dob7qW1glB50dGBo/Re8ZgNatX4ycNauSVnWG+qoVeFKMMDwcjj/d32nAgIvQvDXowJ7RSEkVKPpG016yUNWmrt8/xPCwf3oVf70InyiNiTzJzAmlPDN3OCevZIVHJVsSeBQxCwo5osxoWkomHlEoeFqXElHohxSUbKpWfz0JKEjKgNRAfBJTT9IsiymQr47J2JZEHZtSxgmFWtNeMopKmZAnZ+pIqeQUmKrVX0+KLt6+3fg31gH0YPjb40cfoznAmDaew5bPsKmUNnF793tKc7nkCBP6+16jefu9waMTdT8Gttrdvqla9dzhjEJmqV44J5Jm7ui3jBUxhWyJJJ+5VC8cZFpziWQ6PfcxybGCN1NH49kSUmyqLP9PRtU/WNJX5+ETXAWwhjmuv4fdAq/HC9wEnuEGMHq2qTSXSv4LL6E5gqJ5dXCirgHFf1HLGwsd+c3VjQfQXPrBtRaAe29vw4ouLgM9XMEiNoAXTT1QWPIE14CPsAU8vtW0knznrRZOsmjoF6Bp2q3FxS6223du9nq4c2cH928eAHj34QFsGA52Ghh1rra6XbSAFziBmCyeR1iHJf/ARRxrtVGo/YXWXCI5tUQfO+r95ERdH8An2EL9QLiC9PXyRnrOJXrGppTwcvSSl1OYhswcqkpFSiSYZUpaRC8CdviUJUFIWe4LZq1pLRmOv4vD2TqiyKw7qspqLY6UkvGkJFKipafL6zFNBFGobM21Qk6vCDLWkj7bEiutnMhT3bWmtWRIfhD7UTmt02txEJEvTdVpnsg8U0cKIt2ejIq2KuTlyHEzoRU40C3lhJI1OeVsi9YSua7VmraSIUkhpKlTEHGe5qbqNE/KmMLAE+MTU06qf6vrtEeJen9NhJfzAsKIDe6aRrLqSaWOaOlA3oBmtNv749avBn9/Bx+j3YDmywIvPv8Q+y0A+C7waWt6NAy430INrV8+eNDEPIf4OQx1gtaaRrJKc65u+ATobmwtqeIxZUApC6KES3o1x2hCrM3OiUJjej7zU3I9IhQ8RxKzwULQQjOJF5Z4/nydiI9JTxuImTsJecycxiWLGU8iKWUeEmUVT+QsfCqVrwUbLARtNEXNYWVdnamqnzt/wN6Cvc2FJrC1hc7un1vAGlBgQvEjGKC+nVA8xVJe/hVomH2Vg6Dhc1hgMxCzj+0PcAV13Ojg+DKDL8zsRPOfWMzTXdhxdBcKJ0F3zECqnqyZzd963S54zWZDvrlvcXoGwHeuQeMg6ER1IMPWyWusIJpuBTzy+MT+JCLKJg8s+JtLRJ48cV/c2ka3GB58oG+YBiMAxRA4Koqi//t97FxXrgIb+MZS7GPwUWUtJgql2aNlNMVPJ0YGvAwd5eSCOVcfpAlVKqmKO0K1mu0rXAKlyCyrMFtowZqQlAmVhdHqfket3H4smONAeWxClUqq4k4SEtF0zORFwilQEpTW3wNKzyu5QkYx2xBOpFNfmlClJlVxJPeItFTmEUm3QKkMAq71RElEC4yK2IqEYn280L8tsDfWnjuTJJ6+hyu9mHw2/bQneu3ILTtGYXmaJyyDlOcIErYjpbF5esrIyRzN84zFdPILbZszQR7oxxpxFFNs+hlPJFFu2VEuzTJkzR8sn1FzFpgnTDWpijMllfH4BAhP+pSzQ6C04nxHkK9mjjRPmGpSFWeEz6l+np9KopIdAqWV58X/AR7uNaHooTZVcefJDVxRHbrYfortBhwCpRXnxRcxwCG2oeibPBeXAbwJ7ckFHMGdzy5hHRiOHr6L5/jhfD/cvfvrP+13fnZoOp6ZJ02g/+EexqyhPlVxp7OJRhtf/O5WC4/xfTgESqv2BG3ce78JQ02q4syw3QQu4y/dHRQ9XEZtoGQ6npkn38ab16ExoUo1VXHm020Am+i838DkcuIQKK3Yk0vtPbxixzzsOQT6g23tyXNcgyujzrpqpu5PR4/Qnuv3cuxO0d3HB83X78hfN1HGChPG1KQqbvhE5AsWJDigY7ycHQKlFe9PuOQZAp9rUhVHpEJ3k2McAiUHT1zCGCLHeMc9UDq7PVs1jCmA/gHQ7VeymFX1M3zFjrwyTBgzl6qUq+5n+Eod/wfK0vRT4TXyNAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAcYAAAE6CAAAAACpWa2XAAAAAnRSTlMA/bWfQ5kAACFnSURBVHhe7NcxSBtRHMfxb6VT4GURSrgMkYiDvEUyOTkECmegiw7pIsRNFDpkyNJF4iB0yNDQIoXQUocSQqVL0CktCIeL4WiHgqFHDzFIS+g1DzIIB9Uc3KAZS0LM+0yP9/u/6Qf35/DvAQ3/v9F0jZquUXvIuGr/JDBjMPHGt8Zfn6tA9u8RiS2TSeePr5qURd8/z0h56k+4KcZXBABjGWwm3BT3QRRoW1abwVQYKSc4DabsINW7cfjUIYlFONhO0czneFcC8l+akHpaAPK5MIKjQmL5zdyzjyUC7+3glFhfAbW/lz1x0ztC78ahqkuZqRQzmYrn+8cy43tS1n3vVMqi52Wk9LzyzdYMo/6Dll+WtYqs164vyvK4P31e6acVWbyZK+vdOHTTsfl51/6G2mURYfIKEYW4ENMgRAQgjFAFUsn2Ht/JmhGIbiaCaWMJetDjNyLFof6oDt2cycpVo7GddInDFa6TvL01f4RRF+Ywsq31rwv0bcXowoXzAfMxrC3EnLMOrq5xJJYabL+AUomBemHUgzg8B4OACVE4aTUTaQFc7rppRkTXGAFisLEGIO7GYdSFC+5azbXNgrPJyyqfkjlX/3CMRg94BGdCCHZUcBPqMhtGs9ACeKJuvTdgT9lVNpJ0GDJdowOA/RbyRp6Gg9qfEXQBVAdQPYgiwkjkaVrwelWETQfTFqTEJfzBcsE6YOw88P+xV4YoDANBFP09wF6iIgcYUcrKqMi62sqoyprK+JpAqdxj9BRlyd6h1NR0IC6QJbuzhB4gsJCnPv/PjJgRg0x5XkRVBw3cH6Dv/qzM34skkyLAh0GdXgCOV0h12QSPdr62VesZF4NFxKW/OxRbsQVXk0mRh91vUhwbeT7Cfnxme40MGdv7wtA4rmzNs4/9EQwlGEwGof2hRSaBnUNCo4FgNBDeM8zSr4YXgg3rYaAG59cYD50JLhDMDn6YCjMG/Qh+KV7QGyhGTCD7TBEzZChW7IBnSBFhFko0CWwghZqIYoSJCXNRgXl/Lmzfe0s6VX273S3JblWp72dTdercul2l8+me6lv3nCN+thE45tV4TZDD8dEyC1X1QOw6jJ8KmAnieEZgkYP+KZnTd5ih8VmABbYdnt7V7Y6h8eTIfHQSfopIMDQ0nhCJh96zIBHxJCthsaHxJIgdDDL+TID8+HBtZmg8LlikloJPn0buHJNHQyML0ImEUAcaM/QNjcdA6mEn5rwuNPIEI0PjURF30E85rxGN3MfU0HgUsJim+vWhkXfszNB4+lN9nNpbAENjFqATc15HGnmKvqHxCFP9+tE4+VsAQ6N4JGac15dG7mNmaHwqWEhT/drSyDoOa3SaaleGHr1iif0zzweVaRPLDUhOtFZ/9v6vmrxs7NmI6GXcdxDt6DlM9RMp1XQ0EmIMmu1UPXSkyTF85qv6NNWvPY08xKTRNDJHEtjxm7mqTzSe6bcAMMG0CRMedOg4ZWqfxDyN06pWB7XpU/0m0cjtDmsyjTxCOzpcr4lt28GACS2i53jospI2wT4CT2yl6FCbtqrfNBozDBpNI/epRkKMPucJekJG9ITcKWuZgwlnfSXjLMCo1EOb6jeNRh5j1Gga08MUXGajGFaupBXlu38bk7LWEWIqWYswrvRQsGlVv2E0ch+zBocb5951WN+S4s7uogUA3wN1+CIAXIRuSatBa/vjtQVoKG5c+lne3Iyq91+6sQZ39lQO2Xmxm4e/lVIfnpCW0pQEtB5NxyrcaiyN99NfQfvq7lquUj4VN98pReWfI22hnAMFrUfDsfDug42G0rh1+zcA8Pbig49lRsS2oO5LWAGBxwDwEFpVrQUErUfD0br93lYTX8ZlETpSCBBDOc0IOU+xI1SovoO6Fa2D2cEX0xBjXmo7LSB/lvDsrHnfVCMUiHiKShAa1ytmD4ie66PDOGkTrMKhtjNCI3Nq+RZgTJpqLrdWKZ0z33lSrHS8Cp93H823AIC0OVRhUdtp4dXP4Vlir339BtQP0wqrb/5opLcAZyhNtXcfYLMLs4eVm6vdM1QXZ/8mPIJZxJXurY8sk208ZeAsJD4aGo+BtHaLHYbG5oc8Ghqb/xbA0HjCxMfmTzgMfgPvQ41gRuOZSHw0NB4XPia1olEPc2NpykqSjtFBcixjGeNiM7ofXaWZNFJ9h1rRSGFunWJRyrHtREgh2g7GtHCRFpKTUMhbpbds9wKxjYQsftJMHCXiSE63DoRQXqXBNDK7w+pFI4W5SU4ZZy4yYemAcxfTGGOGDg8wlaFvLLUxGxIkRwuOGaJc1HEx5jy00WFF0JyAEkIMxcmsuTTyFIOa0Uhhbpz7aqwknCEysYljl3N0+mJaWN7DZHiQnGpnjqSROzG6/W2ADufEmToFxVGMQYNp5BFG9ZpwUJgbwJs3X+/d/wSewA4sW2CtXV859z0QsNpyt9PdunepNTxITog5vP9jUJi/utnb234dCuz0evmBCIuPe71H8BdoMNrXV/dqtcJBYW4AC/O/OP/Ga9tQLGC0QUTbSKzJ7V3YXrw2IkhOive/014FhR/d+3Su/YIUVU+4KSp959Yj2PUAYPklaDKcr372kVUvGnOriGT79b21NmxKiobCt+Cdn/6eQt6qvQG++PRdikFa/Pj8j63DOfMC/Pq9ucuC9HlRBPxZwSQ+Fk6Vwtygdw/aqqr+BdgWDRt6JfzXIRoeJCfEO+U/1vXW7vYPylXBv9/vIXBBde92mx7yeO9+vWjcBOjutluwD5DD3roYYLdB1Fv/+GI1yCaH/BP4b7AGf4I+55dald59EIvf7sMPoW1ZpZ4P+j2FYF0X3fduNT/k8fZWXV7GVcPcPHQ8J0HHZTxA17NjlY2DmByGvtkhHxokp80bHe5Fqu9hz1jNG5knukdNnTcSXDur04SDJ1EiRfVCJpMHLE4Yl0Ifaq8kKSdxNthbNdP2sC/1PNhn4rObTCMlPtaJxhMAseHvVJte5fHvThrmRr1nFQu/X9+swYTjRGFu1Ht20bq++vKSWW9sqlMldGzW/PVGA2Z3zgCNBgkGZ4bGzDuQoiBWgpPx2UCI8ZmgkaWhjQVpXsT9UNLp8lmBZ2dNo5FxHSigGlLkPBEys1M+K2COwxpGo+Nnw3Nas0LgnGHCeeDz2UFm+/WOU81zsdmDvAsKGyu/W9VfCM8BWJXDvfccmB0s/HJ9s8bzRtdGX1Us8kuP8cy3QzaYv4mZakPGE5uJ52Mz0PyQR5jwS1iEcV/wKnrHSwdoZEWLn7kJT20+Y+jYrL40esiKjR8MVgl3Im00CqQx49zttyVBPFtvAVhdaWToFBvuVjlJpWOtjkZC4ohhKf7PDlIM6ltPNTx4S1HxGbFLrNJoJDiJ/LrKSDkDiDGuKY0hppx3MOE8CkpamnQMH42RW0weMeIzBA9ZPSccD+FF2HwAFyD/9yugsPfBtXMbNxZAQ07iv16HWcSvLv0kr+WEw8E4dD2MEyctNMxLRpS0OjijmPmzviLDjM8SMturpVMNED2WINrpGLYl/IJp5Vtij00+eWRxHwXnKclNQ4JhHWnkMn8tS8aRoMAVwlDtsyjlkyL1HERHigwRbS/hjUSAyWyvNyZoY6oExJg3Fa6dznTu/xxcgU+FsHUdGoxb8P70o8ZrhRZ8nAPA+goUyEUSloYDZa+7Bb2tHp2qd5qoc77X/wdiM7of3RCMgfVvDzZmOaQqRS5TWGMnQ4yric8RKjhD/xbIlHOka5f4WDcaI/Q490KmaKTEZ2HXkAUYDf9bIHXLkQ4wnWkaGSJjmKrRSInPApjKdZbhac41y5FmHZvNcnkj6yp89sXykgUClPgs8cJT/hZIzXKkrSn/rYe60Qg/gs0/vwHSbjLx2YPXlJzDAoz+WyB0apEjfQNa10BibUls7969PjZHmu7h04elHGnvzR9s5PIORI60532y/NIkf+vh/lSD/2uG1uID+L2yLyU+CzxeVPvhac61y5Fura3Or8zmaNwXmyuw3AIFSnzOu/DVRaUcnuZcvxzpdvvO3kzSmG/BljD2G9K++1BKfP7wp1vJPyj3NzzNuYY50mvn/2c+g/PGBAUYd1KGEhElPvtoe1yqnaFpzrXMkc7Qn8UJBxNQkkIp8TlJ6AQtzbmWOdKTL3aYVBzEWudI+5iasrgTpjnXOEf6xqVf5DMz4ThZmnOtc6Tf/cmtuybbeJZCHk2aqkl8NDTW42uOoZFFfpDqGk2mfGgN1P7s06WZ4xgaxyOzndDHUNcMypQPrYPan326dGa7hsZxUCuIPsa6pixTPvRwUPuzT5eObWZoHIMQOyqmTteUZcqHHg5qb2S6dK3njTlYAHm+kO+0YBQ+AdE2B7u9JV1TlikfegSondKlPxtzg19AGa9Yp1dPtbZY/acffAjQ+8HvoL++oVQ9wh4obMO8Wsbvgq7RW3MYCWp/FXLYWXwR/nB7DC87v71z/fqd3/Yh9zs1KFJdO6zdv90C+Ar+AebhzytCs+dR62s3FLEgYclVLU2jt47hRbUv3P7wzY/etXr/+4/wdLQ2uj+FfxEDvb//5QoYGofgS3gFIOlvLj9Sq/YLGzAaf9U1Q+R8DI+q/XLv61sWrP9crBC/vDLGD++r/XAYGvN7y5bawNdvKs3H1Drfhir+C4CuIXni0SixtATQ/aYN9x/duP/BjacHLMypvUD+eP/JSu/R/FJxBC/S9fqHfTVhz8otobVyLcOwOzf4AdQ/h6HdeG2hpzmziJBwBcRQtMidriG5nA/t4CAiTu1HSpdOEdNiH1dCmCn+uYhUTsWGYqDLS9XcEzstopnCpql/uVvtJxx6mvNIuHKJPUNMdU1VpnzoLB0E49Sup0tPSKMe/8w7eBiy7HVEE8VAqxDnVIU4J+gxzmzMGEU0y7DpDmaV/rzUrRk0ush4hDIOmD1trteRBDj9beDEVQ3JNNqGQ2+30wlpTKo0JoPxz4oUhixinBcx0BzTwxBnWghxkFNEsxIQ40p/Tt3qT6Oe5jwaHczERhodkVU0JOv50DqoffJ06aTokhzSKLYeBjwL0jR0pNbBJA08dX6gaHQVjV50QKNf0JignfY7opOo30O/2p9TtybQOHmaM3dtv4OJlBCzsoZkLR9aA7Xr6dITO1Wi0ec8Eq9zFY3q6aagaJTaLPSLDgydlEluIkRHwIuK08r9qVtjaKQ053FIo7iQAps0WitTGJcvradLH41GVoxGGUAXFTQyMd40GqWHVXzEDrqhLUejaiWB+mvdzuZ6YzLlPCb92UjpPepLyMFozISYpVmVRjur8EHPRhkJqIQgrPSnbmf3L41/9IclmDK+ovnjPgyPfy6mo234fPOb6vvAd7UZYzmi+TZ8XIRNU3/qZmJxnnWENCZpsR8a/xwVT1wXbTm81Jn6BDApzjuMaC7CppNS/+cybzRgErQfGv9cNLGYQp+LfXFQoJApoplJgfpr3QyNU4x/NuHGzY9/NiscsxX/bMKNDepLo4Gh0dBoYGg0MDQaGBoNjQaGRgOWpmqXxOo9aqFkJWk0RGu1M8uYQMaySS59MhrNwkbgiW1aBLJpUXGjqoImVBWUyoJSZ3b0qqDHpdGAOZgKg7sZBbINjYo7DG8bVhWUaopSZ3fSqqApxdAdk0YDZWmGHgWyDY+KU81UFZSXq4KWaopSZ70qaGdcVdDjr3AYfNPr7WilOVtDq4ICVQUFqgrabg3UFG0NrQp67uqDvV65KuieVhX0+CscBnflVpbmBICD0pxUFfT8G69ti+aCu1YLJNaKztuLP9Fqilargq6CxNyP7v2fufaLdNltuHnFAsgtuvSxaTTwLdhrA5XmPEZV0BaVBR2sCvrwVrUqaE498/e1qqAnyW80sLTSnFpV0JZoHlUVtFJTtFoV9NZAVdDSoaWqguZ06ePTaJDL/xTINiIqToW36VVB90RV0IOyoO0WdZbiL8tVQS9C28qpZ74peoJVvTQ/Ecy8kUpzjqkKGmhVQQ/LgrIRVUHDg6qggV4VlGLoTjJvNAFxWmnOMVVBmUBZoLKg1Hnww6tdmIQWQ1c7Gk1VUBMZ1/yqoLMeGWeqgnIDs1BlYGg0MDQ2u2aortJrhjK9KKihsZ41Q0lVFdPQRsa1oqCGxnrVDNVVes1QNfZSZDyloqCnRaNB7IZKCNGlqqCaqtKqKsloRUGf8/TfIM/VJu8O6O//01e3Liv5ExBrx9+F3R4UIFV3oHWOXqWrw/w95zkX4jR4p6gZ+r6sGUrofdA598drVsGoqgpqqaqgpJLo6a0WlIuCfnjbes40Gtx9C6hm6KF26531lY02DUyqCjqgWuir9NYciqKge7Io6GXzMm76NUMh/9PvLr69BCX8B1UFHaLSWy0AvSioGY1Tqhn6ckHCxX982M2hhBeoKugQld560HlpxVJFQbeuPfrgOdJo8BjeANiBvwfIv3wFFBZu/BE6H/ToJEvFS+0BzA1R6a0WEO6+A/ntNvxwfe/50WjQhRbAR/AywGdXLFJf3lhZX+0ectY+WMRoDVHpraWhvPndFuzAC2DB58+PRoOH8CJsbsIrkP/7NSijtfbO1rVNULgka1p9DctLALBxbauqIlEbjfm/XieFWah6rjVDOyNrhkZhIbiYiU2qaswhK6tI1GuGqpk/FQU1b3GeX81QPr5mKHNt38VEiYjZgIpEByUCrhcFNTTWpmaoXjSUxLFFQZtPoykaWjMaDdyUGxoNngeNBoZGA0OjgaHR0GhgaDQwNBoYGg2NBoZGA0OjgaHR0GhgaDQwNBoYGg2NBoZGA0OjgaHRoKGJcXtfA+zPAZy7YIFBY/Mbv/nzPYDFi+k2XFpdAAPgDUWI6PEi4N6gsRlVKqm3tQy7/wsMmp4Y9xJACgB5d2sPFPKeEEch7272lLTX6+W9bm6ejXXAY1GDJP9w/erD3Ut3hWJzdfEff/vS2x+/Bwq/7ypp8a3LALB1By6uLv/zEmz0tf0+sPhuS4gg8j97b8oOLfNsnB4i+WzMEDHmQV9k8ljlBfoYBhiFiJGPMUsQvSxAjDiPEVl/Y6dcaDHKOogZlycUNaOQmWfjlPFw49dtgNsr8AQeg7UMDwHyVVhe2luHL+Fq+xzA3I1FsERVhIUWwBPI70DbglfE49SaA1huL/wPEL3ECWJrnQewzLNxyjg///219c8uA9xYf7u3+S3sAuyIp+XC1eW35n8EEj+fhzmAv/YiuPRD2NmF/wpgLcK9XLS9BjAP8Kk84dSekubZ+FK7EPJHd3YvSemJrEfyK4AFUFCnPEy3F9uWaD0n6N8FgH0lA7DiBLj6tmW+qZ4m3r+9+4e754tpyF8lsVDBlY3N3dUP4JzkGb4Vqjkp0wlrcO9jOEUYGrv34PqSIudCMf/4CRD2i3pe66L1a4B8F9py3H0l215TJ7wM8BdD49TxCOAxiX+DrV2ArfvWTdjeAvjwCtBgE48+6AIsg7UGmznsALwDAg96EAG01QmfAvw9fAtNRWOnG1SqgjmI6PiIDpNFMRzbO6hm0Rd8VHCZ7Of4tl1UNJFnRAcn2GEq9wlvIP4ThyaCyiFKdB+9vATdJyuy5Yv9/sHBKdbgqVv78y0AOde/eeWL/VcX1Al0pmVGY4OQIgbm1XjTsdcF+H9dOCsgpzpbuP+J2G6Y9cZ6IWL82EiYicWpBWIHI35sOHbEDI11INE/EQ+hbYfM0NhgEonIiBkaT5PEgOzfyBFpaExd9DI6bOKINDSmHnopHc7yiIQmj0QicdZHJJiRWIWPdtRUGs1IJDAfncTQ+PyR0Uh8bkTGhkZCA0cLXcPQOOWRYkYknIWRaEYknIWRaEYknIWRaEYkmJE4resaGpl4TdbsXyBDI4vGkGiIBDMSJwDzav6MBDMSJ32H66aGxhOMxIa/jDc0xjZOtGxkRiQ0I8imoSPS0JgcgUQzIuEsjEQzIuEskGhGJBgSn8OINDSmGomNG5GGxqyDXtr0oC5DI/NT3hik9DtXDxpZLME4C/0GBtyaxzgUDsJGdLyMex0HPd4kmOkt0VgUxeMMM0TkT4MBixVSpoj0+HAEp0Njxnlic3f0aDQg19XxXBz9ZIw8x0H31EZj6HGeKUWajvEVLE2f1pjEPI1TKbOMCWSM1KOvwXTl+PuYJsh1eWhnQ9s97MNhpzYanejg0LZl4mCCfQTyttKSnHAeomPbCdfPkO0RInqOh53iI7xAbCNSD14Di3XZYMjH6jI/OIHuY8o0Sv4Q/aFj0Y7od3HqNIZhx2EHR74wlCcrQKXC0h0m5YSzVMohhpw7yCpnxBgzdHiAKedFRXeXi9MyWYeG80N1Z+AaCUttcVYkPrFT+VhdlqQpJd3H9EejuK5L/oMkO+EV1bPzJXoHnUbPszFUR7a8TReTggMmrK3MpWSGQowx4OUzYpdzdDhXNCbygxLVjTmSRlKz8jWE6AnJVwMsqXzskJsoBLqP0xiNDNEn/8EDz3ZsjHlmp30N+oxTY8XlREoWlgqfgfPRn42eskeCtnJwvjBWkqZJyYKZGk92mqYhOrx8RhIoGl1Jo3pKBKqbF0kFqQeukcTyNzsL0jR0MK58rC5nTAqM7uM0no0+2lnJfwQO48zGLOnYAZeFs6mx4nJYhiELMCJfciLnoz8bC28RK7NE6Ik+Th+DgyJCqXY8Xj1D0Vjmy5fdQl8pSD14DbQTeWw7oY9x5WN1GTFg8m7oPqaJuPim6mZl/xHE0s9kkTKi2FJj2eVIdxVhTL7kRM5HH42p8HlBligTh+jTCBwcjYot0uo0MhqN0ttiRa1do4OJaIgEtXHlY3WZeRgKge5j2jRGcZwwXvEfGWdpiAGPlJ8ROmo8cDkdZRwmfkjyJSd2PtUi1UsAvQvvvX4BtnML4EtYgUr1Q5KLM7rQIu0gHlsAD9UJd/5NU7cGr/H6g6jVuwdtgN7AxXTZ+v69LwEgt7T7mBZeXSiEhflfnH/jtW0hQb6+ufw6zMF5WUJ7e58aJe7C9uK1cu3lR7DrAcDyS0Wzgi5vw80rlvhxqcMgqEBpKoeJHaA4CjlP6WumGAhV2RdnZHZS1gowGo0+fVNNpKKs1q6RORjyBJHxDDFm2oUrMuuo0Uj3Mf1nowL5D+YHnDMb01SZoIMRNfKyy+GprbQxDasTOh9FY4ISKc9sxFiy6nro6fPGAp64fVfcZOUMzoPDwrKInuujU503krpyDQk7lEZxPCdBx41Gf3VTJ8di59N9nBKNah7lSw+pHn4hU62I2UEj0RiixxIeeYrG4swkKc8CdFl9g3Awow7DaeRMQghxphSJEqS6aGQFYlk9OIsTNnhGsVc08iRKtBNITdegTly94smSci9Npktxuo8pgVyXAvmPDD01GtXXyQiDUmPJ5fgYezHnAcaaTzu+8wF+DEQeHwvEUeqGg1yXAPkPFqPr2dIxBOi6GFQayeWEaHucqXkj+bSjO5+T05iNpTENEaNklLrJINdV9R+S4APHwIRQbaQ+SaL5kiM6n6nVGu99CgDz7THqZsOUxTUwdXEMDI2GRgNDI329TX2xjUOxjYJYKZ2M1x+GRpaGNiqqUrQ9B235hjzivqLT5TWDoZFxHSigGmJEtANFKOeJ0DI75TMH3T1p/ulUaXT8bPgLrEwJATtUcc7kSp3PZwBj3ZPmn6ZIo3rFkHFGL2cSz41Hv04OI9GHaEx5hmxm2BvtnjT/NEUaXRt9cXWP+1iiLvPtkA2PJuOB7yJ2Us4lfYnNxO/fbCB2w1HuSfdPUx2NIcZq0SVEr9rgeOnQ0dix4zRSq1mhn7mJWH07Q9D9E1UVCdho96T5p6nS6CErNn6g5ak40ZDRaKuIMblL4/7WjUQwVswbjPH+KfWdaIx70vzT9Ghk6BQbPvg8TMmx0i9fabEnPhAdMSzF/6ZivH+KO24ihTHuifzTdGlMMRScBMUoI8SuGw//5YtC2Q8jruAk8nHAVHPzofun0Kbnyxj3pPmn6dAYYloEmERBWa1POmJEVuzjMo2RW3w5E4qGQ/dP+he+8e6J/NPUaHRlqJ6MCmf0NdWJRv/yhWhnpa9p3E6bT+N4/xQ6lEY92j1p/mlaNDoYh66HceKkVO0weVr8SoaRDIEOlDrwefHlrMlOdbx/4onrJuPck+afpkVjgOixBNFOx9EtIThLbJeSRVjxo3isuZPH8f6JvNQY90T+abo08lTO4xM+BkxBHSRRXEg8LMjLopQ3Hbp/0hCFY9yT5p+mQqPBeP80uXvS/dPp0GhA/uno7kn3T/Wh0cAEcTDPE2mD3IDs0UAaQ7R5gpgaAskew/F3MBHy+6BjA54v8tvwLtyF20sbMD3U2x7/MuoqfBKkdjT9wi8ypSVFT6VjTwu1tkfEyRhHd6qZHZxG4ReRuOU58nrT47He9iBjHINGB9kpFH6JHWGwTNpteqWz6m0PMsbRaYzQq5SVosIvpNNrwBxFOdwIQpcdGC7h9QDZg25bt8fk5jiSPcgYx6DRwbBcuooKv5COysJUUvWoMIw8Vk2kLI4zx3bQY8Wx6jgAvxbDkexRNsdwe0xujpH2IHNoxjgGjRliXCldRYVfSEdlYcplXagwDEvQk+16KarUdoUpnGqVqyrCWqS3kj3K5hhqj8nNMdoeZA7NGEelkVY0qXQVFX5hhzoqC1Mp60KFYdKi+ktFqSofYVx8LaUqV0OjXOsAsgf96MPsMbk5RtuDzKEb4+jzxicA8wDQ3V20AOB7sAUgpWX4Yqek++8ree/+7k1ZaOSbXm8HBN68+Xrv/ifiI0BuNCXs9O7BK7KWyydw7nsg0YYh+A+oAcgeJXMMs8ck5hhnDzLHWGP858nvXpV7mYe/lQq/HOqoLIzAXdCqxrwI/7f94mfbZWXl1DnYhlZLyWswiDmoG8gcMMwek5tjtD3IHGONMcFoPAewr3bq9r8zr6THZR3kH2wsrH327Zs9ofA3Nn4DAr9e/fnG5SUhWevw5rtPFktKBd9X+31YhNHYB3gBagCyR+lHH2aPSc1xNHuQMY5O43eVAxBlpUCWlVpS0gN49cKhDnbW38vBugjdck2pctWplY3P1y6fLykVcqsNO0ILV+CpsKAGIHuQOWCYPSY1xzHtYR2dxoVFeKTG9p/ENdstuC2kTbi5YJHuAly1IC+Ki+XyP8C+2O+tqyOFfEBpwXWI+vLvFq+o5qHoiU+vAcgeJXMMs8fk5niqPfJJjcHHQpXno7JSVPiloivKwlQnSlQY5rCijE/KSB0ntuOJ+QanKleD6GDM6wGyB/3ouj2OYo5R9iBzjDfGJDQy266WlaLCL6SjsjBU1qVUGEahqlTHqmdKJzCugaHLawGyB/3ouj2OaI7R9mACkxgD+ARITzuG1LezesWiRjUzBvBJkNgJP0VEtclGJnvUyxjAJ0Lmn2rsAuM1Q+bXyxjADUxIVR1haDQwNBoYGg0MjQb/Hygt+EwZIUbWAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAYoAAACeCAAAAAAJJRL1AAAAAnRSTlMA/bWfQ5kAABHTSURBVHhe7FlPiB1JGf8M4mEdFyEgYS6jcRGhIMQ57GHYg7CwWRoWNuYSDyU5xQEP6oNd2MCTDe/gQVg1vchcGh45hWYTBWmcHPZiyxOEzj4iXix5ydAwG1YWrDAGWSiwvqqe/lXV5DETMxtnyPvBq/7qz/er76tv5nXN/MgcESzwv5digUUpFqVYYFGKRSna2qE1uhiW2hw6FmgqY6r6AKVohsJiVJlcZqJ4ih2VtAQmxQJaCGU/GqWYj1KIIXtUQgzMU6AW4jGlWEBmWkvZd0/QfHyZ6EtEn9ArK/QqPQXWVmEDC7x/6dq1N95H38xH5X4rqoExbT+mu0dT92NasQ0jgWqMFIIfj0ejQPhMoeu6RQZRQPuiVa1WjU6IkAWoDo59SjEyZlB1XSk6NDoXw0wMdldluRzpzhjah0XhW2P0QPBaMRRioKOpgh+VGUnbgNCNFr6NmeqB8FC7eXJHKqwJiWvrwM9ROCUYzpT89SulKIIMwoBCr2Af41EIn1TWGAOiMAtQRQnNaQ9UiqzgU+5zr7T1bO1OQ2OtUbdImVyUvaEVn7qWXDJjhna05rhaG308VdhRXQ9KMQoJG8H2yC0JlvO4bI2NCJe5wgWTZ3W8UjfCHcgo4w3CKZ3blgMttKktk+bzQuBBQBEh9sFJcEYDHgZRmAWo9JyEQvtApZCllLjJCuW+a0zOmUqR+WuANK3dvzd8w8EqY21eam3tioIpT1+bvGpkDUKXZeFSUSZiqtw4bwLkNkuVMVdErIR1b1tu62jK09Z8bjoTuTEDkSEDBJR4YZ+gFNIwUQmi6FhANSehyPbY/12RceMhtC+FrpWqMrZM49aMZNsbRrMludxuOmcK4YKpMOXpy8ZSGiZsdwkVIo+YWrbjUvAJiKxiIyJWorXU1YjPI55CKTgw568QOAIKvbAPoMTub05AFGQBqvkJwT7ADYrcDeoC3Zr6zg4tkcfHP37zQ289Ivo60ZXxcm/QQyK6+fJ3iV4kekD0AtFJ8oimGONfrXzgCX/oCYF0+fLm+q233qUYPyXa+vdjiJdXafyh7aVTXyH64/a0i3vjzJnbYQYIKCXEPoBbTv8EEbJAbvMTimyPfUrxGdFZoglNZrTDzh7Xrm797hd8vu6g77sy7RqO+v74B739iABMebwzvvTeuyAE0uXc+Red9zZwf2WVrk4eQ3yRtm6f2Uty4SK99/pfurjXJxabpxE4AoJXtA+AtECELEA1J6HE3r8U/ufgJaI/0G8fzNbe+s8qOUxv0Ppp+tTP+kR2vv+1znhjx1bszjtL5HCK6J7t2nGO/Vu7U8A36dbOzZDwIQHB8u3tuzdW105ThOn6r39G9PPtaKXr2DKsu24ydWUyuXu5i/ve0tIS/XLnpT5wBASvZB/scM+1L4MoOhZQzUkINmDmo/B/ZQ/sQ+hcZKX/2vfvEL4W1aVbVBuTFzBa58aXFe/cNrxUZ0LGU6VzEKLKQkL/NTzybzYsb4qRf21niE9lfn+pYmIlmKDhDaqQBH/8ez9ldJ4jgyCg2Av74F3B3i5IEIVZgGpOQqG972u7FA6F27d0eyglGI20jbQkUhsfYzaC4fwK3xqj+fptP9I+VDSV86PiR6lBmIseMlzOPKoRDBUEWPmhKiVWdWYkd0fRnoyh4zYm9+Ei8CCgKIlgH4VSSL/agCjMAlRzEorafW9Q2sOYtuIQVNV2Y8Y0PNLU3bqaezA0o2st6ppj1E2VTnWPujE9IXZtKyGj5bpWvUsHzOqUGAmk4YCkrSoVZoCAUl+YKEVhnVrXARGyANX8hNA+Q72Cb8BPjEKaIwiU4tATOkGfP2af2g89Kc7SkcX2R0R/mx52Ql8wn3/gV7j9CSI59rj5e27HdMgwRwQLkFlgUYoFFqWA4n6kBPgv0nOK05fX0+7/GSfouQQUd3Sfv1LsTDdn8669k8n2EztjcH/MJrNda4pH0t0byHQO/bG7zBaiB0vUWTYUUu2ZbCASxw4SK+DcLclKg8FE1HZ+qvGODCVHmRRSm0RxT7sIJJWoGU3Ae+xe207d1V7d5WPiJmv7UlSlTTcXNUTi0CGU1ENntyS3qzHYi9p8qpWTjWvnbTyUKO2ckKninnYRSCBRI86A93iVIpEUNZ+V1xI9ik5SzmqIxKEDQ7SdjgtnpxjzuhKD7Mc+mtt6V8ytZB9GJ52XqeKedBFIIFEjTvAeMp7pu+Ih/WOLvkG0tGJFlU5byvzzR6fslMPWLHRgdJJj5Mwa2Ow6nTsXM75G9NGfvneKGGfP0cY23bjYX5JGNJs9IPorfULss2LdWEv9e9KNA/l4uvHK2fEa4gTvIeOZXmZfpEdOgaSTW9Th9f45IdrYSB1CST11bu7fWXl1KR5cXr0z/vb5roLnb9Ofv3NnjP/H7bzp9XpW3MGTdh9FgYxPrnxwKYgTvMf8BvWCyxSqIxCKxCEgqafOF8abW2//BoMQtXE/vXp9AKrNh3fvXif6aqK4o5sGkkrUMe8xLAXO0kvKRDtbdG6JYkAkjhwgqUfOfsky0UY8CFGbcZno1muoxNtX3JmvpYp70kUgoUQNgPfYXWa9utupuJUQml98Laa9DgyROHIIJPXImZewKTGYiNoMKQbYpxYFTw9SxT3pIpBQfkec4D12NyivGRe+5eOUeZYpTHsJGiJx7BBK6nDmJQ4DjcFE1PanX4eByHLE44ninnQRSKR2gxW8x60Ue8Xuqtk7DZE4dggldThDeE8HA8a6Nk1mQrRejk4V97SLQCBRo+N5/8u+GatKDYRR+JDXmQdZmHcY8QEsvFMKy1W2VBDZOmCdfp8gdSyshIBNaotcbjsgojBFMJIi/mfzn9NNE3Y4u/PNn4/Vm9kNmUKYcrdu3BfLLc8lmiv48/Xb6d/Gfbnc/tz1SKh2MY0rX+70K8NiueG51geUIounKhRVcVEVJDnHaYcJR1Vszy0MOzQRW1WxNUNoKQpWFVPMZZfkyHtGNSDM80c8Ype8xyvQphCmDeN+L+w73gOKL324UdwHVMUUrnVhiAtVMac8lz0Tk6rYONsZ40JV3EJPMT6qiqF+ZU1xoSrmepDb4kJVpOrv3eECHma7Zbp1XKiKviJ776Q1XKiKKVz+I5Syqvh7Yqa4qqmKOts5xQX4vJ1XXIDO27nFBdi8nTEuVMVc30W4xQXIZjvHuACXt/OMC1B5O9e4AJW3c40LMM12vnEBIm/nHBfg8XbecQEeb2eHi1FVbPB2DlR3A9t8/vIJ1nnEBzCExdsJF2DxdsIFKLydcGHNird4qAvhgsXbCRdg8XbCBVi8nXDR0PzfTrhg8XbCBVi8nXABFm8nXDQ2oHhzegG+PNjigtPbeTw2wentPF4m4NmbLTMb4gI23o42Uzw7qiLFQpze7CcLluNYuACLtxMuwOLthAuweDtNF2CZ7YQLsHg74QIs3k64AIu303QBlp+9cAGj3fHjIhlUYXNF5MfFxaAKCm+n6QJ2/7fjx8VkVIVmuyUu5gNW0dbZTriwreLaljtMn2mqUBxXoSqGUvr22o3lSLm3neHPnT/nrkuhLUfKcmf8Vczh90dNoSvHyb3trAGAJ5xeAsBrvHvGYXJvO/vJ2RmjyI4DYXjYA+xF/uSdQ9keQJdQ3pGOoNgXcO5gY8HLCiYXTCKYvGDSgt1StSn1a9rGXYFalv5fVd+UzXigYUYr/v74Z1z8+vj417/X+mkfX193CJt42KZtff7++Ppt80fBz/fPjw7fL5yewLNOLpe+E89kz3HG9nkJzZ3naE9s9hiz/6N7AoBFmg6y5BADqojUEKKuECzQRFbEEEhkA5BjRuKxHVjUDtAQ50XHLetoh7tTZyGiPmSdXS69HC/IbvfineOA7TqaF3yO5tL5ZbZtGhFRhCOIJSdkkSWycECXiqKl3qSiMqIsaLJiVUaFBW66ndSdtHVrQNSNqFgdEGHCzQ7jyblq9Ql9zjq7XPpWPJOJNCQ9jUtkQmE5ZLuM5s4zNJc+toLy/3ELiGKbDN5YZKkioinCMCRQTSKIwmgMKIcmFKCpUElj1bLjgij7WXFkbkMZIeJOnelQ56zumqVvxTOZf/9nLVbSIdtVNC/4FM2l3gqPZAWjteUmGp2FtLuEoJcLCi2jXEmNEFpr67Bg0GQ9NbaM1tH2ervkzepFudfrThqqrcxZ3fUgfT9mMmqNYFnKZj/CQ7araF7wKZpL51bcQKIRYE5gb5X0hNikmn6zG2q/QNTQJWAco/ZIhGVNfa+X12LbjNh4A2bnttfhWd31KH0nnsn0LGRbImvFIdtVNHeeorl0agXBymCArHH3PnOxB7iRnbuieLnkuR5vHQkhbrzXWxPfcWpEWgPc6bM5q7tc+k68IBO2p6KDrRUHbJfR3HmO5orHVpBVk0zNIgW9dRqWjJX3e4O8XLYiif74XdFkBbjv9QbWbfGyJuc+W9Y9K1rr7pqll+MVGVt31iLWikO2q2juPEVz6dQKiUnXmqqsiXqxZWLc7KmQDauuJavTull0rQdrRVHuZM89I4nfOvJHvTw7Vyw665610Oxy6eV4RdYVSjhUrTiLHLJdRXPnKZpL51ZwDnlJyHrU/n6cEEQqUg7YRr0pI9sBAGi4dE03BcipIPJwR8lbmV6+da4yP3xyLpqhzll5drn0ejyT+d8VOlq0I7bLaO48RXOpt0Kj1612m7KGCFceGSqxLdMsuLv2TUBoI9+0TxvZRvfy7BS2mWd11yy9Hq/IxpADscaCdsh2Hc2cp2gu/a+dM3aRpQYDeJ5YHv4BrxG0/JrzlVZ2alobm4D/gZDyYFBJIVhoERAtAoflwLMbeNsJqQOvEcTA6SPwsA3P9gOZ5DKZXZPd3LI73ML8ODJzywz5fZdvM5P5bvfE9QoAvCxEjwEPtiG0y/nc9t1zQl68JBfF+3Fz9ezRhPY2OQVvOPmHXBQ3aef28YSG/2dlrW2vQ7GiPNYwnEmHS0BO4So8XhxeOUzYvG4xesShC1uDmmqrqMc6fpDKNvaplVTm4UPhZx24RVyz7AL0IDEh88MgxQCYtGgEAMgB6Wgue6ziKOtlW+V8oFQNinKPRUiTqyi4didwdb4si+fGowWNaW0W19wRA4ABGtfaftSS02nbpGKHBI0HkSBiWjOPJUiLK+64+qorPsxV6B3ZzifZsyJhQIGhEBTsGXQ5AwXOHggyM8+07ctGfs5ogDb0SWNUtcc4pNVVtLhmNO8bXIXekU1FhgHPigKQXMF9JMzqGEvue6piGKqtYpgwgmucE2riaGOqeuOxhoEUVK0ORppdXYtrxPdU+S1XV3YVuip7Xjw6ZjCGZBginWbQFKgK3ohWMIUznKR9DsJHZw/hfAoCa7BptHsALEHaXH27K1rJhrKr33Xt9LYsZtkzo5nnQ84HlWYPC6ADDAxW6FlnMeJieAix8FH3djCFLh44FGgYHuWqOQ+vN7kKvXVkhxF59qHQwFHE7HLUh86jygCUjVAAv28g77PNpvCC+8BS6E4k7kdNhwMDtHJhIS2uWHbFTJ6ZQteZ7Cp2XDshBGWjbV+QXeCL2obYn1IxVfls+j1QyLXTJGXnmTZHT8QDhzBD+3iKxBLktK4uSmbcXlemxtYmWTOTXQzwMRywhem38r7XmADo0/xbI0XnNAXuUYWeCpCTu/ZMpq6ypCu7Cr0l62eySzEIDDAQsfKafjXV8BxmeMgad9DYAhhqDOXholGEHO+qsYLh3LS5Cl2W7XAxmMmZMLbTnborvunZsJvtPN9NKqbr/QDvw619ddFEjnR1+bJWUW5xFbosi4thqHN+/LGh5s5Appv5YqHc4C4c3NjYmEz1P4qj8X+F68tXcoRr0/3m0De4Cl2RXQwBGUpDa7APW4lNcCo5mLgL4LCG48A5gKwG9wTJfr7+Ne+/S16Nrbi+/X7cfvYFaeDfb/749K/NL9dhd0NePCWZ5x+8RzKvf9h8TDbk8xuyHIVPXVyNL4ZtG3d/vvMhidz+dkvqvP6bfPvqu09ekmtS4gke45pkj3Jtk71E7r78+SnZy48/Pfvo96+uHkFB1VKHB5DAFMfLhB+MznMQTdeK5V3bZdeC6so6FOtQrKxDsfIfyTrwqAZ6EykAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAwCAAAAADF+Jw5AAAAAnRSTlMA/bWfQ5kAAAL+SURBVHhe7ZkxaNtcEMevpYOnIjoVTxpDbukUQocMmUwEnbOoZAwdOlQQQqbQt3x8QwkRhCyCjqaGDoYXPAYEphQUMpVQeOCpdJERhVe8HHw8S0ksE32qzhIY6h9G75b78+fueO9JBlpqVvZW9hpgZS+mRYkbtKc9TRl8hebsSVRmaVDhMSzAGVyYpUGFRewNO3CeZHEygdFwtIjCw/nEx40D7JlAuYgyQHQ0T8EQOZ6PqsbZi3xS6KSxh15Pe6jYChID8lHUaM9TxlZkwhhRErmouQoRuiaU9dlTYirrmThEYTwKtoKLIZFWVJ89f1o3B5WJTQkkSq6CQqfmjWX09YVZ9qY7wwDWAK5gjavwAzbhYYhJEFI2dZqUaatGl6TkKUTom7C+5mo3C3yU1DNtjVBIwVTQjhOT8kKa5wnwuBjvpcEYup2+aasFXXjHVTh9uwX24UuYh2tvZxvuOQELwO6DzVawP93AWut/Z0+b7qvlvO8JB1GRRgxpmXhEkDJ6ZfcBDgbmaZjswwzHNrDg6+RnL9t63lvdSToCrWNIrLvfc2BQg85d9T5++LcDAIOzPqQkMIMFTPg6+epdpnv+z86t6hbM0L9vSvINivk1AgA71WDotO2C6k027P50yQSKGe5DCdn4MnR2jwqqd5Oeet3d0tldPy+pXisdMI5OGzImrfy+F6IwTyemZUCip3OHWhu+JMnl59PS2c1mZt2C69/p2gAHMNju5E4NHxFdReVEAtENFFHgIYpmqi0Q1dyNRYXqj5MlGaTb2ChEin+h6mFglthRS/mNRaaXRyGpQfj3vafTk2CYdGCe6xPz3HgDZZSn8L8StOE7QPLPEcyTvB6Pr6CEailUHYXOXGt1NpSKJFIFSlM49mJEHYrcMIa3LgOXKlCaAsQAUeWOlwAlZfgeVcX3arbnoBPm230XCUFVEaLm73vPYDP/UmXPXu+GE6hASQoxEMU3Bx97RaPESOFVzzq0oIAdON6FAjgpxEBTMVpVl1N/4/8aK3v/AUUshTpk7n9mAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAATwAAAA1CAAAAAD5FgimAAAAAnRSTlMA/bWfQ5kAAAUdSURBVHhe7ZoxaBxHFIafjYrDhTlcuDJHSGGCXmOEi+DCGFdHxqRwpWbhSmFc3YIIKYzwQgoXaZYIEdjGpBAMmBA8RpUJWQgmeI0rkSojDhUmsEEYBtQ8iGdurVnplrVGs7s5lPuENOKeeO/NP7P/7qIBOjMLasVbsBBvId5CvIV4ShFJSa50X0bq7wJFFVTEZwvmZFCyAfFChhFRgILc6L5MnBJJLEiogoo4t3+YxkQqSzA1yZAx6b/zuJ6QQEZOdF8m0pMWLCMMKMWUZqmM84gKQqnjaEIJ5hQx5S1ehNLMjZzovAxnJosgiQkR5jRDdVyhIIMMzBBr8RQGRCkKb/GY6SoNyYmuyyhMTBZFQs8eqYLqeMyKUVjxMu0hEiNf8STGxZLVu3FO1UbrXsYkUeSG3SYRKqqmOs4xMyWZsuIJ3Y1E5iOe7UoyVefGSv6AKZWN1qOMSeJ65zA+b8CAapiNC+RmSKhR8ezCqCCrcFtZjNZnrdF6lKEk1nPIyIX4qKmjpRU8K99go5NxFed6SKfisZzKl22sf4Se4pmFkSGvctuUn2zeGq1HGWKY6Sk5i28QH1UMeTK7ADaeR4jSfGDazaLyRHKtW4bcVzwVIqKYcdtq8azRepShBCVxxxXIUBy3NImcMK6zvEJvbjSMsmMTiZmimOX+bxgyUxWlZZryKE1lqWbZK/zKUM5CRU4wI1QWIIamJxVncmYBbNw0a36JmK4XFPGQYRDqtQwi9HlIrnfblPMo5JxXi+dJHkTut1ulJZMfoCky4HQcG7fiKbP/ElGKm9IyVdSoeNZtqy9ba7R+SJaQIkeS+GQSUf+qLKxsip2q3EXwYReuQx2fwZ4evgQvDh4+GMGLHXBjdGMTShw++mb4ehdquQKweX0IAH/e78FpmDqy0EMcSXIjQlWz82aNNpN0BsJApIIJ8kLgB+pyiADDnJyA4slHuXqTdVuLIo312ZNGmyBm5IxEw+nEU9QhSwCwP15de3MLXsMDu8nXoMTjAVRx4zEAlEO9o8gVALisP3ky2R8fffwM4B04M3huhqtgqO/v2cbaA4DNP7Z60AVElEriMVFQdkmZlb4UNQNHlpMn9f2xhEnKMaFOuECgmTz8ZXJv437JpKFEHxrioOe7I+r7O/h59OzScGf9tz50wRIYBnuTXfiq1NttKPF8YAO74M61gcMqVJR5vwfQuzuAT/bXX4WbPw23x33ohGLnwXcrL5dH8Gl+XwN3Vr8FN2wZ9yRfP72tN16HOw9WXu6cqrnlLXDnGhRM9BZxKWN33tWbcDq+eLnWunaHPfucV7wLtE6ELKe2iZmklhEYqmOvZyipbXLEDpaIR9Q2iCjKr2dv4R9om/4Y4ADa5tIKtM0qwLIeP4r3F7yD1hk9h/Zntg2tM35a3N+P7IhT66gworaRKKgb7GX7Ct5D63zfH0Pb7EOH0JQARfuHSvIOzqoIlJ0f9JGxaulQSddpJXUGtHyoxD/tHAMtHyrxTzvHQMuHSvzTzjFL4Mlkb00Pv97Vv8OUqz1oLq3hoA9ziLd4+/C5nuurMcDkHkwZj6DBtHD494vNrVswh1AV/mdXmkprT76cK8+rP7vSWFpDjOm59Lw7w40NeDI0bynj4h+5fYCm0s43VIX/2ZVm08bn8LKtPynoz7yLdxGaZAJ34H9Eo+IZyzsjC/HewMpCvLPxdrQNjybQOG/Xd+DHdZg/LlCTllc+u9Jw3sv9c/WosuC/EW8h3oJ/ASLA1j1bgFdwAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAJgAAAAvCAAAAAA6ZlwwAAAAAnRSTlMA/bWfQ5kAAAK+SURBVHhe7ZkxaBRBGIWfweKwiAkEFFPsFUGS/M1xIEiKYClOa5FmLeUQhOBCsBLkegkshGvSpEosbOLIlcKCCLJBLGKwGJIiYLOQiCPX/CCDB7MJy5IZ5jiL+w7251je8fbt3O7eO/B/ysTYxJgzE2OFZpUp9iY34uDGVEwkt4mE9rUlkpTUKBJLKNnTCXlGJmmbU+qOwFhBJJlj0n55UWwOTY7AWGYOtzAbH2LKmHVt2tfhx1c8Aj6jDQCfOvjHq8dXFB80V4BGVKtlPwRp5i6pYQIpM5Fb3AarDfatNB+tKWYpzdtEMgvhsMRSMxTXaKfgxRe0gSPc7R88BICjabiw2Oyf4WTjFDVazzX2HkvALHbxAobjebjQSJ+vovlyxWqDGdvEDBDtI4LhxEwXordHWGzUazkAWczMQgTVTiEAPx6E1wYx9u72CLQ2UiEkc97dY0e6RCSEIDL6QFp75d/q7bQGb6ZXPuz24MhZe33WzO8bvxFOOzTW73VaaDxbb++ibXcOOijxOkI1T1swRD9hcJNbbfWpjCk3I92mlEuovPTSXE3MQzK7CqrkbtprDJPoKvaHt9SdVjlplJiBG/5yeyrPgZtmzqN5wdcqSuxHdschLvHrGHN3bhixq9xIMbfQqr3yn+IJSsx8QzWHHVSx1oKvfK3a2C3g3ET9EQu4Csu9ysTmATe5TewehgwaFxZ/lyQzFxSnrCSPEUmJLj+PKRFr1kmsY5lmPEaISJbvlVGKzlYHm431jf4yxsgasHTp6UKpwgyzHSe5mnQX4zFmGwz/AiO8MdtgBC4wrLExNBi2wAhvzDYYgQsMa2wcDYYtMMIbSylnliT9AhNsCfwrqY9F4ABL8OAP7qMOrsCnwbA4FhgOifk2GPAsMMInFpMysVFXe+UtiEQ2kit/UZitUuyHznM9+QMiGH8BdGqq5GxwoscAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAZwAAAByCAAAAABCEzijAAAAAnRSTlMA/bWfQ5kAAAtYSURBVHhe7JcxaBxHFIZ/hAjGZIWLBMQVKmwIhnFgURGCqlSH1pVxUrhZ49KkCFkVKUKERDa4CCEEBMHNQnCawBF1FwRKEXJwRWDFYjfGh5agAyGiFIMXVAQGMm9mT2+0K6HitJFy3HfiZvbevKf38dBqD+rKMgXqv2HKdDjT4UyZDmfKLDTFCxDvolw9TDKZj/6ro3n/Jq48SpOGgRBBmA7LVU0yQ7ERRZ1OKJL/y20tFWJA60CInppspLBjCUVHXXFm4ILXmHzQfgTNp1gvcLUphzNHc7Grpcjz0WYfjBNliuxkLOsj7x8fyPOimr1fEPSOy+A+CB/YPlPrfK+6FkjpYr2UYVC5rXVEGASpUsFGEIpYKqW6whJyNKXrhHISRRcWOhiHsYgoS/WCIKSwU8CcjBNzltPKYmpUtTGkkHYTishti6UdL+5vwF6naynXi9PG8eLhJF1NYofTER1qXioaTGok1FB0ZCK6blSGQrvEkYh1uzpRd5joIQuxqsqsntig7apbgHIHdCmUm2aKEVKHpWqSQZcIRei0JVnL8XK12OsMLfZy08bw4geCONGsmuFIQS32RKLEUAcj+1el37sno3ZCQnbpOlLUjqThmPOB7kkGQpoCqVtgNFih3DTzKcGbpkhjzWpAw+G2WMvxcvtjrzO02MtNG8OL/+fcfaR5CGIXC4d5foDf8KyV5/mb+B3ENVSimsPs5wfesgdcvwPCa0PzNoAlZNjdW/AA3EG/LMBsPABQSdsd3cgLNIr/uWb9Nkqu1bTYi/tzvGpaNS9OG8drFiPm+GntAHtfAlh8B/6+3vxdFm6hEtXcA1assA/DN6YpAP/gSL/egmYekgsYiu0by5/V0r7DDlY+9Ci/QdY3n/m0vsR77OVqsZfbn+NV06p5cdo4XjwcnhDmsfhD+bt8vfn+KX18uABwdMRWK7939DEqFB7wBq7rl+EIN7iA4c/+Guo8aeHJt3P3TX5jZJv4xace97AEbou1zveqajXlNXPa95tb2ClII3ux/gmAP/B+keHVUjUKjYebj5/uVx+3DwH04cO3R59jyRbgdtc81PGARbw0m0a5C8022j64LUfrXK+qViNePJwj4MAOiX68x9gG9r/APD4C+jsrrR8f9nc+MMecaMkynv/018k76haQ7Wl3fE1H8822zwUMXzltFs6u+BW30Sz+YvsWgHx9YQ3gtlir6lWg5lXXqnsVGN/LPqsZ0kG5KhmLKKbHw46II9GhNYiVtM/zo+jxk3skAqVJbK5SQidtiFAqTZeOxlyg8j2H08oegk7PVm0OGQdxEplvb25bLO16sRZ7na6lXC9OG8cLtl8Dr0oNe6lZZWrXlNqrRkdZPXlcxUqotEvnbYHesFLAfec0SXDVJhn2utRU1Yul2Yv7Y68ztCpeZhnPC+rCIYnLZxK8ZnDR5JvAVobLZhK8ZnHhvF7BAS6difD6t70zCo3iCOP4R5EihS2lGAj3ICWCFKaGQ0RKAqUvDTfiQ7E+RHBK6EMIAYUV6YP0qOZKHsQHYYtIYCXQQgOH9yBuCGkfCgtBChtEX0qHHpKBI9iXwYVShIF2b07ndr1L4uTunO7Nj5CbzF7m/13+fHO7udn5RJ6xawgs1hxrjoVHYt+EfTHHwl0i9gvDfl/Msd5g1oPMwb5h5ti8UTDs9dwc640rG4bMbMocC3NJ78bChPfOHAvDbm9H42abwwPPp/8bb4gQZrkDfX69VQ9Vhy5vlDvmmiNXEHkoHLq8Ue4Ya061ta4QC+OhMm/MckffHO5h7AsR+ZHohlywyhCi5ueNy/syLnH5GzCHJy/H90UZMfkzVbCX91oE8qFqvDe+6BP7cucA6HFta8mBmZmp2lQBEuIFdezkfPvyE8f4G0sas6dmoE8sX772rTPgD9uYfCMJXBSIblAkDyJUESYTYV/0EYLZgDPnCZxIHsa/hknZEd9VB0dLmSXEBTCYjblLMm/6ljuzS4UBryF4W05Z0w5IRkGimo5cbBcDvDuE3ihuzGi7I7SIEJFLBiPRHRd5xp+thYO4b1f3cwjQvuu1qYoCEXHRhaB1nUOG2xv99x3QvsAMk5cWEVreKXVY8o0Orzcqd+gAzRE+KlcwldnRDe5iz0WR9Ubwsk7ugL4ebcrtrEmD0OQ5bYDB+RrugBhawsHmtIeZNed13jUHir9XQWuOJ/PGQHesOT4KzRcFmzfmyoLNG3OFwebNgKVDDXNs3hhwkmjN8TAz9NLXmuNjJt4o0Z7dAXsbgbn/0gPrzeCJkKdhjvXGqNwB6425uQPWG3NzB6w35uYOWG8GT/bGUWtO1eXCKBihw2cOrXp+yBk1WdzXWPGZA2JvZWoCaoswccVM8bUHT2Bzajg3Jiojv7WlvJniZfQfhA/lRWiAsGwQYqR4gANKucZmeHngezgrG9ObqqBFA7SI63Vt8Q5jxc2nfFd6DTmRK1T9H+6nNkTNFLqQ049sVboUhJB1JzTFM6U5/NZYDFOCMfK4yOgpufxOayFq/5CTICYLPyTwlxUhOEFUtNV+oMjlqjdpRG3lNHTFlWDikxDcRVxELvYTq8ppPcqVXI6ntVfuN4mvgMQpQNEZTQ47rXuHmq0RBw7C+47qTRpHAOKr8BnALNzVFleCUIdlcCbgT9he3/oCYAZqcUpvxOkolzNz3oH0PpyOLPzQYgRe8LTeiGXrcb3+NN2bKaehL64EP7/0Sb12r3m7UrNExXF4rPTScjk254j6+yzGABDX3itBixgUNxdKk8vNjqWFhZvwPNMby7oTCwv3jh/VE2+kBAujFxfgZJJZskTFUXiW1usiJ/KFi1zZoIgLgkKXC4RaPVi01++pqFpGqCLaemVnhIi+eITSgmUUyGZrVBcFaT0ll+f3nHlYr0PCypzTXvghWxECHFn6QfK8rfdRpu6EjvjqXEqwXoMSQHKoKEddh3Gl110ub+aMXYeLDQCobZBU4YdWRYjtV0o/xMlXe++47HSmZd0JTfGU4LNkxMbt5PvVZNQ1uFRI63WRE3kjwsitYMLkBURZXudkCl0k4GrmOidbEELWndAUbxdMhiIVEiHicuEj102Gz+h1lAORP1gY0uRR1X1QFSFUOQ31jHSv7FTlNLTE04JC0KSTRU1NOWpaT8kZb46luzkWa47FmmPNsVhzrDkWa47FmmPNsTDKzTTHwlxEUJn1zRwLKwtNKMZMUIR5DyNR5lg4rWLEhB6kuTmzhzq6S/UjOQAJlknQLya/sQlFAChCbbYAaeKf75wd047kLcg9GzOnTyfl2Bdr0J1Hj64DxKDFulzJMQrwAFLUb52Dn2b2EsnG5VqnSIZiuw5eCUUZhbutOuNCCyx/k2Y20A5dEu4pEl7FPs9EMhzT2trtuSI4Fy4cq8ExkNTV0YOpeSh2QIctOQ2NAPzRPp9NzI91j0RRX/tt+j5IMpHk3pwVmAAA5+RdmHNkTyOzs79Cz5tYPao/+OrZpcLOkUg2anBexZCKJP/mxJtyFWZxDkogKSxDB/Qzx3nV2oerh4qF3SOB2p0TMr2GM3P+ai27/AAOj0Gnnf33nzlweOuF1CGQnDmz8ePN6Ulnl0jg4+3V8ZGs6vCcrR1sTTdP4CvlSBuZCUqLCYCGbH2k+m4s1s8tx7tEUpi/Dxdu1TtPlfnPHAfgH3m6O/ayq9T9yVocX2lqbAMUQVGYn6+dO1Ua2yESmWQPb8H5YudIRM6ptCosEU+wYJdTaSb0wE0NHxGRJXLdaPdImEeCTpHk3hyGiSxrTAIvFDsQ6BfEiFCigTuay6p7iiSodogERN6hhHjE5SLa8R+TBDXxhRYhIh7GtNeRwPB81sK46A6XCF2iIOpxJOaaY7HmWHNMx5pjseZYcyzWHMu/Y3GEGCz/CF0AAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAb8AAADbCAAAAADYasBWAAAAAnRSTlMA/bWfQ5kAABVWSURBVHhe7NFBDQAwCAQwMjv4l0ey/xTsQmuhNcl4/vCHP/x1+0vWs8CpZPz4hz9/+MMf/vzhD3/484c//HGZHWMTAEAYCFrYprd0AcdwapcQXOL7gKQUHyELWOSL++64TOriNdGB0iV0sdem9x96576sBgrdG3+HejMIcdv4wvhHKaEEFMJCIOzJbKCHvIvZQ1lS+BN6CKaCEtLLXhR6KjmWGv6HgEuIoJQ9hIIuoSAw9BIwWUrAxRAopaZLKCiYHCtWLAjMkr0MK1jCgqB6M2M/1QqdZVmHzXfQk0bPn76fhCUNxiUr7flEQZiXvW5AYXnOlQQ+kR8kua1n8PsfO1EwiHRJxffcC7aOifKyVJQTkTr3qROilGtKND6j32+J4mqpiIbi+379fusBu63VDjY9vC86xBmrEN/37v2lALINbI3uoyimRWEWekeWFViUjDVlP+PYlU12kO1ks8HJf3gsdl8CDk09Y3mA+EouB/wp6AXHQe+S3D9VWQZDe3ciCmNe8vaA/EDfToZkFFTtfjUW616rVK/FPb1exhT4fqKd88gnLd4QO+0WBiF1lR60/XO7su6x0F2my7p/5gY5sb6SS9gFXrMabIGX5A14oa/jOOhP/vwbDLqBMlsBpZpFm3PULuWabqBiBhxTyJA9XhuXFVRMaakCSkqVcqYhqVJ1id2UTwOl4mphAcSO2CChLg8OqoNyv4oClVCkSvHQkm573eJhpXi5zz/JJeyMHFn4hELFgLli+NTAS/JFeKFPazgO+pNfv17osxErIJ2INBGvWx5KK+Mxx2LjLiXluFvy9VOUziLwpY0o5liJORUcR5Mv2JkvkU9JrnvGFDNMVKa8Ih5G0m2+H2FcqbeM759cPzXPJex1+ETvCcicstzAS/IGvNDXcZSD/qTvL1/ff7b5oI+Zok1ddrHuwdu6dwOsj8zYXssDcB07uHgdLK9jdmTZLo6B29/+L9t+hiMAax08nxa81rTDFQAbmLxG6yDL9vE7gP01aImHkXSb59PnX1W6u5znn4SVXMy+CH+png6vLbwkF/gmveDsOuid83fJfvPJoy8NQvH8cuf/YEewOmYQq7oeYYXLVSi029DaAutHXlwAVq9+s/LFJy/Nns/Yx0js5HQd42gfew8BrH8MYMRrgHhYSXf9FWO575/1XFNmX4C/gr86V/40EQVekgt8k15wHPQnvn6Fhxaw2+7fWgX2XvQAk1N00DL14ozk8oJb5KH49Bh4sL3VwQhGv+GXtRFjiJ0ckokvXsV6H0bTvWu6ikejGyIs9/1TcgFvWmjAe49/ut3ZaO39Gx7fP7HJBV7omzgOevf8QbKvAlnx6A2AH3oW5RpeFgD628UEf29Aq23GXuEGGuId2TY6QGZe+7PRnTXMJHZgHQB4gbYdnEyqrXvmuOJhJd3vbn42z2XYm/A3+q+27qzU4S8A2ZNZcoFv0guOm959/XBo/DbRf6pvzA+tEbwHeApMtzd+vrvz4ibM7WsLz/kYnbYJLfkBz5gVmD7m5eGvf+CWNIgdWCNgstdpe/fYb/odUPTb/PGjuge0pBs6xL5NfXhmN84pF2NsTee5KvaXmr0Br1UI/HE9ucA36QXHSe+e/yWzaUfuE40X5n8xdUN/zDOXsFR2DjSsxigsWREPJewhU6CQgjBIKOgq5ZNv5zXcLHaViMJuRDxnUSH7Dc2MykYRD+6V7nnaJLW1fItS9kjSvDyZ6G1K57nq7AKv1Zz/SfK0AS/0guOmd88fFEt7jXO7ZZd6LOGaJLNGrgk3as3bWHYrHfMEUp9ZMWSJHSOUydCe/VwPhn6iWDGldY96t6SV2tTsXETlyaQWlcfmBT9vstfhBVvgJXkDXugFx0HvEM7VH7zCgYWk1NHt0oC0xqdPF1G6ZHgH/Tn//1G2DYwmC4Nrpnjrjm6n2qa0cGp13gG8m949f/iHXTu0ARCIoTD8ww5nUBcGICgGYQJmQKIYhYmYA42/hJBzmJcgIL30ExVNzcuz/c05czxWCxmbuJYCt9jwWvggvEqvVYkyTTswrv7/YtQA0GGU99fnYZT3FwFaSldf7J1BhCRXHMY/ERGhVuSwRp9KhxV5ssYcYs1eIodoihh9mktFn2INYU0xYugY07clMRRrhCbCsJSMEYoixzZjLN3aDCu2ZDTNWDmVKcZehmy/YXKo763u2/b4fofy+H//rve+r14xY+Y1bik1AEtQfnNLE/hS+c0v94FF5Te/1AEft5+r24nOzxLKTyg/ofyUn1B+QvkJ5af8hPITyk+8P8d/ZCBOMM3+E3p/CuUnlJ/yE8pPKD+h/JSfUH5C+Sk/ofyE8hPKT/kVadzNXU3jTuFsSh2lJO72r5wkOb1PPLn2ElpLHBPsXZOmpJbbWTgnmLvXS2whKjImKuIWUU1nHBz9QZjEhhuXJ4EpqAVBnLZNwNbXt6XItageP6glN0E7NAHrSkyURLSrYyysFps47Rpqbc/YBTvXS2whqsqYqohbREWMmzq/wvbH1B8zYcy6wtTaF5HPM+2JffbKb9fjsRoTdFklvT7HNmSzCDtvCGLSZO/SY/5fH7TaNn3XeoktRFUZUxVxi6iIcVPnl9iP7ZuAVlO7WOJBVFjPCxZE316vKJHh+aVd1+vF3iQxKfMotxuFdLZNYS3psFJ0vQld6yW2EBUZExVxi6iIcYT3wPgTnwO4i9EZCHf4sXgXyP6YXAlfLPl3JyUfjH04uFzwyhKEYzQ9nDdPGqhQog7goOWhwgf4C8A/qLEpfAxgAYMzx3qJLURFxkRF3CIqYhyjGunNKd6FYa8a+tBY4nA8eZKDK04R8l2WB2PDK904MibK2YaNY2OClN0lsQ+3Y97xOA9C5+nXuV03XS+xhajImKiIW0RFjJt2/5WweM7ngz9da7/VcLbv7/ADv54+xO/LIDzegYMX2crBk2xlWClk2C1OMmxkqOA1AWyvg7D8BLuNlc9iUvLxAu7VAuVUtpRkTFTELaIixhFofq9vRufgeOCcP/Z36mBc/IvBkC1qq1X3wPl7b7neWMdPN23/z8rfRG0NG9ylo8E3YNxvAshi0tRCVgIHcOFNZYtHxkzF3eIqt3Hu/D68GdXAKUE5e/TJHp9QvbV16P/yMypkl02U4Ox5ABYxOq2e7bIE4B5wCsavfo3PbpAdruPZD6jQXEUnezqAi9Jty+z7j7hFVMQ4mh/P/tI+Zbgz0/4brjyIvXJInPt2A/Ba2D+vTHPDz7JjYJiRZ/pw/+a7cujxSrQCDAcPwNge7da81gEGR6iwuesPFnaAe6B4bltm33/ELaIixk2dXwOvYFmcZf+dfbe+6eGUvNGfjbIhsACMKh+0WgwGx8Dz49fV1+DG1hEoq7iEG4cl54NGDUC9wVIv/bXN5gX8Oiil25bZ9x9xi6iIcTQ/xtdWP8JSfYb9V26vthzuvcSjT4ELciJLbfMNbeD7reqtXsH3gZfkL/y/wnNbt5UKo0mPm4+wUM32YaMEjvAjOJ7bltn3H3GLqIhxDNdP1OPJJafF1NBCYoIwDAMTktKkoXB+NaTj54exSW1Xt1qyU4smFUJsAr4oe5fctOkXChZvLm3neoktREXGREXcIipiHMGRXxEFccRPdg+Npesq0Bl1TScObA/BeYx8P4g6gUno/EzM43P/GsWe897tmJiXYltxr5fYQlTEIaIibhEVMY7lx8nT3tvPaqcFC23qpX1bIPAuSz/tObpyW+H0x47C2D2LPE3Hb10vsYWomENcVUyhIsaR/OYMMf/5CeWn/ITyE8pP+QnlJ5SfUH7KTyg/ofyE8lN+QvkJ5SeUn/ITyk8oP6H8lJ9QfkL5KT+h/ITyE8pP+RX94updQuT5tPnlaRwaY+XvDCIxJupW/2XuP/bpEAdhIIjC8E+CReJJBXJDUGgUCoHiCIQDIHqoCZIjoEc2KRnFBZrUNUGs6Ao22KHZz0wyI9+b2UDibY0JkeJI8bjFeQqb5WJcz0kcDaeKnkgELtfv+RmJwJ9S8ghMgGX+7/wcL/eKKVK8+128wz6TX03XvlTwqljttuuK1Id9O0YBEIYBKBq8To/n7Cl6jFygey/gLoLgIrgEnAvq7uDYhP+gJ/hLGsjnlX8eO5s/oWnSav//79Z6AnOxfwH7M/qBfqAf6Fd1oZ9fllJugQ0S2ylSJLDo/WaR7aKfW8fzVvq5Vd6Gofvd7JoxCgAgCEUlOkVTR2ju8J3BsSmcorkTJLkFHUDxgSh/kze4aBviau5PKwhMd3+azx/QcH9KEXMbzBI/+aTbqgw5qf4UwfLmZrYOp70zipAkSeP456x1hlxjmDX6qc2y1oY7ZR/W6Kd7OkVyTt/LOXLMY2uWMck8DLXa1svph3MUYwxJcS9D2bKOOsO+DGnaOrKUXs7Z1KUp2uhmhSn2oQkuI6Oq/pMVGXnd6Spq68T/ITM7v++LiZ9v5HRM/SvD5BN5vre39+dX6uL5+Sb/+kn0L2N886kFVLLnqZQfik3VhCmZ4ptPTeZQS+0NwjfcCmNonlVq+/3DrkS9YDnA00S7NeFS8niN5AkS1tm/+tR8AhAt1wo1VcQ6TELku8wmLFeQSDQW+H6itllSCvJwO5LHgWjJU34nWiSrH/NIWkjGaFb7V58a0OJdkDJoG9T03/4qJoqfByzhqc9S0WM9IQLGVUaPR0yiBmySF4gcu8UF99mEIzmrTwVPWcgLyUiw3L/61IAGiAHaAjVVBSMWiFakroPZBvecyYuYqdssVbviz3uUY6d5MMiukaxmr/ZeRzISbPevPjWgFZQEMUBboK5cv/+Bhv3+Yivgk9FRv/nRCW1fjMdv6NXyVrlT6vxx+csWheTz8fiELpGsJVhWfWpAkwdqHdoC9Xvm0JS8g4OD5mIR+1cabv/Je0OnXxHRZx+rfZi3QNK/2XxMUrfpn83br4dEhOS8PtP7xWQk2FV9agUNSRATtA1qYVLCfM59+ZzAkyRkScIC5KS+WDw/ByEXs5VWHLCw52fXKhn1nLUEkpFg//fP+tSABogGbY3a/Pwc0emFt7u9QxDdo398RMOpjI5oOqIf7iH2tOXRTDvd48PdW0SEZKUpvV9MRoJd1aYGNECM0Baozf37mB7dnb7aJ8I0pn+nT7w9+pbo7Euiv90/Gv4Gj/2vPP1RhOT8R/LospCMBMuqSw1oUBuhrVALo9p+y29jf18pv6d2kW2rNUwW5vr6DwXRPNm4EsJodp+ftakBXVz/lUHboKaKWBqnpXvUTuIkv0qSeaBwRAFHMhJwXUiw27+a1IDWQXTo+tTO/6n3z/k/ndzn706uf06uf65/Tq5/Tq5/rn9Orn9Orn9Orn+uf06b//0HaHrSyA5TT17LoyfPF3TboyWNtXuGuF4+lSNj+DUKEzVgIlxZb5FTlAgfZaXysPQ5V4/5AYsLTkgR+9m9aF4HL2RbHlPEUa4SdWfkWj9/wEQxz1IOOEMNCbY4Df1T1kUu2iFrL7k7e3J6obwBJ2QssxLWklexYIGIsuKAJXPvY8w6eRzlaZbIVWJh+LX2DxPFPEUZB5yhE2FIsMNp7p+yKzI+4EV3J2f5fRbDCSltqzIrzDjiUMj+cZbmRWIiO4s4ypEIG+Xa+4eJArOUA85QUZ5gi/MXZNbJ+Otdr+kV3Z0n9JlH3uHeDpyQdHK6LbM+pSO68SlJeU01wPicLt+NoxyJsFGuXZgoMMs5Mn0/ls5QKk+wxfkemXWf6JHm7nxDUs1ZU7dmztVb8nSHODUaKv8Q3sd34yhHImyUaxcmCsxyjkzPc2eoIaGK09b64fXxN395Or/+LiBSc4MuttX5xpz+JhXU6XY7dFmIoxzC8OsWJnqnmkPdPf7k/siQYOa0uf67u/fsbHwG6yK8i90+nJDUUPeOaYcgeB8JcZQThOHXLUwU8yzlgDPUAGrmtNe/KVGTjl+cF3yO3gF9TXTWv5c5Ib+bOyEPpZ9x3G82VJkSvI+IoxyJGH7twkQxz1IOOEMNoNY4q9d/ImT+8vovYmHbjwtOSDHI7jFlm+zIW8Vv/CG+KEei+Fmt/9REMU8DB5yhhgRbnIb+weIY6z5HrjshBU/iCSqXHZ+Io1wghuHX2z9MFPM0cHBMV0+wwOn8n+uX8386uf65/jm5/jm5/rnPb61q+j1J/YpmZ49MOlKnt9QkC9oM6vX37+T5j6e0fevhh7Nzg0x69UKdn5EFbRi1WKOS2TbXKWNx1ZZpQdBut1t+x876zz41UCFQ/3zXfx9UvVr16PG3NNPwyydPnoQUkCXZp/7i6RlB16EW5eJpEuOrxDxN+TyS4BIqBM3FCOFvojrHoiDe86NFEWfy2OlZ+Pxdnzi4alMjYqZO2iF+uAa1qX/Sm9QK2urNXRHetrbsykng5Jmbd7ihWB83NTw/004wKDQzz+Gr7J+Zuhq6mlof1kw96fg9fm1qMnOr/2cP5R/PBQ+zA8xLcOXkRqeJdPLMzTttQ7E2riSIBpmiAkkchonQFERipf0zU1dDX40aEZ0a6gWtVKOu3z85ls8S0VHvREzmL16DK0ewFE4emHdKi/VxJUkrytQGiej5YIBEzCYr7Z+ZuhpaXI0akVJqYAbBQKOu2z8u5BQjMYnStBeweP7ip0FHJJFCCXOUJI1ZmAV99blXp6xYH1f/lwCPEU2BL1baPzN1NfQVqREpoYZSwF+Rumr95+WmnJ9o687DW7/7fEhU4j7CO95g3jkvLdbHpQ9ISp6hrf39/hefN+9SQaPhLq1UZupq6CtSI6JRQ0ff0O/3DdQ1/RN0STfo4PF+d/eummWpOt3XmZNnYd75UC8uHdek3e7Os8ejYv8y9pXKTF0NTVXU14Gm/oPRw8Mdnbp+/y6IaEiNcZ+as50wGnDlFOXhHW//ph29uGzciq01GocPjx68JOiMfqCVykxdDU2NCmoTtE599vTBje7+FkGgrt2/l0Sj02bjLdGUzp7JI5W6cmRYvuNNmXdeNBulxdq4tJjdWxDhMdqlPn68ST/SamWmVtDjcmiiamoNupR62t3pNgm6OnXl+iHssIAL0WZBO0hYEHK4ckSkXDlw8izMP9xUXBx3Xpmks7OoUMyCVf/+Yqaugr4aNSL/a+qq/olkkOCVbpOk4MrhUriA+aeqGCF4gHCuUjJZcf/M1GboK1IjUou6fv/qi7EaIYv+JdvUjFn2L437RC9HVEcoNofWLXvUiNj9/Pbto5r7jqLYHFq7LFBbghabLef/XLOcnH/J9c/J9c/J9c/J9c/1z8n1z8n1z8n179f0/y2xyXJaX/+cXP+c/gMWoxjtxXNHzAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAdoAAADcCAAAAADyoT/aAAAAAnRSTlMA/bWfQ5kAABONSURBVHhe7NkhCgJBFMbxD9kgHmHT9gciewKj0WQWj+ARtFu2WOwDXsIkG8UTLAgGQRiEhS0PdBnwAFqGN9+vfNP/ZeBBjSJoFIhpiWkpQ28MQ+gaRnuidpCEGcAoijAtMS0xLdMS0xLTEtMS0xLTUoYf3Jvvs8iRkMvZo5wODad9nBxQzHzdYL1EMrqdn7+cKzYTRO6f88BRZPuZSg6ajkpa1ZuIPC2fB0ZhVkhIt8fCIy+B2vI36s2+FYQ2jmTRz7IHMYfB9GFpcgo+NGELluBDE3JomjksogVLyGExCxpCH4ZmTsMYwpDD0rSgWXIIDYYlLHgwfVjMGppcNOi0hAhMWLAxfWhMBMYgMGFAIQQUdBFsfZVLX+WSWdghMT3xO8ilX//9qv/Lduunn2cw6gBwPZ4m42GiVUJelPFiTCmEAp2ISyq34x7dk08PrRo9IXvptq6HHk5LBxWTc0h+B3BLFo2n5U97Ka9VotFpq0Ok3fMXsiu+kNMwbDHGGhZjVj+1GUfQ55c+t0q09DEnBgzRTyXChmWxrrYIp4irtPlOw7YdxuxIWgLbsWxxjxuQcbvMtpGWrehzIr46c3YnY7gt4vmW5TA7wPkMFu0JqVEaYY7iXvpgWMHL8ynmTGtSreaSo2UdSQvSuMkcizWi//cL+RcdLSLGo3TDBmNRZGdF7DM3szpR1OTVivUx8iKeIu06thpxJI6aEAe8EnFsI1HaIj87qQZrSEvAulgRO8724kYsi+szK46Z2ImFzo7F72LFzpw45vsO4hZzu9zWZL7PyegTzDJooasCnkZTjoWPy0sheaGcoZxpzWKt1OSIHrtWxGcsnkKLx+W05tKOFj9/NpaSV7ifWV1bWMXbNCgbI2xGq3JmIwrRQUHEs8egZJcBuvS+CKyMLz7yLBRxYwt30mAWEnDlCK8+2pu5HQM5GKjlpC7OWi6+C7CejpjH+nfnE+9qm3Fi4iGU/GkvxVopyUk6XvvcN/NKm3hrM2t5KosbgKfZc9U5bJrQuYZOXVgX4dN4PNWt3rOT914V9jjeStstQAXe1dTWEuCPIvzMd+0djMeXAKPi891oAlnDPRkDwDPOOq8/FnbukXD7FENMx8NrtD5+IVjfPp7AOoCxDp0E76fTDph8jvBh3/R25dIyy62NkcrL86e9iDWpVkpyOd1L4LYieS+Pvxt6VzC5r75Wx5e4V7z+DLDjwb83B8fCSjmq49GbAdS/V/v+zXoHjo/fr8Fg/jn8w9MvBkqhsr+STAGMma9Rvd6Rk9dQyd8UR0fSWq0N2hs7N4o9wR2eX2CM24oJAmZPrPloAokBOD9Y/8oonuzrQ+77tmYOZO6Itd05npK/sibVipJDD6JfVEHi8m8T3Nnyjvam8MS4XRu8plOTOd6o4909b7+ztgdFeM9f/NODd214n6VJuDj/VweJOTqwhUWHuiF9vT98hOHXUIFEeVO8+gsAiKOuDyaTN6e6fXcP3na4jWgilysAQ+x0vLM//pZOtn1STYzkvEbb1Hj6O5/WpFopySn0T8/k7FEHTqp7E1jqp3Yiv5bhm1fQ8TSP+fETgFPlaHv7cHK49ZrntgkqBsdqscYAa9x/AnXp6+3X2liZ7fGO+aoGAusAkwpA8tc3SN/ixTV0u46NLJdkAqYhdloFOH4pXYevax08EO6yuZhH0PdCtaLkVHoyqsrVOvCqClf33tdeAlzTnTeFnwDM7GML5hr9S3kLpeMzgOfKpm9gHVn554NY5jZeCRdoTf4Bh1V6szwHOAVz04PR8CmIuJXvwRtD8uO6kd3VwcQwN3P2W8pCLGIcgpfACOC7mXEIUBPlx7OBQYdjoO5R56k5K2tSrSg5hX66BZBQiXsTgN6He+xrXdmxySdkxmST4DM/7+ta+jXvFtW+NnaY05hva0v7WofZtmNZfkpo2l1OzzoIFuRxm4zZFre20Opboud1yF7sa1M5i2vaTcuivrbQV4rQlKr0wRHxEGr+tCbVSk0up0csRxCjp43U6B6bnzjKEMuMW5Hvhniuftq3yCMuvSK4h3jNEfqydyUUidJmsVbcn3MNxeppwF8obui6wSwIv86CkV0NTovEvovhKUcC3ivGWC5GPH3rtCbVSvcQ9Ig1QrQEDsPOGkl9P76nvlYHdaohY2Gjm94lQmw/P19QrcoRMXmOVrD8Xw9MhwCfhvLu4+iru/41y+/h8wTVajGMugECprGs/9QjdG3EbGzZQXqHiFs2Y60g/SxBtbpT6F/InwXCFiJMV1jC0a6w+qXeCitF4wqro11hdbQrHfJdgZTMhMdVWBqGlyZ4X26vjvaXg5TMUAeA8wmAubW8o02+hieP9uGsAr82LKf5ISVz6qNaZJmwrSiy7V9h87OcTy0pXZaP45/+Dn96sXqMukMkmlh3oVZX59KrJkOGZNibkn04ngtl7B4c7M7LnIuMpMy6WOu8+kJ21S/kMrFuvECrS2JdxYEsNkXDhaym7cStbDZ1bH6hUOoKCGIocxTnf2qdNa31g/pDo360pWLdUq1ukJJYl/uSQ6b6xbitmKLhfZA2WRfPxI38Rpc5FKpE6kyM4hxZSbO8QOusaa0f+tGiQFgX6+paXWSRWLfoIFS/yHML0t8Y3ULGZkrjptu3fQpVJnUmBs0VrLlm2V+kdVa11qu/IaNAWBfrqlpdkvqSWFc6EFQZ8ghFdmv12h7eXo6Ptzbb28VQutS5wKA5spJmuVzrTFrrB9nX6igX6y7S6gKJdckho5wZFxRNjLD+B8Kz/Wj9pG4ooXSpMzEoOFn5VcCEXrnWWdFar56QhUD4DFGdE+tetF/CvFYXPj3RHQBe1OHIPFWj8dE0f4T9ob2Hh6GEogAzEOOW5shaumWOOky8Wq7M3m0fQqezan5ysW6lYrxNVGEzDH7QtLpAYl1y4DAO/nP28Rs1Gh9d4In8WZxJFTrJh2IoGYBAjC/knGIt2zJpnRWt9YM8WlIy3wBcLRTrlmt1C2LdK3JAGBXxlUrR+GjQA/hx18icNji5TaHKpM7EkHOqFYRlodZZ0Vo/uL6WlMyB/IFqmVi3XKubRiyH3pY6oq+laGkLR7KvRXuXQqV6AGIU58hKmuVFWmfSWj/EvpZUvvK1TKxbrtUtinX7mlJZlf5m4LECmvD7qtpYDUAMdY6sFEnXOpdqrf/b3hmDtpHlYfzb44pBRRhcLEaVUBHMGRahwhgXwbg4RAzGuBIHDiLFIlIFG8LiIggbTEgRAoFgAneIFIuIQRiDzXDFIrIgxMIKkSKEGIaBgDALMcLgMI3hbmasvLsb2c/6P5/HEd+v0MOB9/N774s80uiv91gbdeXFuqyNGtliXaJyvsnFuqMPi1UJi1UJo2W0hNESRksYLWG0hNEyWsJogR+SNdAQ57vT83SERxP//w008B4y4csoRksYLWG0hNESRksYLaPtNUN8hPibHQyHMiiTEgkMApMyuMFjB0AnbC8vgLznYINmXbWGPmcehPQ23SGKVQ+C73Yvb3zqf4Nj9VTPYIMyRSKBQWPSG7ZXJyfnw++dzAetEmgNmp5DGwavq96w/CL6vsvyaiBY3fg9ak7OvsPyYphi1Wg/gDOWw++E64kbVKtEAoPGpDOog1j3lk+0Q1EGfc/hDfF11Rs2Jrcj00YkOFVNtJfA5InwRmOnnYEDQ5QoCdMi6ghwf7R0AnlPvUE4iSJ2EfBbEQNoA2gIX0btr5Sw5cMQJUrAlM57HQBw8jqBvKfeIJ1ENtPuAugiiwHsPCiiJou2V/vrHLAPQ5QoCdMCmgA605ZOIO+pN4gnUUILQGsBA3Cd6SLaHVG0O4W0XUTVhyFKlIBpDg6A5qxOIO+pN8gnkcMugN1pDMAp2tk8fpZE69cXgbvwPsAQJUrAZBe8DnwnrxPIe+oN8klk820XXaQRx98qwi/C6QqibXvjrnsrg59hiBIlYZpDE+2CpRXIe+oN8kksoHPO3+NGBm53HPinYHOhV1hEgFPOQoi5yNw0ja37jbt6gbyn3iCfRA67S7vPMYCXXqSpF61hn7Vu23kXYPK2xVxkbrKLaLRyeoG8p94gn0Q233a+txGn470NLA68NoaNtlZII8DobYu5yNyUx6OCRCDvGTfIJ7GAR3MYwH4xDDxdxKtLRav2+/GbtT96CMgCz3rQETdErUCkDDKTMkTMAgUAgjlJe8YN8nWdBqa/Cvx+4zu1jz4CJtCu+5e6h/z7ZMiv/XNMD9TBnoM5z3Bw1mpEGoPGpDNEP23Mh83nmOACwxA9NQbNumoNy6v/KdibVOx9/dfPl9nFPPcWAXbYWEA2+tmChrgBUQuNSGMQmZQhpFSUzkneUxlM13XzvwXT+IoFNdEYrENmHTJhlQVhtITREkZLGC2jJYyWMFrCaAmjJclvU0K4TQkN/HiA8FrLaAmjJYyWMFrCaAmjJfFi1d57BOQthLhWGsOgDEhlbCikBjlu5zB1O3/kZ8VjGA+7NgHgL7KRdFvBGCz5OhzfQsQMBiPepuRTUL0s26bk3499y/UZFCcbk6vb26vz8xvyMcwfhKLVf4/lYCiDOgp3Y297PtAYrcPypCYGyTYln+fntc7BhnBx+xt8JGDYiLYI2Z5cPhWPof/bJw+kY9gL/m8sD3E+8eAsDgTR6q619ps3NoRYJbQ/QIS5wallSgCwlIcB7WcwwKnlCwCsh3jcgxHZlat/GeUfdSEm1Ze4rtggxH+JJYQU2xCzgpoDMf4jLCAgl/F2YICziTtXHm1nqrDYgRQPmQkA9an1hwsduUFC18NthEyvQEypgEfy6X8AcgiZRh1yfBfIrlhXHG3ubRm3IKHVbFbvFV5bQL1Sqb4Zu9cTGyQcfn3G2yXIWcsY/C11gTGEpOGJLfhlfwtA6aqjhZ2SDqixU4d9BPQqmIP1I3akBim3YI79HN4mhBxfzVBau9AgiLYHOWtrT3e3aotNeMgcue4hGmKDhBRwCHOQfQqnavx/6xiw5CtZLV59tHeaEPMFwMwKyr1DeOvr67v521KDDwEZFe1mDwYUynjWxDEE5AAPIV3kLciZuPJoXcDw1fE4cDSOfDVgTWroQoBdQAshbs2CCffzEL7eyGb6S9jCAgyYK11htF8AwIEpLjCWQdsH0OmIDZBQhuMioFY2i9bazEDIT2cbujle/i4MsNNXFe0xkAK61a0oZAHHYb+es4WKbZexD3Qfyw3Si+TDLoB6628QcowwmPQ6hMxUvH8A6L7MbFoApCt5ZR8PdO4BuIOI6jNgETtZaIgbCggeFmeA+71Ky649zYkNMgrjjwsFuzW2ZUNANIYpvAOQq1QgYyn18repXq3wMC0fAwrB+gsYvE1JHzu/GDYYBmWwrPBxreSlHthSg5jcbtdDUbAqsXVYyqYhozD74RCltOEYbAhgHTLrkG8qhFUWjJYwWsJoCaMljJYwWtYh6ythxZ9JKYGvREJFxgMgMKkxdA8BpHJA50vYXh5X1FO+Dvok5HejPp3EqpLP4yKDEuhE+jHsxU16g+bsxMsaYj2vcx1iSUjqkBUbv8aqks9DY4gEepF+DHGT3qA5O/FyhljP612HWBK80ag5v1Dcky+jEkB4fqF5T0abPOr8QnnPBGG0+vML5T2/4Tc/3SoAtD42AEwsQcBNNtgFp5PznfvDGlTPa59FRDFrHu3YLAB8nL0NYBwCbrZhzmnm2gVLYFA9r3cWEWMwj9aaAYDG7RkIuNkGdX6hxBD1TGAWvNYKzy8075k8jFadXyjvORLRmlfCKoFqxQqtSS9Q5xdKUD3N10EuMP94YGLcoBJWGZTgWCPSj+F13KQ3xCdhFVuCMaie178OsSTMol0yqoRVBiXQifRjGN60NPjsRMEY+j0TWIdYEqxDZh3yiEIYLaMljJYwWsJoCaMljJZ1yKOAquBNfYnVEouKiFVFtAUtvV+WBqoiQa1o8VlrwlHjyaPyq8b+Trn8ZB9A80nQCgxHZ+27xpNy8CO0uPdSg1WNV+Vy2Ue5ByG80agqeHW1xHqDaqNGb/g0H/3Cc7c43lg+4Y1GAcnXEq95xYu3OC5JNlzmH+Tka4mddtHqbwjtD9ziOJ2vdRitgKRriWuYQEB96uH6VHPgFsdT2Ge0AhKuJe61MR4mW1nZrRbK3UFbHI+jxjc/5hW8qpZYYBDgIaRXwSJ8B14afVp/4IwU4GYZrWkFr6olFhgEfAHGw4TzNqynbh5fWbM3ecvCsIJXWoWsDOYcAogVzE18EO9vzmtt8rXEKeD4vC8OzJXE+5sz2uRrib+Piksnog2hq/VztjgeY7SGJcCqlti8iDhqdKQzOARgVVADuvXpQeXELooWr7UKaQWvrJY4XkT8WgkvpFQJosXS8bP3duun9KByYg+zUDBakwreUtHE8D8V0RruVp37FoDS4vvUA3vAYNBzCjPf4scDNBxM7p1eyIv5T9/kxwMk+/plBxfgOM/T3+abH5Lbal54J/J19lu9ZUHSD3A+9trI10YRRksYLWG0jJawDpmYb4ec/LOWyCuZj0bmWUuya80ynttA1PJaSxgtYbSMlvDNDxFUMjPakaqFHqVoiTXDay1JNFrCaIm+knk0rrVEsB1y4tESeSUzRiZaYquW11oyctESRksYLaMljJYwWsJoCaMljJZ8dwoAP2CEIO8QcqoYgX0kaFDg9IZBRixawmgJoyX/AjhMqoLvG8SGAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAdcAAACsCAAAAAAMfbmrAAAAAnRSTlMA/bWfQ5kAABL1SURBVHhe7Z1BaNvY9sa/N8xCdBFMF4/glfGilL+gBC9KyKKELh6mghKyGMyAiuliMF0NNYShi6FUEIYuSiFQwoAH00UxNYQy4CLe4hFiMGEgRnRRQgzCYDBlwMEEFLQx/HWvbB8r8nt6V5rWr8n9QS3lSufTufckjq/y3Qqjy4hksXWVyLpKZF0l3wK4hcuE5AM8Rh7q6FIgoWJ+g8uI5K+vq0TWVSLrKpF1lXwLcfpdTMikcXVoWUPk1pVLW9c/92tAJj887OJxEVcFt/T37/FmK7ObxldAvPlrXVXL3mZHrYyuDIZqOCNHVfVLPH+9BqQAPMQV4gS1Yyg5tPuX/nOTUgAwtPquZQ3h4YJw+T83tD8f9K3wYYq+wNAGAbtlz4kdtlo2RQfbSTYcZpk25vIDchngFLgeTDAcRn0OXHPuWLnhcAqzWv0v+z7cUFWDbXu9iurtaqqqHY101aNz5L0cVdQplfC+F9jhO0cTvU5Z09R66CIsxH+dtDUNQ9cNVdUHk0jd0HT/S57AWNepq7ruhfELNrmWn/Jsu8EDGhUKGzU1zVD1zmg0btRmknK8f17vGqMxkziDwibM9nl6zRGNlRPsG4Ubk7DOyNlhJ5edeO/DCerKcVgdG72yqg4GOh/CI7XBW43BYMcbKye8z+IGmhcxHTGt7AzGZSYcr/hlx9FZ4KRt0OR1KqvlSV3VOhsN3fFzaQxUrttUNcfxEvOaNHauobEvAu2q4The2h2nojbqXtOOp+upD9g5nXEPKlRGj6NKWdUpSf+UhmpQGB2iPk+vOTtWvG8Dv2+z4U5DG/S8yntdqHjCXpixkLry72B9xFKrs90d75jOh3v8DdqZtz/+4aIB8+rXY8eDeDUymCgdmAjUp98UHc3Poe73qefrOhrLpKxq3vnswgP22pxtP+I6ZaZTMUYNdlRrOvx7gA8mvxAJc5oVw6tG72IuBoXRIerzYHLNwFjN9C0QfuS98LNGO16rV3htQff9l4DbwDJwiJU8doeoFfAf+WjbfVzEvF19bWZR9NjGLO7LHGaxgH8AZwD8k9MvYdufgGNwroFz3MU1F0DX5qdbh4XlC+1LQN+yAZxj+R44j5a9wxlAyaDm+pm+R/4eJgzXik8OMmapH0xz9WYwLMgZupQLjdVs3wLh5ymMebhbsvdP0Y07f00GDeafwIaJf620d3l3iAv7x8/aKDxWQGClUEOt9jqNNmY5B/D+9rVA4zG/FdIHFP9kJTvcoJFHahr54gV80rl29ebGWagdhydM4hry8Mmj5ffleheu4meauTtJ1P3ZLDxBKr/bffeoPdux9OZs2MU+L9E1A2NFfWO7FH6SxYRPv3RZaourax9j1nLtp37JlqiQF/c3i+ZWLV0EAXP93hsTL6t47feRxuDk8G2NBU6pYZWVBAVlfLJ56wOsB0gBw9RsZOl7eKQsoNDudp/th9s3i9iugUNh5wBOAcXPtJ/fsh+B0zZRK6axDAwnaS6Fw6icc3KhsQr0LRD+8Q7GvKjhXbbYXVRdz4Ahf70N4IcSaiZmWZqzfwPYL4JobeHd89Wnp8AKLtDeVQIiNpAGWl0UxiebW7kqzoE12Bv5Ug4+GaCbYj9jz5aAVaCkhNvncBPoAm4XeQWcNLD7cFqsQhr4xBpXIsKIwDUVGitQ3wLh7nEWPlYNpSxOv+z89RMwpGKZfbwH8vwHFvk0vYueY+7+AbA+m/GZf5v5ESZQVH6NvRInrNX9Fc+z08uvA/vIr8DEsXUbvm7qMUwb7m8ZhX1RQJ6pnAXaufyQrsRQnsN0cQz8OG61gJwCTi6Hx8DQRGYDxHk4LNDnYC40VtS3YPj+6mTmy4e41QVae19q/tpQOZXJJz9/GjhiNNXmdP5WmffK0eqB+atjqEaZffCMnr8aqq4bmtaks3b0uhfOpzCq2pnq7nhpaYZTYY1NbaSPJ5rUTvPXER31rqnvaBrNX9XydDI2KGs7XrQxbZhOxinMJ9j/6TVnxirQNwofqFM6DjtTZ6GDLzXPcQYcZ/qJftBs9FhRm6Mjjc5w5r0yWKL+dkKvyaaoREhk0qapFecoeG6PXZzR8bak22s0Or6G9zrWovag9sw1nGaDy1MfiU6j0ehdHIYRhc1PfXpNGqvgCRQ+UMs91tQxVDaDZkFHTSfJ/DU+NCPtqWqvXB99Tnpsnvn1QmM1n4E6KaLWWbBvrW8BHy2M+XB893M7KP8Piyf5WM1HKSjwySsL+TsdUdcZ431N74w+I05FV9VKZ/RVQmMlSpL34a+CXoXRG0kWVFeJ9IVLpB9RIusq6yqR/uHkkAOZWM5iYVif8jCX1mRdE0IOZBQAHHaB/Ori6uo+wC1s4SCFy8VC5jnkQB41F23I1bXBQNcv3TznWywAciAvnt33r3B/U35u+kxEe2zJZBs6RK8hNbh2wIRr2UEpV9l88mSTQschdkCWdMIpy/fhsKOR3oejPbZksiWP7ewZvIXv6lP3ML+OtqMbDtdVGyND915IKnAJDoUEj5HOmCNKOeBRDlmkr859xHBdoz22ZLIlj23AYczNuky24pAa+7oz2lHrI4dZgZ1muR6w+4YtyhQye4x0yGxMKQc8yiGL9FWuqxPlsQ2YbMljS2f4Zl0W1yA1f5lUjwdxi/BO40hvklRQwIdC6Bg1ktm4QSkHPMpBi/QVvz98HOGxDZpsz1MghuBnzFc7Bm4gXcgVwfhk766uVNdmpcIWZQqhY9QIMhtTysAd8iiTRfqqzV/DRHpsgybbkyzFIbU3PmMJOFBOSG28lwaewKd6PfOuoASkwhZlCqFj1Ehm49ZsylnyKIMs0vLzMPPYHjCyFz221YcAzoIe3Y83MOeMewW8yO8H1a6NxVwwfqoWWSlmpAICPhRCx6jx36VcQNfMTQ2am9XnqNUg68o9tqmUsu3igsf2J+6xDXh0yWMbOEN58sfBhx+CahngBID7nQtOFjV3b0YqIOBDIXQs0BhOGbMeZbJIX8G6kgP5DDiN9tiSyRYl8thedBgrKYC1kZq3124Bv20q/kk3gf0q+XVJgKAQOgZq5BcIWZTJoxywSF+x+Ss5kDv+1oj02JJHd9ZjG5p+Gv78ldRGFbZH81fvQH0iNXf+SiGzx0hnFLIij4IeZbJIX735K7lz/W20x5Y8urMe29kzSJfUGJ5WZ+ZI84ikwpegkOAx0hmFrMjkUZ5nkZb+ps/gsZX+psvmsZVQia+Ix5aQPlOJfB+WyL+/SmRdJbKukr+NgFuYi0Q+j0NdgMACclisgvw8LPn8dZXIukpkXSWyrrKuwxbHBcfdtiAGKcRVIoW4SqRgs1cLgMW2IplERAorUB9i5mCPFcYbcIbb9n/595wOczfrRm/iayiPopmvIKZEAqQQpRSdQ72sqhr3NmhsS/GROURECitQH8Ry0Hd8G4he5wpl48jfOGNrx85//fcc7oYfo3PDdDRhBTElEiCFaKXoHOiRIQ3dicyEBKIjBRUoI6EcDLXuK0089LRhOF6JnRjzV6udgYkELF5pA3tg2D8ogfjkkeIK4n0o4Hcw/ihgHm0A+zE+N71/XMSui/gsXimd61rwMHPB+OSR4grifchm2n0AfWQxj3ePCqiJ13VY+8dd4D0SsHil+2gBsFaVQHzySCGF2H0o4hDA4X3MwzZXC2hbwnV9l0+nCqi6iM/ile7CBNBaD8UnjRRXgLjSCn8j/n0V8zALqWwOb0Tr6u5tAPfQPUZ8Fq+UynctuGYuFJ80UkRBvA+08MdGH2nMwd0twC3A7AvWtd1dtu2lDN4gAYtXuosW2nklFJ80UkAhQR/uw/p3b8P7Gdj9ZeCfguvpfsUGGGYpi9gsXmkVuw/374Xjk0cKKIj3gd6IN39/iXm86vo6ewVF5OfVbpsfGMkmKItXShWwf7gSik8eKaIg3gd6Izb/nsIcrO4BkzHRbUOkrrV8GoyEE5TFK+WwlReIF4yMVkjWh/vYuot5vC/wcqcL+DWyrrTCzW3V/hyCkQVeDCEAV4irRArxlSiCsw7kAYjEC0RGKyQb11VglRTcycY1aycuGDfR3nMj7w8fqZzm5IkbHZXTGP1nwgodMSUSIIUopegcRhxD45tBRHwgB5HIaAUaV/Ec9HJAoaESjWnrIOr/5Vo5ACPFNwqQ5TtQEEFYAXGVSCGuEilwigXxTJJGkkLScd1GUGEVU5RATwnpW5O+NQEk0i8hkXWVyLrKukpkXSWyrhJZV4lcJymR6yTl/SZxJPL3q0TWVSLrKpF1leskbTBajCHirZPsg2PRvjC0lrC/Vbxli0a3qq/2+uASdj9eL0w2Fi6IuDkkwN57VW25fTt6EKLXSWrMP+IYZVU32J7wOkldVXVn/MwSVTOORAQIWkvoNHW1IyZxpOn1xo5qqN7FewGbiMhazbI3BiqNgYhCMIdYCrwIarleL2uaETkI0eskeVUYpCPYIVXjodx80xQWoLWEvcm+IVhXR+Nd6KgsbqBpVFextZp8ZLWe6DCEcxBUoH5Xxg8Do0FIMH9tv0ASlrDpW5JapWTrIasBf6EA/e66AiD7FB6pt29TiIvyGN13IOLkEBuzlinCYzMnPAjz6voYNRPE0Bb+JXMHey7g7q5hjGvZrlst7omth6zRdZcgxseJSRNwT/uIj5JDF0ScHOLivsImOIU2DUL8uhbz2LIwoXrn2Y/fWRAim+seA+1cBj7Wdz8/u/3dUvvpF1pZmc2YW5YLpB9fh3U7v2EhFucA3DYyiXOIR7+LG+CsPv5L5jlPMvh5CB/zxR/VtzcfuBCiwEqyf/8cHPsB3lZL3WvPd4XWQ+ZRRUx+gvngdnGvX0xh5aCEpdiPa3J/Q2YjcQ7x+MQy4KSKf0ldUy/R3YaPjRqUVRxDiFXUhm5tZZzWAfIK1vAqvyawHtJFCV0r3u9XrL3OAe2n+VdDIHUNMdne3rq9m99Ng4iXQ2yWQCT+/Qpkn8OsgrPx+I699zvOIUSqgMN2LgsC54LrIfs2MnhDHRTBtlaq754WgN03SMDd9Y3XB8+prF84h2vAp2CVk9YV+RJetHAGIL384zPchij38K/9+/QxyhzCwqbQekiPLkwbcTh5CWQ3n/zxFLtIwOra2koKwIJyyFBdt4d/0X3Ehzn4v5a2tx5VN7MQZSVj1lYw5nq++2Brt1D4cisr2314KJsZDJGcBeWQyuMQHLum/EV1VbYzY0XkAVt0PR2wienbsPsg9cduyXyifMGVlS/hk0lhUSTPoTR5v6qVktf1DHwo089obV5/F3AFbovCAu7gPnDKBfrdw9o/Dw4tRJNsVSIBc9tlr91HAM4Rh7NAYLIcYpJ9jh/7APYOv4cg89dJ8t06v29lqLqhH6l6eSC0TnIw0iePCGx4Ghx9ECUwf1Ui3xoit+AaalNXy4amNcaPteddCRO9VjO+i4VyEFYgjjQmoffGg2HEvz88YIxFHfbaaXqd6/n785mv4LA9hjOq6I1ms1lRdwQEnBHF81eRIemxlJvNjjN9xqHwmA44CdxJlEOCuvoS04Qc0bomIVKhqdb9kwzpW/tSCt/i85PJPD1bxvnvmSIkl+i5+em37ZNPwA85BZcIWVcoa2v46pD+Jomsq0TWVSLrKpF1lXUd+iZaFzEhBVJKpkBbQYXwU1cEiIgUVqA+JBPos8b5OvNvXjkXnroSQbQCKUUIRCjQViyH8FNXRHKIiBRWmGQkoDBXoBHQib6PaDQDLtoIohVoGyEQoUBbwRzCT10RyCEiUlyBMhJRCAuMN3L9a+jJJ4kjkyskF5Cfm+jJJ8kj4yskF5B1jXjySdLI5ArJBWRd6cknySMXoEAC4vf9+1V4HJ7sA7i5CQG+CoVU3rRWXPOhqEI4cgEKJCBe1+vr8DhZvwFgGQJ8JQp3zdZKO6+IKoQjF6BAAuJ1VdbgsX9jDQJ8JQr05BNRhXDkAhRIQP5+jXjyScLI5ArJBWRd6cknySMXoCAm8M1ndNGSAm2TKtBWXIGefCJIODKBAmWUXCCoE+2DubkMjvUATOldFmKEFc5IKb5CtFJ0L5TCoXgOCEUmUqCMhBTCAq8DOtF13Qw9r0SQsAIpJVOgrbgCp1gQzyEUmUiBMhJUCAuQjnzOivx/LyXSLyGRdZXIukpkXSWyrrKuErnu6n+Q4Ucwcv1PAK6tANY534oruBe2SmwFJWYvKFL+vJ7u/1Iq/bp/ar0rlX55D6D1C9+KK1zcxleAMBGRV+t+U7TLNFog2ukqrkAIKsj7TRFGTfm5SbpMZV2/KpeprKt0mS4eOc8hhyankA27TOMqEAtRkHW9vk67ES5TEQViIQqyrsoaCDGXKSkkYPEK30iX6aXkG+ky/UqRdT0DTuN7RUkhuI2vkLAX8r4/WTI3wi5TcYWzC9tsbIX4OWRlXRO7TCHgdBVTiJ+DvO8vfaaXD8llq6tE1lXWVSLrKpF1lci6SmRdJX8bAbdwmZB8gMfoMiJZbF0lsq4SWVfJ/wN8rguy1u9vdQAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAa4AAAB6CAAAAADCRujLAAAAAnRSTlMA/bWfQ5kAAAtXSURBVHhe7FhBhCVHGP7tYQ/h5RZiT88MEf7LmkOsCSvHlWLFOw1RMccRljV9W3o906wIu4bHGqGJPS1txwrNkxCxz45c6plTDil5Hs0T2UtJk8PSpP+qnpm2f1e9MYcQ+jtUtX5ff///1T9/dddA9T9Cj/+mXD36cvXl6tGXq0dfrr5cPfpy9ejL1ZfLzCxM4aYuqs4maU3QfjESUfbKq9IOVzS67jpMJiguyLmxaq6KSKK+evSwdQ63cJe1QgjS0klWVMr4yqVjgSiTIo8RMdJd64BRlkVCJP4oJCIKIidRLaYDzEQiSieMiCJRHmIrt3qM1xYsx+jcskR99ehh6xwprVtCwuutWBr6vSghs3yCMWr/ZjhDtCstutckxpSmjGx6QSLSPU6hQlAoHEUh4szPa+cWk3gYkpgNEtRXiH5F6ynGtHoSk0tZ0YFyGSGNpfD8r0ELAwC4d2s8AI7p8XCX5tEWrMH8MVwG78MIXtHFyV6Q187tK5j/EWadzofwEhq8vUL0q1sfjgHgxXz44FJWNvbBizfLzyxlDAztckEJ5e7wHnThKYzAYmdumYtFCZ3Yh+MpOISJcBOOy5pwtN3mlt/vHneySeWDc+KpR/Pl/i4cnQW8Dgze6OVqAbBYrLVeEoe4DLegFngCh1yMW5mO4XbIyG+NItdqd6kxkaff9fmWYVLb+VII1dnqVeR6mAY/kRQrSdv8TBaNthJCosgQu2TRuC3M7kpeUYNFgZhVDmzv90dXiKikxMgErVMiaGLs2PGy3G7FacXFuJVJ/XxqvEYERspURGlp8XeXjlEUvh23JZujqUyEprNcRlgR1EEiLVhO232SGbceGkXtA/N81hk+n81SjCi7jOohO0XTqBZEwd5d66MbSe/FHLOwdXITpRMbgiMhDSbG5LKMQvuNEAdRZgXXgjZHCsTIU6629QmmFEx1lqvSVgR1kEgLZqifUTfdleLE9o8nfJREAmNd2afoTsppRrhGUay71kavJE0ak7B1Ek0qk3YKK8tkYtyKpF9CRpREwsS0tHi5hKHaezIhUw2KVOvMyvBkbE9hWqEOEmnBqgTzmaxMq1wzb7kKN82oorpWRdlF0zUERqy71kavJJENxiHrTlR5P+gwpYmJcSsJLb7XiFZ00kuoXlarsFr8y/BwsD2C8QI4NgH+BIdHJdz48P4BfAI+3NmBJydAWEP8HH7+5S6UYHEbpiWcwijwObW9D3t1HsuDg4Mftj7inO/gixpLmK7Yl+G66GcfMtfD1kl006P3eLm1C7D6dMHEmJWPafIa+f0QYGP04PUYjsDiQouduyS9QjgijJrSo6G/S+ohX3eRiN2RAsRKE1MQ7eztEaGIMA4cVkgKlfIefzSRrGrCuyscnVI2vCG49SqhIfC+0KiZGLNiKFGvkZx8OCOmpdV57noIywlw7MHUdd2zvcHiOdwBWIAfj4Z0tIEQ8W8aRrB1ExzKL997fbQ3HYcOKyS1uQlz6ojTU0Z5dueGnXfhecm6Kxy9QQnXw9b9oqtvYLxBeXExbmVAifqNwGEzDwfvaF1rO3hDh7MdeP60ZAIb38J92mKO55KYJayOaGTL4O7dOKAxRCxP4IQ2wLsU1cZezl/8+OpXlnsrt3J6BOPBYA9+Alg95IrHf61crgCPWcRwdEJJC/kWgtYB/oFu6cPl1oiEx/A3E+NWCB4jhOmjksbl1yyxixcqQTezqhiUwCgRsnAfrIlUKFsHi5aIvcxQMyJjmkpqgxZ5zbWQROVkh8jumglGCebsyEVIq0o3gnZOWoxQdHtH2VGHrFuG9Ek6aCbGaHTbZ8S+PSQFFPVP72jBuV2Ls9n3T+cmvKaLgte09axiRA/TOFSpzGd0tpp4yITzRJTxkFqCzEgourux1rpf1JyjYmI8y5CRqtAuIP3U0vqXXTu0ARCGoij6SBgC2VTUsAETMAajNGEcHCuQMARIFiAIgmmCwTVUf3HPCle175vau5bvBVH6IkUtI5yLV6N7doN+oUqyYt0khU4FSPaBWw1ygVwgF7lALpCLXCAXyEUukAvkIhfIhWPaT6Nrcg5PlFzvg8/W5JedOrQBEIhiMPwLNJqcak4gL4xxmgEYEc0YhIkwzxwTPJJ+qr5pycfuI8KuVYUAEwnZTDiBqwx1NTKzz7oekrFGoKvyhzO0rm2pjF7265gGABgGgliH8ieSOYgeR6TSqBQfBU83H6ZUZ8V32WThEi5cwiVcuIRLuHAJl3DhEi7hwiVcwoVLuIQLl3AJFy7hEi5cwiVcuIRLuHAJl3Dpnkf9HKIACEYxAF4WXhTEJAbbD/9RvJjJG3ggEV4ziEnsKxZBWBOEl/3KymBM6JCqNHBc5ynjy7ErElzZ1Pi0LWfRJV4tIhz6jAD9NZosrOqG0ILlv7nloe6MQdvmgjj+J5QOBnkItIRMxoEsbykZW+jQyURL8RQaVDx6CYQYQheXgKB8fNAQCAQTMIQMJWAqQkEgWugQ45DFQqRbDEJgMKaBICzIUDDU71mJqN7ze+0W/cA6gw/973yS77T4enWdrSYmpN4ft03SHgvp1skEs9efWlvoFNZJrdWq6bo5VmKTmtKna+iE6Ea3H1uxF58GxWzLlLMHUstTTaL3kl2sPC1C6tQ2qRVTJ82pp6GWN6iqErY/OtnnLoZPY4LRlipnjrnU8tQNBA4k5JJtwMzyONZ0Y1p5BUo8t4BT/DUjSOHTGLhy5cwxh4QIgLaCABTfxwx+JVbEAcpgrLmA551H8VHE6VYFjehe3/ej6KhiIU0eGDEr9eTT8PdAkStzQT5kHqUuy8hFAcDVf/M32CtCiPTu8gMsg/FiC95boAPvfYAOBESWA+BbXF7vPebdQsV1y5J/jJN4cmk420AV6GhSZS7Ih0yqd4X7RO+PbfbeoAe+QxNiTNDJ7AXi3T9aREiP4j7RrLEuE48JdB36PrFtvt30CGnaE5qsd4k9+TSYscNQqZwEmalVoXu5WwelzUUA1UVgzT3cgYBSFcBxgMeYQR48mvDmegesngQem6jPUNLwvHHwRdizBtQGgMSTT0PLIa9BpZygZerH8FUeb5Y0UIoAlmEJy5WjHxZm9a4cMCyCoXr0+REs+MgXgk/Jl3Y7q/6r1Me3IPPk01Arc0Fmp1wvkpjzkizkk+ESMMSUDxua9JI9xGtmHXZDv9x1DM1DWXHHSjz5NPgceGWGlsnJMI3275OhVsIFGP4J7rhBBA7fdS4pBRwBwJNSsL7dKFcgRe2ZluocqZSTILNRLr44V+y1pp4IeapwfFCOqxrwFBHgB6LCH5cWma3gJAKi9VynUXV2VM9bKU91mxzmFcpckFko1wi4xj27EaLvonINp6XEYGb3KP6PzQEAyzVYj7sEGvTcKaJz6+fgrk9+jHAduJ+/nl144GBKwzjGESSeXBoL8HyrKFfmgszAIN8ljN6YYTdbuqmTtmCMZ3Rj9+ZYSFcnNVM3+vEMbuh2naRX+YfxCagDxR6bhGGE3Oli0V5shZ5cGoxQp8IKZS7IB8zv9s5YRWEgDMIjWB0kdbBacnCdR0ghwSe42spGsQw+glWeII21cI9w+AQ22kUkdrERAtaiIDaBg+NItkg4AhfIJvM1m2I2/8LAhv8nMJ1EvvA1abb9YhV+FrTsAUWTe8P83bLV+z/6TCsXzN75uRnrQOS7cyBXmq6SskiactBN4I/K8iEblfn/jjxC/AM71xv9lBgvSijbRhdlCFEZQng3A4+1mJVQNp/6ZqDsIgBvwxLKFpK0C/6rQWgXoV20i9AuEq8CdbInydMHhGMrlj3J7El7YKmTPcnsyf0e+DKZPckhVAUwe1I49ocSlyEZOcarVv+ZITlNlkHcgL6LbTKhXYR2kW9jwt136KdXzAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAWwAAAAzCAAAAACWW23zAAAAAnRSTlMA/bWfQ5kAAAUWSURBVHhe7FkxaCNHFH05ggniGK5wcahatgiBgSBUBWGOFCkEC4dQ5eL2UBVESGEkMOGIgsgGF1ccAsHhRnAcLgICdYItQoqTEdfs4iqELCwLAmGCQWE5zGEwRKPRJoKZv5JTXBHmFfqzPP23b56HmTHC7QeDwf8obBO2gQnbhG3CNjBhm7ANTNgmbBP2YjLoD2e3wWI5jqJNJuMlxBcocpFVojfK6dU5jIb9wWQxy9wQdnf0SavP2i6PtL6C1Sibk4KZUKDnJKEJO3Dc4bjPO+KtM85VhajjcO56y8+OSgbuknTcYLauut621+a8M6OEVWLR4e3hsO04nnwm7O7qk1ZfTGTYqpAjXC2Wxl0vUiUG3BsPHUcwehOey7Mosflqx10tac4j8eDofE44F+/2uKthA9EpFSZ5vU5EkCo6fCDKkLvymbBLyXUUn7S6xyOt6UxCS3f4WBSXB/SEo2xq9/AvrpIvGQC7CwDs7IxBi/sADhHGIJECoHu/ReITpAJ/ZDVErZchQdil5L5WfNLqNyAQvshRKFdFPcIPKWnCbq0KcA+b+A0CX8jArojM3gHY1zJMtMkKupeVkRCkgpeoy8FhKCthl5CTk0zjGJjH29T3oEcLI5+g0mM8hkDJSkaECb+LR4AStm35xxcpUGzt4+LgoHZFr5gYVonKW4LuTUNYO67sOMGnclRpyUrYzfFpTw9qtbRbrZ3kqtMru1HFcaynYmAdQxkjwkS8B7vFlLDxHfynB43RvMFQOm9Su8F0On31tHqqJ9/4S7zJW9npGazajiv7EijIEWvIStjN8ckq51X8ZDXxdov6Hgh8b+FoToX9iRxZSLRx/TI6vQHW5j/eZCqveyHCEM0nDKxArdJfH/z1Owrv9Xv1ylQCCr3CtY/qUXHXPRuKCcJunk9WwINGWniUr07v2axXS3rPicPpfr7Nt39u/hE37yqBuHd6nPO+uNNQh/NMlolKRpwH+beRMXH3JW4jgSJE2M336Ulbuer0bWT5MeZ8cKuhh//cjwdipDXheWKo3Eb+6AF2/dl5F6fb9t1KC830P+zZlUqlxEhhdVsGLiFxkspK26V93gghbFO/AYnqIV5MoaIExHKUoMz0Jj6DgLpnh3MAYHUr267prfUhcIW7493dSFbNdtr4Z1lpu7RPZTfWq++BxrMydGeYbWVhh3hMzOmrhj5s9CBhsS0rGzGwT9+v6d47kk34cjavm9ISbZf2qaxZUp3GiQUw3Rn9KhXVT8p1Yk6sSITtn6Srzm8AzEEcCVfA3D9FV333NXC5/lJK9RIgSPu5vAiMwieQIOzm+ryWq3yL+g1hOhWl+CN0qHSTM5HVS+uEnpP2gBzzicvbnuOMxYYvEClHSoa2OFq0ZBCtq0qrktvJwBGW3OzwJOzm+JQPriRo9ZVrTy8kD0O99bHj9j3enu0yp49ukQHz9zbmCR7uM1D/CqbKOaiQLKsUrSKfFJZsZCDs5vlMswGpTn5rM4aLErS4uMTnxd3mJBI3MD8emLANTNgmbAMTtgnbhG1gwjZhG5iwTdgmbAMTtgnbYBIsPlTYBh3Onf44ulPP3+zUoQ2AMBSE4Z8EVYFGEgTypUExxxsGzURo5mAfEgQdoK8CdZ85f7lc99BC9utLn/I8UKeniaSSJ3B4tGyjkaTwsm8CxChYF/vjRsS3MVPvbb+OaQAAQBgI4pkZFehCRXU0wQMj+ZPwU+sTVPbo7fTj1IDYxMYCX1CvNazoNzYAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAQEAAABNCAAAAACDao6CAAAAAnRSTlMA/bWfQ5kAAAYASURBVHhe7Zs9aBtJGIbfC1cMLoxQcZithIpwZCAIFSG4ECHVcgJjUgRxICOuMOIqIYELFcJY4CKFERiCGx8ilTiDCYIcyxXHYUFwYyFSHOYEYkEgzIHCEpDZZuAyK/lmlfXuZE9eO5B5QDM7a8z3+kXzs9JrsK8Byvy5h68d5YByQDnwLcJg27hcArE/NjE+ACG4A3jlKwGw4Qz+PywMnTyl2fw+pTT/cZCl9IjdBW4BU0lh9oLJkLkBC0eF9hkbT0v28xN2NwgBM0khHOhk8wvthjGn0bsjAL1NgmCswQhRIASEnAHNrbWiGbAS9gqcARwMZ9DDdeg4BdBOI5DR1saO/vAYYZHLEAJCsvxAD1wHxp0jSmmdOeQpn2VjNk+dnvGOv5OGdRbIMNvhDd1n4ZDLEAJmksLMgjzNB64DtELpxNHPr5iH+nTSHX7sjjqSJcMR+IbSIRP0D2cMmQ9yGUKAkBTGAck68BTo8v40/QD+ZHAiew/aRqsAYAUwISD3ZyzBB7kMISCSE9FyEX/yvr0GB3s0sLwrWjJ9PHhEIIEvVxfAEjhWr2cD2uqMGOaQyRA63AIicQCraFnAqPsYnMEjff30eKOk72KONfNgFYGQg0RRA7pAAoDdzPzWeG5BileGR4dEwIInItphWfqGsaM8O+QTcNKv0+w+Y3V+07X5DmmWfQ5n1PnFSYWesTN+Oc8k72boJ8Ojwy2gcsPrAFBAS7z7SFIDfgKeoAvgbcFAqQAAWlqHwDIEA7iwanihA9gzyilcYBmfQGq1Uu2/V9xHhkeHECAk3eBzwWM+f7s1cUMnV3M53cAVu0sQXLbE9WZSXPdq5qsUAKOVyGH0Mu1938YRB65eJECG0CEECEk364CmG78vp11/xwqAZXCI0KjBhdbEdfQ2EoYGAC9RgLGVK+NTrAxcvE4GyRA63AIIuXkH8NQ4jq9BsIRwCAP0HQJ7rzow0d7OvUrBQ+wdBD4yZDoicOAJTLOGhRlt5MoEsFvVD8CuBgnRyPA+V7/HewuE+O2GNm9IDukkFqaa5gZYr4HvAA2APYAEiYzFaWUyJsxMZs9vNxwf0Uqfb2FHbDyuU9ofs/E+PZywSYdWxhMWhjf0itmGNawEnN9lMkLoCNoNJ+MpE5/ngg7l1BnL9hmd4txyNmW+sYeh7nJgnKf79fqQ+SOT0ZfokDngz9w6sHrCWwL8SnAChxjvCXLrTheG8s/iOtbsIRFDADIZkOhYAPWNifq0XDmgHFAOKAeUA8oB5YByQDmgHFAOKAeUA8oB5YByQDmgHFAOKAeUAypX/NkBXnKboWEQJ8Ecmw5iiBIWRFQJYnl2edrOBpF+Y4IQAd7oEcEgpxUDGQskq++FCPDeVoY4JtoIZsDb51X/daDXwFXWoQBOE/rB6TOgfQAJo8Z5vIvtZ5ADSckoaf51biLuvxckNte63aoNAKXN99gsAclEGxjdJ5jDNizMMSqut5tGYvslQuItyfkgWt5JWTxZLRCR5vo+800Qj2lfniGWR4i9JUVQmLdiIOGG84StJhyWggK8HyQZYkmE2L/k3Z8HtpvmXiY5lyDOeAO8WPZmiDVXhtjE90TTIEeU/GLOhCsNoGR5EsRRZYhFyS/nTJh8sWXu7hBXtvM8BRmrbQC9Fl7EALtmvEr1Nk51zGMX4WJX8y1puVpYd/BcoOdg/AIHb4LYNjh/4MTprYUyxN6SIig8bWeDW38uKP/dPUjq1yeIccGbS4wgWDRDLEqKoDBpuAa37gDZ1bG1cn2CmBR4ax38kFo4Q+xTkpBpJwYRw+ahnVmiL1s5ZALZeYCd0cqEsUmd9SnN07okOxmuZPTnAS+rZZhGyAzxjpMhBs8Qv6umIEFS8u4/ISno0WeIvSWjx7Ysnqy2bL91wLrEhUUIgOq5ic/H6OKR+LeAQRKjxo+Q4y0ZNa09AGYGuer1DrwtAtvbzk9jjXX4Q8pxuOlCUP1nvWihpEGOt2TU5GYliLj1DYMLy7X+DogW6pMt8TgvzRAHlYyEh+9Urljliv1RDigHlAPKAeWAcuBfmh+xRYmHD9wAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAawAAABbCAAAAAAKQ+5lAAAAAnRSTlMA/bWfQ5kAAAnlSURBVHhe7JsxaNtoFMf/HB1EhmAylOLJeCilbzEeSslQSofDVFBKJhNQMB1CuMlEEI4MxlSQoUMIGII58FE6FIEhhICKuKGUCko4sDGdQgzGYAhdFExAQYvgJH1qVPeLLSlpIeX0A0dClp7e//0/P1uPFs7NIoWcqfyGX4aU/71ZqVkpqVmpWSmpWSmpWalZKXavN/41zEr5tNZ792gPNx4nEWZ/5FyJUd90ZiCZ0RH8U6yR8+PpS5bjKNSJmwvD+jkVo+kXI9h2JI++46NJHh0ujiGRJFLLYgpbATGSaZMokR99JDEsS2KM4hZIbPT7nbZoOEmJltYixX2H2onMGtFUPXzFrmTWSBYlojZvlmm0iUgJ0iWitsHl3KCG5YliakYGgz/P0iYPsUVryp46y9CIRMNwdRgikWEwHVJ0EPJpO4mJlmaQ5DmmOZG5hFiSK2eqHr5iyc0aiYb3hxqcWS4kE1n+Wd6ew6GQ/PVjYs2uji8jpMPu1w8KdlE4haSwDUYFMYlEuZWopcSXNrIcUxTNuLkwH9hBTk9ExeKbJfthNaIL0bcQ8kRHdxHAYfG+Do6eiufweFofbm9iJmf4lgHGcFnAMXgw3gdw+nYOeJSfEeS8+Bocg49g/J4FT2xpyMLeWtjJROYS0mtyB6MqlhBbx/Fr4A4wzPK/BjG/hg9wOXgGhn0yGGM8OIHHDlCEh1CGeoKZzONb5nA4BnCIB+CBcNcFefePMCuIfRsTjHs927uWMYfpREsDxmtoZmLnAoxrZe4gB1expHRPgC9AKM65gIwOkem1ilGLyO9bRFpbFElhbUh2GBqRlqQNmiKJmtkRJfMabdBQNJmkdtBOrBYpkmg6kURLYxm2XFkJ2qDcMiLaIFexxG3QEBt+UDIva4Mo5IaHJRwWs/DJ7qvqbukAW2qxhCGQCZfZAAnI7FSHG0B5XQDjWGcbJOCLiuXlt/WDpgDArulvCr0VN9lJ7DWEYCsbTxrsamUJeH83g5jsofIJjKl6uIolZfEAwEDFq4u0JsxCpa6WwlYh5LPAC+Cx2i3hHAi1Y4xLsf1ec46Pft4PM2Dkd54DOHy3BEY32CQJcrReAe4ddWuvAGzr6wV84fuQUMPZPIIXFmJKw9+nczoG+lrcXAZ1350zzNTDVyw54ypelXC5WQ+9NtmtIaQkhD3zHDy9wuT6Z+edYIK9erE6eD2sH23Cp8y2WyoC8ECIClLxhAulpr6Wh67myjjZLS7iexZ8h4KXEFOa3cQGED8Xu9rMBp8XTg/n17Xo1YZvCphiVrak/zNfzCPkTpAUcuHiOAPugaFvfEYIhApcxs2nExbq9WJTKDzdVr2eczl/RAbJjjMsneM8dlGBvlFe5xfiI4RgPx9PmvARPpmYuWyXFoM6zICvWHJ6Kzk9i2lm4Ym+t/AMIZi7EOs2/XC1BbkPNuL8GtxFVQCEzeNud4pZ0UHstW59KUhnMMRBvfymAI7MZ3BES0MmUS4DNfcvcArUFlYXcRn2EXIZvmLJvSq9FGBvb04Z5D7GsFuYtviHA/h8QCnPknqJOAyRY/0FV+eoiwOmeh5nwNbnzVjqeWnXJ9v8c3V1dQmorOZmjIW5iiXlZKXsegVbBW+WHTwRFKeELZWgsly6qMJHfYw45HAKjzGKuCrzyNV81SjiNvvmtgeIhJd2fYRFj7tAYTELHgz+alY2y/UeV7GEbBbXBX9mwE/dzTbJfW801HZMUyHypuRmw5tBWgbJpuVPwzR/ZPV1PN1RTKIYz1kayZZ3OnteGxFJphfclIhMM+7DmuzF0IgMb997byR3nAjiSuOIfM6y3JhkmBavJxwLcxWLB11U7SvcbNAgYtNOse8Qw+iTi+S0yEVjT6JSQyF5FEiQzMvNslrfWaCJpDRkf/jcJ4ZpEoOVITqIJYuySKLB7kwNRYmcE8aWxhElyLuQXcrrCcbCXMWSmqVMN8sxXfzPj7vLYDuWY7GNh9nRjIsbyx1nxCJFYnU0rROEYIQ7sekbXgxGpxP/wmhpybFYHIvXE46FuYrFg8JbBHBmJccgRZGJFH5hpliyZN6ofz59f79cXgbKDzFJSjAW/gk414H7zkoJx8I37D8m7K4AlT1MkGJXKxXg/Sl+OLdwDV4sAxAwQUo4Fv7R/MeOHRIBAIRQEEUgTl5aspCHVEjkFwgEzGB4FdZtK9ZLoQ628Has2sEWnhfs2yEKACAMQNHhdbyUJzeadwHBKlgEm7yfBwuvbnNLPh/lfBqWYAkWLMESLFiCJViwBEuwYAmWYMESLMGCJViCBUuwBAtW5tVUH3F0v+B9Rcv4uNXeGYM2EcVx+GfJcGSQkEHkppChBA8k3CDSoWQSMSDFSQopTpKxKIhkKMWASIdSECQIijhIsCAiVA6HIhXEpUdxKi2EQOGQQsohJNxS0LvQXuyPvHu3aHy8b8pw5XvkD+/elfa7DIZ4DUS0UOdKVafdBuzblaX5MgR4a7t5F8u3IIm0gBWC9aqDl80BCI5MnHAcIs6HfrHub/d6X6rVsGvAcCY0DSzg3CkrBPnW/x1rfBU4Gpa4m9c/TZYKhkWZUGlYwP0JVvB6lRsWV4EzSMSDbQCAubycIhPKXdT0goFAIc63qoAPFEqXRr84iWHl4UZFMlxNzoSacSbU76JkGNNUtUohyAoUxFBVPA8YUAKuAktsg8c1qza8JTTH5GAoE5qqi8oC3gZZof42uH8SbaVtUJRDXVxw67Ar5XJDMhMq30VlgaSC1qseP3LOpmPfvGHQNijKoZZbT7pwXRQezmCI/w2nTBcR44WZ0JRdVBZw7pQUtF6l4CpwPCxxPjTAzNvPmw7QrZ88Qw1Grrg7MqzOYpQJTddFZQHnTkkhyLcqAFWBpe9ZG9XhFrpeDY/YIratanRs71et9f6G1eSre9Yo+wmCg/AKVgjXq8496yB+M4PMc1Y/io9tnDw4HYQ/J2A76gr2m2HXrWY1JRt7JOADBitUH1ZEdFhaH2nsTcm8VeoTIkxbLhOasotKAhmF+gR3ou8+y7/IFeZDsdpBxBFMmUxo2i4qCZIVKsNVYDpg+EfAno8cfOzBDT9suasN2O1OFphbqRgI2t0VA2NxXFyJs9ydIry1echBgmQFrxeqwFXgs8PqzAFwZ7GFWQCYxfviNPbCwWaB1s4D2HALrRmMx0VM43Cu7mPRhBRjBca9PCnGrxdqUbwOE3BcxEf3c8d/vn4hF3+Alzf8BbweHJbhdwe4WISIIBjNpO+gkIMkHgkkFLxeRbj8HUOCpd3Sbjd+9gSQnA/9q2gsqgLLNXJ7tfCgPCno0BYk8qETi66icT50QtBMifOhzjMHk4ImI86HTjZ6WJwP/edodHZVZ1c1+s+nNXpYelgaPSzNL2HmHFgxAn2CAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAccAAAEJCAAAAADEdbOqAAAAAnRSTlMA/bWfQ5kAABqOSURBVHhe7NExCQAADAOwHvPvuDAfJbGQdAHpJo94xCMeuTx7ZIgEAAgCQYOVRnAM/oDxbXzHb9mNjN0PSKURCWy5u7DpIvG2mQROL4n141lyS+vaNAfy9IrJb+/6QiQ3zvzPJg+BRTaBXa6ZhyU07IuLZcxgMF6zBKPcTPo4cGwIy2LEBgJLEjiD2Pjl9sGxYP2yXkzbx+Xwg86LOcLgxmMfocmMDcEIjwkYkc5CXgTCbDvNmHlIJcKLXwSnUnXr05/pne5Wa6Seqx9sq7rqq6/qp6+3SlX65quwWXAZ88TVY8yZvZbCo2gWNEgEmAcKj6JxCMie8Pf3o38+JHw/mMhQMg+SmLOAiqarp9KZoMZVNx5X+4wxy7CYyaMsp9MxmC1SYY9FSUcISXhxyo7ryUSPGXrHJaUChhvGBR3dHctZ4jNOGuGkDqkn/WkFoR1piMWmQ607vNz8yJgl7qcZmZF1RcoS91lYymRDhzmcGaEdVeEGk7dWJnqsF4YG42GYZHJPZ0MqiLI8LjRHSZv1OdVJ1IeR/lDqJwVhX1Q2GVfz48MQII+rwHprbxD8Gtei1Ob2AMGreBHBHr7E5iUNwItyHG4D44SQ+CFwHR8ASabW/gEOqUADzonK39OgtaBpVIfUR/oR6ycFgCcqPwtfzY8Pg1Yw5TkAP8Cf/IOWBuAiHPjY0KDdvn7pzEVZZxMCPk1bPlqHvv81/oAEvr+/vdnOFARxc8jXSdQj0U8KgBdvXPZ3PsI3av04yyNrkP2K4BusAUALf8cBBLa2sL6OGG9A4E24uPGiBgTaAQ4sABsXICFLW0a2QEMaSVGinvSTAmCt9fLZ559yoew4qzElgjipnUGMB3gcLRyJ19dw685jL4i6LWy8Wyz9lfGeLCDNBKozAKGgYB23tm9vYRcNQ/Pnx0MAn+LJdbii7C+4jLZM3t0pmP6pqFxgLDEYZEqfxe8yBYkZH2TqZNTnFcDfxhbgKTs+HN9ADptBYtI+MDjYXMdtfAL421FKew0fAKP3n87aPUDwMZ6IE9p1ITy6iUzpR3iCCqgNCaqTVo8gp0BWGr1DJQ1B01aPAq43vsbrDrPLDB4V9plpMSuWs6NkxxGJWCyp2Ok5cv3ILSHcl1qpNEwKXJZDUkTqSX9KQWgxwzJcZphcrR+ngsega8hY6PbdcaHrDCdyjsuTCumK4eQ6nEhkSqmAp+EZjIpIPelPK/AcLxJ11T7APGAsPAk4TO2TVwh/B9gdoHp8X71/rBT/uIEDrKNyrL2n3j8qnO75UUHZUUHZkXvKjiuPYd9ineOEDNvlyu+xsQjuuf97gOu3L+IYPPeHO7jyXAO9KtXzKnd7BmOmPeOYOnTMSLo/VONqkzDsWYwZtjOf5Z1uVKnnKTs2AtyxdMa6i/3Xcm2ddWqfLJUdXVsMj6X+Tw1tg7Guw5Uda3sypcG0HHi/nslS2ZE7thhMneXdejlZusqOJzqYHvtkuvhk6XBlx2YMpqUnyz5XdqwQ3OnO+GRafrLsDZUd638yLT9Z6qs2WUINplN+NwbrrNByBKf3ybT8ZGmuzmSJVX8yrXiytEQHhsqONQymVUyWtqvseAJPpmqyxEo+mdY0WVp9ruw482Cqzz+YqskSDRtMLafRDxWO/bDJUtnR7dGTacMhHA/0xk2WaM5gylfI/yB+0cWVHXOD6eq9++P9rlgWDZUdkydTN1w50GSpN2SyhBpMy02WDfEKwal4MlWTJdSTaXlwp/bJEmowXQ5cOVnWRQ3qyXRp8GqcLKGeTJc74pgd59TacWjQYHrqUQ/PR8JFw8F/fw0C/gGlp2K0hhUCcQQuYnzVTuHfW3mWwZgRJzljTLdO4YDpGp2ImeEO5fWUvkd2mJ7ELa4+IHz9oZlPa/ycFl6CAwDOdZxWaHQ9xXHmL+P9AAje2ZgSv50Csq8qArpOodgk5ouGEQ/jOOCOwcWoQ/HbU7HZ0wHZ+0zCSCfzweGbFyrdpVDp2RD1Og/DYczyGObEtlrmi9uxL2IvWr1hzJKCtFPs93RAdj5kPRHOPZc0mEfB4RtoR7sfwZYMiSI3TJHT6zCDH8ec2E5nXm98uUvYHgXb6xoEKH77OPb7tWxAdm0N61oLWi4JfJeCwzcQXx1E+Ao5ihpeFEQ/+gmgHcOc2FbMfHE7aldw795GO8gGaZ/EZsdmPiD7OQDF5KE/Cpo7P169FuFqMXZ968reaOQ+ORNzYltk3og4gf+6/fH3noeWDdKejs2eDshOXaZkLjh8c0Ok5yhK7o9ttmdhHqAc8+rtuN7aw4cIKEh7FtmA7IfnNRSTwNta8NY4OHxTEaBIcf38+2evBscwJ7bVM3+0BLeXsNGGBgRHBnangOwIBvCeASiZhjYJDg/c/el+U4/aylP82X1XzIbHMCe2JZhXaMfAwT5wGc8Dh5kg7cQ+HZD9rrH/xXPAAUDJYnB4DO64Pw/QGHgAEclQHAV4GptacCxzYls588XDwfPQ8DiL0Q/DSZB2iv1OAdl7rGOFsaiRSo7VMH0SHD40GRs2NuR9QtGNO2/1iedU5t0U22qZY/Fw8JTi2SDtAtmA7K47zs8kqfKkht1pbsh7ojj+OgtzYlsxczRrZ9oL60b9zFffjmYNZlxt5ioesoqjq6DsqKDsqKDsqOyooOyooOyooOyo7KigzmHxcU7DcQiCWEZ8akBwWKwjMtuoCnXSJb4V0F3gXY7hZr/HfteO3jGYzeO8DnkFClgiGcva8adlj9919VhUx8m5B/aYoXfcsCLUSJf4VkB3HjtKdz3u6ZN3ZQ5zQunpFyW7gqgVJl6BOjN4cgMsHvKoWpRhsGHMWtCK37xJZWOXQE5uhNWgPrrEtyzd8naULVrMHRMzQ0GMR2w7cVdMUWI4LMo3bGaQJ6gd151o4IYgxplITpx8mRf2mSMzQ6cyr+T66BLfGehW77/q+/vb0lMME08/bRP+/ZYG4CKcxCvwMgg5r7G3rsaasKFBu339EmJ8N+ddWA3qo0t8y9At7y9H7notQ5Np8vTbxxoEJfw98Qr8btpr8wv/3L4LCW3n8a1XMPFU2doas13LeRdWg9roEt9Z6FZvx9fX8CvjvXVkcUZeHuBx6RH5P2tXNSrV/uudH28+e/4+Ytz77FUItEDAYYu8C1Eh6qOLVpV05x5XNeBZ/A45rEvvv79ADi+/OHAvgoBL7/75jRfOQuLXr2ppR8K7O7FL4A/y3oXVoD66xHcGutXbMUDwEZ4ozAS38Qngb2+uA6MAP8TmWoACAik65qW9hg+A0ftPT1wCH6TdCCtCfXSJ7xF0a1k/dnpJjp0sm/rC+88K816BCY5aUNlRnY4TZlwCObkRVoEa6SZ8q6CLhXwBCfSdu84wnXOUJE9/ijzpMUgugZzcCKtBjXSJbwV0Ea4aFJQdlR0VlB0VlB0VlB2VHRWUHRWUHRWUHZUdFWzlLxdj9+Ar3MRKYvcLD+4mVh3LsaP2YHtF7XhrG8DGq1h5hMsBY+Eqot/pex4P60elflYzRhUN9gcAMNiHBEmla8afkYy/78/UEk4Cb9/aOp4p0SpyyMotQozao2Sl/x+TqKK5AKRcZ1aXMdvS9WGY8dCVcBNnW+F+axkWM3msRNQRn14uHCmFNK0aQ92LKLEuz0VKJaYSFtFKcaDMCGwMb1ZipJzai1JWx+gwZ+4IrXPYkaKKZgOQitfZDovbNkPy0KVwpClnW9FrKSdDkHKPmVymyfOX5KuGa+q2uItWKjpqjilzuWdYRCvFIZ0Z8q7Bo+98dmKknNoLbSNKdtgwLkyklrru6MoflBtmfW+H0r1WWmlIHrpjr92QeSlnWxbT6ggl0tWaMyucpCcJkq8a/bilUHySb3CWqSjqW0QrxYHrlBnJd6UD8qzESHm6PVu0r7OhLCSp5c2PFFU0G4D0ENCgQWAD9/z758ceuhSONONsew7AM/gTBKJcvxCOVDtRX+Tzmuw3ZN/yTCUugGilOPgH6cy/XoDA3MQuZNr750uBv3NwY03OvaOggnXHGkUVpQCkSNhqkN/Ojj10yWt3d+JsS2Kyf28Ww5GerC+yJnt7wQ2SPhWYBhraN/cTWikOxBUAfn8ZAjMTI+Xp9tYQ/OfexuV8hNZl2ZGiihYCkJ55iIdu0dkWgUZ34m0Nox/lw5EGGslXjZa8/I2ioxaZajlaxCGTObrfhsB8xLRce8Fd7dobwdUff9hO19SW6b9KUUXzAUgRIABGgIsL7ayHbtHZ9hDA53iSiOTDkWon5YtMPdvDRYqOSkyPdjwmDpnMP14nKnMSo/bgv3MngPYMBlRz2X7IFFU0F4D0Cu7BB77EAJttjTx0hWQxOGsfGNyPS6XKYjhSkq8er4mWdnFjjaKjZpgmJIgWcUhnBr/ZiDlgPmJBrr02rmgIPsV6tuYy148UVbSf9b3lRqfbZazb1Ts88dDlaa9dClHKmGV2mZFbP+bCkZJ89bCZaTI74wqdYypKiVaGA2VabAJ3ZmJSMHNneehEAp1Igmouef1IUUWLAUgdJyIXOv2Mhy6Vk7OtEHP7blIqRfLhSEm+ehRdoTNMiQHRIg6UaXVcLmAzb1ZilEftCbhCIlfz5N5bMdb8bdgKqVq9SaFX3/5qefi7wI5/vNgOsDtAk7EohzYkNlAPHgmXQs4BcOHSTGKtLTQZq8ohXAAKyq9DQdlRQdlR2VFB2VFB2VFB2VHZUUHZUUHZUUHZUUHZUdlRQdlRQdlRQdlR2VFB2VFB2VFB2VHZUUHZUUHZ0et1bYcPvVChRBykuhG8tb35LD54Hc/cxOpC+SFbzJbnshnh6kKNq33WkQljXjsqPIrm4A5+IhNX3aNiEMkrEASjYAQEg2DBoEOUP71sejyiY0rVuOox5sgUtzNxiSjcUF+IGCKXDxmzHhpMiY46zZytSvnp2nHSSMro7FQ6g5U0UKCkItS4KmMpEejMUgo3ZDPTCOX3rsWMQswhNxVz6MigQzobUr6swV1RW7ZEZZOzUymaE53OmgqUdCSUHT36RnGJ0uGGHM6GMpBQx3N5JuZQLnLQ0UGHLOZSvsyTv5C4JaqTnJ1KZ7CSBgqUpObHInAGOACBziylcEO4pN3478HX+Mq/e7a9ro3jDA18mkbHs1aQP+qUzlYt5GuYgOokZ6fSGaykgQIXNTD+av1oA19D4tbLGp1Zmg039Ni2B3z6t70rgfaQmENaPugQna1K+QVQneTsVIrmRBooUNJRUOtHk5ky4TEuPnU52rlyOdkTs2Joj8dV3jFptEzHcrNYL86U1Qiy1GTuOJ/yPBpXk7JMZZkmDTI0oqyhxtUifok9HwK/va7RmaWpGETBYHTnyhoEtJ/tDYqrBw1IIgdR0KHs2aqUnxlUH2Tq0FmxCUgDBS5qDppkx/ZtvDwCsPP5NTqiNR2DKHjvSzw1nv7W4Qy86TGHKPpS/mxVys/Xpjp0dqoQyWvIBkpS42oRbkeEATKGmbhEdPhpaLIOH68fo7TOj4g51EkiB2WOOk1KKX+SR0jK6OxUiuZEGtKBi9S642gMHccL80e0UgwiV1zGmS6fCORjDk0JOlSIysTT8AyWqcOTBIV9KgYuapwdFRx2GvZXFb5/Ot5bKbjqvZXCKtpRQdlRQdnRtXh4EuhZQ/W8WhWCwU+Nx3Ei+CfvR7/y1fNqFeB9vdPjJ/g/n1meGleXDd5lRj88UXgWMxxlx2XCM5m13LWd252lWXuJllR2dEzW9WY2kMFnEpvtMAJuM73HlR3Lg/cN3eazi3eM2QR7+nA2hT2901N2LAlu63qfzyFv6rNKm+bMixBdt7my4+LwusJZdB7Ys5+6MGS92ZeTButyZccTe/LvzeMw47A5tLuRJT1lx7nBHYPZw3ktP9/Bn5bB55B2jLl/VsqOvQ5NizNjqJtzyXPdnndBabrKjlWv+blhzP3/1z09WwNo4Jp/oXtl6XPvbXd1PvcDNDMcruxYds0/Hd0FnIK5Yc0jTlsDyo7l1vzT4Sx0WqS3SC3eF4taZccqdk6GrDtnDdrWWciSzObKjlPW/M7Ctbm+qEOwaS5Wr3/E1oCyo2tOWZyV2I4rsa2zyIJS2ZG7U9b8JbbjqtnWKf76TE/ZcWnv+Yt/v1bdtk5xa8BRdpyy5i+9HVdiW6fEvF4vsOrv+YvbcVVu6xTBu43YGkDNa/6y4EZhXKx8W6e4NVD/ghKNX/OX344rv63T/K0B1PmevzzsEs84mW2dsujp9S4oUeN7/vJwisu/8ts6iy8ou7x2O66kh++QWctRZJpLoVbj1gDqf89fZjtuaT+I3oq7oaPu9/yltuOW9pNwmLfabuiod81fw3ZcqW2dxrqho6b3/OXRLzxl1retU/Qa6NVhx/rX/OW348rrc+tbWJUHalrzV7AdV/O2TvFZoMdXw441/oUEN/Wl69S7S/75nuTWAGp4z1/rdlz5bZ1GuqGjpvf89W/HFWGXGFnr9hpADe/5692OK7+t00Q3dNT+nr9677jy2zrN3xrA6v09P+9UFi6zzyoZQIY2q/qQCNT/nr/8dlzt2zr1v2tGw9f8RXRZhdq53qtu/VWlJdHsNX8RDnOqVe9W6BpI96ZeO9a/HeUWn3Hq39ZpwF+oo/b3/OW34+rf1ql/QYna3/OX346rf1unfjd01P2ev/x2XPO3dYoLSsupwY4l3/PXvx1X/7ZO0ZKd5VJBjWv+8ttxDdrWKfcX6vXbkcaIqjHUrRM74LfamZ62BppjR7t6yuQdd1KwhyfCqOf9P4xrPTSm31yFR0LEGP3xr9qFixoqRHCPjjxZQ+PgD8QdCL5tV0Ual6qPa20zq9/r6F61D2k6Y6ZlylPEGgZuMbPXMzsdqwLShmV1GGPDyvfJx8eyGcyt+gRkLm5ZA+047lOPGdWQDj2d8arPC9jd3tgCABM3A1SLANBunkfTsLvdugYAL2xURBrtX1R+jmfwCp6HwHrr/gcYY+TLayCPjg5GgcAoGKEUNAD4yTR9gT/Yh7/vQ0I2TT2iDi2nR4Q7eEkmrrrUcAZRO9TcIqTX404fqYVo0R2YCpLPz49ucuC7xXR5NGbosclA0zGYE8a5li0++2HIxvCksFQxw6znjOcIz5miry9yDYuZXEjrUdM2D1M9og5N6dE8HSII3c5kVUcNR+gzCSPT3Bwg0qGX7XT6DFLxgGJ0hM9A6g6kBQq8epG87mbnxx6bDN12lOKG0GuZzBJFoo4pOmKIjyFjcgvH4E78BkYIR5c44c44VQhM0xcy0azLTCHcHZ/tTz2iDh2hwRUapOysHaKOkTA1HIEPWY/brJ9pbl47ChiWk6U9psU9ZnJhPh5yk6XvQEaAeMk73mM9oYtn7Ggnj1I9kRJNccb7ojYToow5cSWhg0m5buiJG0q6KDHLTzOcqk8ODR3mcj0SkMeDU4+oQ9M0CFlqYI577ZH7DzUcISrop5pbyI6O5/V0YQ7SkthUnrXelf/H3PQdSAlkeQ3Ht8FhduY557Hk2O5/AGsAvh18cEXb0gAfGxpw+/olOVu/dRUSf72ABL4/CuacKoCH6DsH4Bn8yT84L2QvwgH1iDpU1IAAEofUoVlxBjhI+NynhmV/CKK5BXCx3X5hr7X3WkHLoT+e5V68cdnf+QjfpO8ACeR4afDRikq+xh8wwXfkDOyvQ+ArbADAj4EbACbktrZk9Z3Ht15BjN9fRoI34eLGixoQaDgOJDRdnxQIvsFZAGjh79Qj6tBRGrR5O0RoA19D4tZzmYYDEIJPRHPzgUi/dGcv0HJa3sQYa62Xzz7/lJu5AySQ4wUc4MACsHEh87zaPo+x0T+VD66f/fnDO/8hyRBw77NrkBjdb1P22+9+duXOJ7L546Edqy+QcmcQ4wEeT/eohak9mr9DBG0Tn8mUv51t+PA8aflSNLcINMhRL5hooa6++zoEbr3yb+++cCF7B0ggxytACxvvCtzM2BH/jt9AYPdg4wXEaF9/Z+SPsA5XKL27AwC/fnVC6Y/XtUw3n8JfMCem6zsE8DmelE1Hii+ne9SmDuU1lOrQL7HnQ+C319vUcDCA90ymw4uvH4OPcH6NtGRt7G9jC/Cyd4AEcrw0jPs4GGTteOm1A/FjH719/vVJu/+Ce/1D4DV8AIzefxoAbk80Br/ZEDIBBETiYzwhErPwOYTEdH19YHB/cx238YkgGKVSPdKoQ1M0zNMhQvs2fj4CsPP5NY0avmvsf/EccEAdXsyI3yLwX3Nxi7RQWZBcR+/ECboDJJDnpV0XfRzdLOyv9jtG12LmkBYoJuvw+FnWtDrZ9aPFJnBdedV7zgzLtbGwl6SL+uKnbrPLDC76FDXNLJ7rkezQNA35Ds0OtyMUG0NqOF6rWiEvtX502RiGPcx0updZP1rMsKI2DJPTHUgLFHhZoo+pniBpsN8fxgkeQVwcLr86Lp/k8hhWx42vNvNkTlL+cJDwdH0Ri6gn7ljGdYbZHlGHpmhwsx2aC0PH8bINh66baKLm5tPKiTV1uqjRE20P3ZDuQFagwGvouLzc+0erN06Uf2te1MdYSQ0rD8ZO6lzdNiQ2sByQPn8H2B2U0bDiWPgOPBI2ioUDoLWFGrDqdyBUUOfOrxKUHRWUHRWUHRWUHZUdFZQdFZQdFZQdFb6DSqAQHOKcJpN+nJJ57ZwUpK+HFqyBQLLHSFe7L6dAbrbkDUs+p+SvO9WfVcjqwp+VcrPSwtVTl1oqG1cVyM2WvGHJ55T8daf5s5Is5ealddbj3I4+KrOjArnZkjfskHxOydt2ij8rJ1nKzUp7QoSCtD+K5UOB3GzJG/aQfE7JX3eKP6tPspSblW5v4pNg9ID8V5cPBXKzJTdc8jklf11M8WclWcrNS7+x+8qrQJV2VCA3W/KGFT6naW9b8oolc7ytYfQjACRLuQXpj/Fhe/cV8ntcOhTI75fccMnnlLxtp/mzkizlZqX9gb93pQ2gQjsqkN8vueGSzyl5207zZyVZys1KB79z8FzF60cFcrMlb9jE5zTlbTvNnzWRnbZ+7IW68OatdP2oQG625A1LPqd5/9+iPyvJhtMlhFKZLm9HhaZ425adHxUa4m0bLhMK6r2VgrKjwv8BfXBZm5Iqj9cAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAbAAAABsCAAAAAAurrgWAAAAAnRSTlMA/bWfQ5kAAAtPSURBVHhe7JpBaNxWGsf/lBBCQKFQWoovCe5l4YNiZsEUH5ZSCMzqZJxLLgq7l2J6KhH0NotBt0LDwlDwRWC6UAwiJhRUTPeyIDbkosH00MA+OtgIhlIoPCIwS+CDoieNNYmsJsFIz/N4v4OR9EZ/vXk/P/Skb8BLheWPhVmsMIsVZoVZrLBkPApiyYKXASss88mNYp88j5cAK0x6RBkzj+miwixvoQceTrC9AsC7iQti6UNY/gDYAADn72hjhtnR0eyNk6HIHz+elinTWT59PD96dDjFRchxFj9rxKt0HXD3pESUcYHwOSSFGzFz4lOJYM93faKQ42I3LP9yiac+UYSkIZUE6mhJyhF5HoWsokcukZtyEe66I/IE84gqBDdZjPfOTT8vXqUHKr0Rb8A9LC6F1fpGMiSKiy0vYyJXMnuB+lwqBZEvpVdsLtwBk+K8uDo5poDVvlTBSRFAVSvFma+ulhDJoiljjl2Zqau8SDO+mS75/PhE/VHpdbxRwuSisJAFUcRxscWkViKUcXEw4YwoUEMjFs8YM8fe/GSOAi5P8YhYukWrR65q9ZSqqDjqM0uiEXMalFdpoY4/J/38+IX0Ot6cRccNAPni3vH0Gwxv40PgGBU/rsymu9jegAM8xz8HwDPMWRtid4b9u1UU8NGfUOCg4OcTAHgPJ9OidR14H3hSHL0FODdxkOP0bZTkOw0O6vhGenv8YrqK748r6J5bAP4PxfRdB0B6PLn5iYOVw0e7p9dR8eS7yWCjNHuwfn2CGzhj8xBP1iZ7mLOyBSCvhvQU2N3FnDLuV5yWm++cAPjfKioO8DJX6/hGent8na7iTRO2MpjMv9XmIwfAnb/Nhl9MP4Mjsfm+GsT8q4+2tg527n05dIDj9NuHWGRjMNnZuo9Fcievx3DbO5sSs/roKYDfAOCnv6DEeYSXuVbHN9Lb4+t0FW+aMHx+D/tDANgbrFYOgd1NHO8PNqD498HBEGvA/jAHJrsOXuTTbRwcYoHp5nB7AMUHwLED5MHIeQZI4Bmwro4C+QmGTv50FRXzjZb4Rnpb/EI6VLxZz2FY28FkLwf2HvxDfeEZjoDBrz/8Bx+j/EddxX3gF2AdAIYbmOGlKYbhClCdDOAQT4/W1Zlw7uNwivxftxzcQLH5PTCE8yUOc/wMfI7//hnI0aAZ30xvi19Ir+L7g3shdok89QQTUokvpauefwoER+44dMmXzecwRUIJ8/xktU8kBBWkPCby3ICZRfUsFatLkjd2XZHRGYIb1PGt6efE1+nciDemvJLGccoFsqTYSgTz2U4aJ9m8ufpbkSSculxQHxdxVu9lcSzUQaJQJkWLIimuKMnPio+JoG1EVXx7ejO+Tj8v3tbDMqLMj/jVqBFtns0VrtAQr+U5TD8/Pr2NVzM7An46wous3EXFX691Hd8LfPmJXE+81ue8Ag3xBtTDLGYKk6EneWmwwhLXjfiyI0NphSmETyFffoRLY2mFsQwoyHgpSD3dyvQLkxF5KS8NyeVRBk0DUN+87Cy79MKyEXV/Iycyc5ZBw6qLfMGdQxpmmZHCYtdNuAdIw73MQGHC62spTxruZcYJkyMaSe4HMnTFiH6X8oL7ggxdMaLP91Ax9wdpeC4zSZhQS3kjhNWzzFxhckwjwb1Chr79QD9LeS/hniFD336gl+8Vce+Qoe8Y0cNSPpCsSZiBswydv4fyBOuADH2TD4OW8k1hBs4ymFpSJkPrZTC1pEyG1svQ4Y8JU9YIaahKj8TSCku1l5RJS1V6JJZSWKaW8iYK0z/LoKGkrEGYObMMGkrKGoSZM8ugoaRssDBF6itlyyBMBo2SstnC2otJI7EEwqpfh1phlbJLLixV76GssG6VoYOSshXWoTJ0VVK2wtqV6RcWNZbyVlirMv3ChCopW2G9KEMHvw61wjpUhg5KylZYh8rQdUnZCquV6ReWuiGzFdanMvCFkGyF9asMbCjEbIAy3cIsIgiMEGaxwqwwEY3DRGaivUE3dUe67aPOMcMb1Cb9KPJdN2hv0EWzIxr6eIEx60TYiMKqRtneoItmRzT08QJj1oWwmFxWeF57gy6aHem2jzrH7Apej69xB4q7X7Q3aKLZkfYmXT2a7T2/ioLnV921i/Tnd+LJGAWBGIiiI0gQYe2EkHIX7AQrC20sPcKWliLYWHoAzxHsvYAH8BgLNkv67QILCg6ZSAgEljAfAp95zWOGJB6secPi17aXOOBKKNIQmCgfcRmpnZtXg3xGPaTkdYT7Kg54E4q0VwLrUwZHvp2NITUztw3tZnVJgD8konSAmI1abUFY+D5RI8h6sCmAKbF7v3uOgD//It2DgNwjYjUqvKUZBDkPVgEYrLfDJgYUsCQUKSQBGTgyGJ27p8Bu5XKQz6d9MwiRo4jC8O8SclhoLyFh2cuCCyIpkGEFCQqehzlI0EsQOniS3JQ0eBtYbFDYgwhzEWFRchIGhhAZXQgEsTF4qWXQg0KzjUvDEjaXwoY9CAXyqmvm1WzT0MKUjUN/LDVvu19XffXeJZXe0c2IRFQGUtTfaI+qSPuOvGwqlE4WKNfH2zksFSI1QTyqv9EWVRG/jm3WDP/iFJibP2hT9TfaxRXx69hmzaCbIgciGg7CvP5G27CIZ8c2awbdnDxJ0vobbcMi3h291qx7H9a9wOzoGtbRNSxNtJZy7SyvYF25jYfX7+JBb80sX9BYU97HB3j4+3drZ6nXlnEcj9XaWUIb0vTyQypXuVZmvISyySqViU6bnCYk53jHytXrV7cjtXe4VizZ3NItIex3UMLyG8rCkkoah4c0Tk18GJvrWh+KcDCgPU4pI4xFpLSbUca0hg3G9oEV46oSoXR2UupPWb9Gju18IBeOXCtHsrGlKwmaQIzoXkwtH4UqESOaNhS5+W9KuhqKlIpAy02F0ioSqqxZrOnyPCOlDIrN3PbiWIxpMqVXCqvaddKByHknNfoVObbzQSISJUJ9KFKnVizZ1JIlbcMGJoxMznikU+qpSaBBLOZVYqi1HpUdl2XDUvO4tNk5Wdh4HihBvyX01EphVas3FFLxTur0l+W82DFJpLUItRYp18qVbGa5LLkBzE53AgA38RSXX4Xu34HlPMtOcBXA7ftvZZNHuIDhOoDXMKPwtyw7h+UkOyvmIXaeZ9kz/IhVQ6qs93TS753wTmr0Wc6fHbN5E4a+WytHsoFlRfIKcIFrFG2B6v1DjAXF4xv9j238BQ1/A9je+vDa268fo4SWvlp276syw2Yf4/67AVAEz3D6CYC9l7FaWNUuuPPe8k5Q/HxJvyoHtvNBrwfDgVsrR7KhJUuWDduE4QI3gOx0Fwv+/OUAc0YBijep+fuTgz6OYCkCWmHTzSA+3cb+5y++Q5Jb2PsGPjCqrFfEdx/wToz+E9avkWM733CtHMlmlsuSG0APxwWAP/AGMLsXYMFnH4Gxzc8m6AMZLM8BSPTcDCIAbuFXELvl7LMZVopVZYJb+H6Xd+Lo18u5dp7hWjnlbmbJkrZhOMBjIPu230PxdQ/4CxcwxNtYUJgfuokCZ1/SSBwBs9N+z80o4+IJXjVBcIdmPxtixbiqxukRXgl4J65+vRyCe2znA16Va8WSrmXjEpZvrKNYxErHYo50zmHjpXNYLMI4lCKMlPmnajQSYeUcRgzGiT1ExDT7VK+Uiiot6Oykol8jx3Z+MAZSa66VI9nY0pWEGZVMcpIfSEXQwYE+zaD0Ulye13MroeWUokq2ybQfOk+k0ivGVbXr8U4qQnVybOcJVuNasWRzS5aEdojHNhCpbgBJtEC9avv4r9UGXF5CyR4akE2AoxlaglXbxkOt/LxeyX4CsNVHx39aK/2/ogPa0tE1rKNrWMc/8FVcUiDt8XkAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAZQAAAFhCAAAAABy8QPWAAAAAnRSTlMA/bWfQ5kAABDSSURBVHhe7JddhBxZGIZfIxcxnNGGIeaqZYjIEdpcjb4fmmJF9mYstXIVEcJKsxchK1JEzEUMfTM3Td8sw0isodcwjKF0i1Cj7d7ElinN0EZyc8whcnPI+Suna1QTymRqqUf3+T6nv0+ffj76dEOUjgqIH0dFNZRqKBXVUKqhVFRDqbgGA/8X09wluASSsyZGaKDMOBXzKwTAlXgQhsj3KPV8iY6RuAwoPWWURqLcxIFU4AdyDZi4Eg8QKRGlsY2huBx8Pwzbnig9IaVMCBZQn12JhzmkLADnJl4anZ+Ojtb+xP8BDpAHOD65Eg9uKOcX58GTkQ1DJMMEGTifcIla8Z3I6vUnT9ZlD8oPQR6jhGeM5Iso7kGkxJTGNoYq7lLf8yIh+pTSwA9om4mIavzIZEFXrf1ArXqjK0zQO7HdEnbTtPR1S/m/vk71uT35tERy2/N82mXTRmaJKObhwlDcnbJLd4XwKdP3UqC220Iwn8Ys9tSRfbmoHrkZqRuRqV1boYqZyYXCJq6l/EPph2GXtk9lGjLqiy6NZdpRGoKMkXwRBT3MwTF9p/AXWAce4i0UG0Cjvj8CAa6Tm2v4BAkBf6njApYJyCKWAVOBFdSIyaGwiWspP4dHf71D7SvQahIADwD+Gj7QaO2Mpo3kiyjkYfadcoL65yQ5wxEUSwDWoI/wKRnutBrQdDZg+AKLqUhOXD7h9hiZltLz/Nnm3vbOveH8HWhaOBnXCYA7GGaM5Igo7OEaUrK3/BnGapart6Ag7h23cFz/BQp+UGv9bg74obU0OIZly0Zbjac/E1j4wLSUH06A5tM3jwYNaDYxxCIkN8AyRnJEFPYwh4ucw7z3ak/xDAoOxbwecW9w+9cRJOP3j6Eh27gXfKlDYip6r1w+2HhzgJTxoWkpP8RIwGekzMPOoZYxkiOisIdZd8oKjjmAkdJvjvYeDWjIGv5W8fVvsDR7/2zeX4SDTKWr+AiAw7WUH3veBFhCSsMY+YhmxkiOiMIe3FD+c5ORD/IIB8DkD2j2gdHY3CQckz3chuTlMrLwNIC7LX6oqwlcS+k5B74Ck/1tvCDuw2wqI4m+UJ2RfBFFPQhDRDVRbKMQAW0H5pc0pUG7Q32WFnm7mZ/nrr+T/Z+SVof6tUxLmYloSjsUQnSND0lfGQnYtJFZIr7Twzf27qCljS2Ow/BrcSUcd4JkFSK4Ga5IVpf6BQbuRrybUIhkdRHhwsVCFl1WcOE2IFIQ5C6Km0o3QsBlaSiFDiFbUYRACLgJHgjdHGgbJ5JYg5TJTc5lfs9GHWd1Xpjj35lR97gZN1TX3H+E1nX8e9IVGvX24mr/JNM/3fS/vD8wfNzCwMGhb3nNDl187MCnl91sZmBFRi9EwnVwTwsCJ5NckWc85eoUqnVkcisyy5Nud2gjk1wR5x1JEEUURVFEUURRFEUURVHOOs43ihJcuPGTZ3hH0hxFUURRFEWq1rsoUr75P0URRVEUURRFEUURRVEUURRFubWWcZNZEqiyCfnC/Jtj/KAotnISvliyn8qIN88S7wYv+y/gd1zKBRd+3A6unbAFQG4LT2ijf0M2R0/IDT5QFBvxO3dyOwv4QHvKRRAcuZgUv3R82FPa9Em1FG2ulaq10rR/JJ6DLhKPBv/Go8HkotTb/GR5CRrELIb0+t5kH8zG6jqtzMSi1D7zk79y+ahG7O9CSCnigf2QFBgcDQ4NE4uyvc0jChH1VQBa0R7sfeWBBVJgaDQ4vDHTnuiL8UTvdl+69GoGwa6LHXWm/tR9p3j3h0oqfzRdCkxwNMAlcBQExWJQbLoU+/AfRJklgdKfl12yGdJsEVpe3U/h45ohDUZPBrkF6BCzZsRJ/JoZRwIr73OkxsFjk8FzShEN7pQK4YiTfo1er0vq7P5fCTSDph+v10mY5y09x2HGk6dZpJKv7lmwB5/+ISFdvob5NBrMEhN/RoNxRBHTTjQbaE/R63WiKIoiiqIooiiiKIoiiqIo+fZVC/HpdrB9F21BdnvlVcXgBUVpvYrYX+O8jDd0+frRJDRmYx8sXlCU4whCgDDE4AVFOYXn9Kxj8YGi1K9hhZ7f+IoPtNF3gTl6TIO0y7chN/0ot8jD2WD59fF0o8wjg7NBaM/L0MpMdU9ZBLoI2F4TerOBYRy+sXfGLA0DYRh+ENd0E8JN0vVAujsLgSySX+Ds1KmDU6Hg4BpwE0KhIDgLAcFFEBcdsmYpBJyPBkqXgthOQg6ElEvgvme6/Z2eu++975h/0FSdGwIFe/J14m27Dl6+4Bwges1xFYqlOjed8l4HAPX9tb/tOsggCgC4zOug4wnJWOun3SGNjd9VLp3uj0aXXTe5qni3vLuc6dLzKpd+6E2TSy3Sx8kETudDPGbVr6v74OaqgHCE1wz6FQoohfeEwHdXoQh2NzBt3MAeitDGDfKxAsDiBs5COeMPBT6gaOAiW/KRANwSoVx7imzftLuB2VYHcwPa/zIqmJn+Jf505SmCezc4SCiCUj2ckBQkFHmjF5y7wU97ZxQhx5bG8X+ueYih4rqE0U9jhuvaI9H6acw+h6ZZkX0Zl7rmJddYQqSJfYq4Raw8rEsTEYYRdg1j17r0ai5XaHfEpVvLviwtrd2mtZuXkmLk5bDOVKe/7apKakZVT590/38kU+k655jv+x09Ven56uPVlzC3RPDZLPyZQiiFUgilUAqhFEIplEIohVJKl2Eb/A/JA0QhfPuiFEIplELsaQK/AoHY0QRepBCLmsBrgWRvAj/gx8HWdXqEk+sPemJRE3htHez0uIKMkHdSIoFdO+5TyIg3j3Z2erRMCpnq9Ig8uKSRDVaiRjo9Jg254Dt6VqJGmsDnUomqM0NcdTvXJvAihWRtAu/XKgMLpbDTo01SSKvZFCX2SCGWSSF13zopRHUXuryO2CWFUAqlEEqhFEIplEIohVAKpRBKoRRCKZRCKIXoXCDuYIk/eeRn9IRSCKVQCqEUSiGUQimEUgilUAqhFEohlEIphFLICoTgP3J8zUH+9Ebb6KAIq5DIV4vDfvgVmcieGi00larUKqd/VFPPAKUGvlItbR1dr6KUW9MtTynl1fTFo1RXT1IzLaXqa0/ta78yGymu22xWK9pGmkr55mtNeXoOSGrihah7DgzOnzETan948WLrb7CUAABWMR8OJDXAlJT1DYRcA4Je5xi94x4M5l+RCIaBYRgMzx50ENy4c+dGIFPswoGQEHH8rORoimCSmwBpyJSp1GihVdX69O1L60qrrpTyXM+8o2l9pNyKaYHfUmNOD7x983dde5NX9sO/T1/ohsdmXTnl1cMp1tEaP1J4X3laS8QS8PjIbclZLTmaGiipOVtmdDQ10BGMlBClPDOtar6HI61d5eumavrK1fuqq10TRFcprbXfUp6v/Yp5xXdV1zez/PBYG8IDmWIhg7EUzwQtEUvAJoiW3zJBSj4kRzJQ4jx7ZmRK+sMNdoDieqMTPMQN4Fv8AyhvO/JMUQTfweBcQcGB8wUKgANcdrCJz53wGAY5MFOspFDG3pODJ7uHMEjEErADbDrFLfTlLCRHMlDiPGtmYqn5qJSrALbQeY31N73eCC+w+jsYUA6Xqe1gzAmE33q913I8DKbesGWKZTx+uruKjQd7MEwingoYr3vHh+VtOQvJkQyUOM+XGZmClfQffcM19I3E0pcoFscRAEDw4+fl+2N5v5Sv/txGyPcQvkcb9/7oYEzws5liJ9uQq6/R+4gl4HE0619DzkqOTmSgpObsmZHUpEsJzBwU1lA6QJz+y8cIcZ4+u1neWu+PjTsYTjaME9T+euXWZMpPZor9RCOWaLxvnhcnZyVHq7HUnCszkpr0t683AF6iuIl2AKDTwRR/uSu77ODV41tfJF5dOiX8F0AgU+wHEnEEZwv/lrOQHEVTc77MyJRkKb9CbiMaQKdfLjp7+BEYPog8efe7AgQ5h0AGIUDwE74C4MgUqxniVwASscRiDjH8AV/JWUiOZKDEedbMxKfoKVxl8N5fEldryvXDBiFeeAm9b8639NR9iiF8pRa5GjdUjppySqZYiacM7iRiCVhPotFyVnIkA2OpSc9MbMolHTU6kXcdrzqjtSIMw/7qpjMZ4IRfnUAGj1+Zen2yWPyUjUj4ErEELAdyVnIk52OpSc9MfIr+IHKXRy4qRyk3j71/Ao0OBDLzHKXfp7y9hxEEcoE50tZB7JFCKIVSCKVQCqEUSiGUQiiFUgilUAqhFEohlEIohVIIpVAKoRRKIZRCYEsfY4Egrz7GpO5b19CZ3H/DVh0JsH8KoRRKIZRCKIVSCKVQCqEUSiGUQiiFUgilUEoJQYB8ISvIRAM3gdLOlWcHTGUJARwLpDw6LD/fDF7eB8l1f+oMVFVVG7pK+Xq58T1VbfmDI6WUzgyyPbS/Gx7Vll6KJ/tzMNdfnHg2eTh+GW+w1BwfYg+GjT0487z6CtrYQsjGvatYVuL7c54/6N8ABYzZxVIzjOzP+UkZYQx5F9mf83v7WgNOYCCjOdw8dkaI8eXGVaCPMQGc5EFYCtaA4UVLOf4FMb7dcErtxmOE3NkpJw/CYpC+P315+D2QcYNe0hnuYe/jeRGGYblRwFLwJGnrbWO3jVcI2d0pf2DUhdzR+66qhkdeVS839Uk7wEEON4/Q2ax45luoVQZ6ycl1f0JnYl+p265yl9mJ7E9fa1/25zwruerNJpWM96cr+9OOSi5y1Mxrf64gJ8jDf23wM/o4/IyeUAqlEEohlEIphFIohVAKpRBKIZRCKYRSKGV91MPHCZam1GvUGVrQO9g/7WtfqXdd/SHqrlLKrTdd/Ynj+36mXMga6WSRMnCVqmv/SH24JiNDKY1NyN7KkAtZY4ZSfPN9jH/pyV/UUq94mVZ6LtLWmKUUs74/zr2/qKVe8TKt9FykrjHDSq4DoOzAcBPBopZ6xcu00nORusbsrr56fWAdBlzDu0Ut9YrvrfRcZN+fWcpQ1b7+GF0Z8CkzUMrTY/b99FykrzG73/t6izRGS1Om9TbDGrm+fV1BGqvAyXKUaV3JsEauUtaQVr60CUipV7CgZVqSi7T9mXsh6m4bER6XIeVLjZNbSUOmS72S17CfSJlWUhgb07mID3kI9GWNnKQ8ehf/Vh8+RONuAYYnf0oe0kZnXOrVfpQ4wDISMx4pI0wKI5KLhCE/pO7P80spIM6Ngz5e3jpVhnLikN+X2n8PpRyUCyjAfhIzvjO1twpIy0XSkJ1z7c8s14oVpeq+Hniq+7FSmk+/1MtVt6VMKzUXqWvMuLzOU4ZKK72UZtHLtCQXGdYQKZkY1Ov1lv4orQUo9ZK9lSEXskZmKUT2Vk5rUAr7PJI51zxexzSvsLxczzcVFlYHk8+QE6QRICcohc03SQYphFIIpVAKoRRKIZRCKYRSCKVQCqEUSnkbBLAMthT8ZtKyjQSAM3cpQe2w/PX7loLkbj+vDZpbLeCy46nbUmjKloIWECmEZktBKzhuSKFpZj6zpmWbwJ6COpX0OlPiRwpNs8GWglGy97y0o6UgGdlyR395qqXgImDLBl3JUAw4XQuYOARLQqTn5aykpBcDRur4LCg0taZYNWnIDKQUEKd82H76dFJnigIswIpi1cz704KWbdZgS89L5FULSCv5FULDglpA9hRMkUIyb1ALpNR9nTMEOq/6OlL3F7e8jqVcNkkh2aUQSqEUQimEUiiFUAqlEEqhFEIphFIohVAKpZQuI2+IzgviDix8LjFZXCnkf4/A2Uh6NeK9AAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAVAAAACMCAAAAAAPCK7lAAAAAnRSTlMA/bWfQ5kAAAluSURBVHhe7NZBZCRZHMfx7445lD1E6cOKPpU6xPBYUYeV4x7L5LL21JdefWoxp5gwIocVE9rKYQzNiDC0PawiRC5LHYcQsaT0aa00qwilLxUl9KjLYz1V6zHJi2nVb3YP/bm80vX86td/yivkQi0hv6zlQJeWA10OdDnQWT6T/4n/f8Gn1MZvqXzj+Rsuj4mjBILOyvEIg2wPhSO2UBi0aap5QXPYAj2l5vWn+wR9uD5N2f8Rs0EU/up9vHyFWat/9wpvF4c+v6Qc0aIBCwWNYc1JTYj3apltCnEujXbEjlQmQuTSTIiD6uJAdGUTFgqaw5p7wj1ODz5gchGzheJXi3UWC+qwxXnCnI7xfBRCbvki7Be0N9ASKEfwHIMiYYOK/7KFfdgrqMMsHEqVLONufJpyuI7BLbSp9XjUdVwtzKfM8NGwV1CHWRtoFAHhbuBgMuWzJfWCwfgnFDp7fEvlzOd0P7jl9TqatYI6zOYpf7MjhtJsIky35z/l866Y5JPugZT5sJtfiWEu5Yk4kbOuyKVmp6AOs/Jhr7W34yM/BBhPuWetBSm1wnEe3uTzWVxouW4nAXf1O3eFr12KfZ7j9LfOepjUBTE8eo6COszCK6+1vTQKAS7+4J6+HyTxIZXtTmjYxBzWEmDqo5DiZTDlQw+DuqCxnztfQRVmeaBspEnhRD+4L17wgE7CeB0lSwagNjXj7wHxaxSmpOoqWEMzFVSPblpQ/1uL36HP4M/yzS0P+z7gNxRGYZsFydJn3AGsEoyUPTSbBXXY4gdaZJAVBWzA8TtMXZy3QTwooHx3uY2RCrtWYUVxTaIugFHvgoddbjmsAHgkJTAeo1koaA5rTtbORUVKORRC/C6NZu+F6HZF9+axo7aS56IyqX785PT+9zSfbZ6r20P1bHEi5c3mldQsFDSGNfeVpFag4AJ/T702ZpR/feTRHTpMp1L+HBO3P/kOfdmDQUTtzC/fRKEbHYZoFgvqsMX5p70zCG3bisP4h+hB5BBMDyP4FHIoZQ9G8GGMHMbYyVQwyk5hoFJ6KKOnEUEPPYxSwRg5hIGhhIJG2GEEAqUMVMwOJVQQQkEm9FBCDMJgCGWgEQwyvjxY3rPwk9wYbPNWydv/h6M+6r/e/8sXGT8bnj7+EfEsniW+JBErVSuMBZ68kLtBGP+/vrFvB+IxB6Ew7ArcAy5JJjw/h0LxszCG+rZ4zIEzwS83TAe2JkN9W/4UwjV8PLZxNY+QsofFx8A8LKP0LC+UoT2Unt7iGLpMV6deQ3t0dWoxlCBDyVAylKB1qH5oHUrrUFqH0jqUKN5QggwlQ8lQgs9M2BCPUqIUFiYRfB7idpeXHCWx/IYGNrMt5iW8rCiJC2GoyxoJ5z6zY15WlMQFMLSR7lo5YFYBjpZeooEZOdnFbQhuofM7CqDkEmc29BegBoG5id1zlJG8xJIbetFC3YSkBrxFAeiUWLyhHaCiviSLUAA6JRZvaB+oYsQFCqDcEo15BJee/uJ8ll9Vf/MecBMFoFNi8YZWV3Gs9qytowB0SizeUDxAJ4LkEPU1lJG8xLIbWq9jH4KjFn5AAZRdIp+VxJabJroWC3kBlF0i5pDrMbvhMqfLC6D0EsHnIA79oACtCyERnPiohhJkKBlKhhJkKBlKhhJkKBlKhpKhBBlKhpKhBBlKhpKhBBlKhpKhBAoMLSFDfZsxZvuBzQkNt2ob/NhMQ0u0QDvp3ClCSwgD03K0P0VoCWEUFFpCL/mYMZeneDEvAi9ZxDclDaEl+kGzdYZW3UT5mdrQ9ygQedvr2iP8lwxdKXBvRfN4e+WTpQoW0dBpQ0uuLsL84OLvteE/qJoyVqnX34jer6wBg6dP1qPB9VHc0vXK+KnoL5kYADBNTEHaYyKyee1cNgdmnJF/QMP+kIBzmzGeYvsTiuYhZJd4vC0OnHvMtmQsgM8Yc22XOTHvWm3bsuSObR5Yls28JD3LFce2HLueOPryRIkta+SkuepMDx43LCZRUgTuqHnC5UlCHXPTp1VPiZpxpo+eUmjIJV3W5VpQsUoJdx3miiYJTxyWjBKZQubw0LE8IdrlPGAN8X9uelbSFoZzbgtF7aEvSZcdxB7zk7SGC1R1tkdiXZbG3uVhPOFJNU+Gu+5j202GT8dylsw4rxqz7ARwuMR1uCZUgkXCYj/mvCGuqIPhX24YeGGx0JcfzZLLY2KJEXdEgS2GMXNHM4xeQqzNfRbw1GiJqs72aDMm7fBzUrjvZpqnkySsnZllwowzfVLKh5ZophPtb1bqFeD21pfR8z/Qh6QK4AucAKsVwKzh3WlHjPApjoZnRR2M2NlUOa0Y8Vd0PgBy1arHWh2vLi76GONGvvl9/Am0Jm94yqu+hqmp7O7v7NfQqu1WoZk7wBYE1ZUfrn/zeQtDTAj6y0OHbrR6qVcruEj3xSueV+oPIbmAmd0738LWpqmqcz22v374+MqEJ9Uc2Fjd2TRffIdJ5FUbMwWUvvnt/v3mXhW6ef32xc5TueB8+GDv2zWkDCBYWkmNApYg6aMizdrb+wkp747vIeXv1ayhe282d16q6rEer/Di7Tby5JsDuIvD89P1K3fm9rMzzmxodGQuY0O7nek3LrtRdB7tow5ESDkHcIz1qgxZGjTx2U05wik2MGQJKT8/MiEYnODsC2QxazjNVqse0UnU3FzDOPnmAG7hqcrIUz3HZ5zd0LNn4vEvUcdZ868eMMD5rjgKmsBJp75uPsZL4BBbVXNbjKL9+jrGeFKB5Nc7R62vclfR4FV+R7Lq0Xv5Gl/hSlRzAOZWZ/cWJpNXrTdVZf51KHeYJVZ9tmuHzHZiuXJxGnLNwj3mOMyTGpjjMnfyOvSAWS6PR+tQgXWQq1Y9upZoyQR5KTzTXBCzxvhqNjvOqZ7R0EC3oSpWKQ6E+nbQ5rwbJvJ34qEfpjWjkKU4DLqjsxJxzI4THoaZKSXj1apHEnTToryUfPPLGqvLJ/fMq9Z2heqHMV4cqrnHgsDlU2OU9dbG0XOgeQJFUc37OHx2F1NzrbS3Nu5t4T0yFNX83krvbhVTo/klTxgg6A63ZCgZOu8bPWHozTAgClyHkqE9LBD0pkSGEmQoGUqGEnpDQAjoTdggoDdhg4DehA0CehM2CENvwgZh6E3YIAy9CRuEoTdhgzD0JmwQht6EDcLQm7BBGHoTNghDb8IGYWhO2CD0JmwQ0JuwQaCwhA0ydPEhQ8lQ4h/VAvcqFAA6owAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAVwAAABnCAAAAABpt6UqAAAAAnRSTlMA/bWfQ5kAAAhwSURBVHhe7ZxNaNxIGobfNT4FFGKfzOTQJoZlM8UMvb0QQvayu7mIFSzLzqWZQWHIIRgPc7EgLIGBEEFYfAgLzQ4m0NBkydDQOIQ1GgyB2YCwCQtqhHPIMGBhHbyYPThFGsxcKmyVSkZqYflnHDGlUA+29CF99dVbr4Upd/trsMrQvBfmanO1uRptrjZXM4nTMwKM45P20EC1qC+OCQI7xemsUHY0nk0IsT3fZkfg28S2SFfUimwJZWkQsQpQUpw0l/oDrsn3/a5FyIAdAXWJE9BohRDCyumQDpfuEZuKtXiEWL7PA59X50EFqCkOLIWQbqJPTMHK4fKZICCElstPk1aIldZ2D0bbrAJUFTeBcYybwHOUstHHpxA057GHEsJl/BmC69i+j8pQX1zRXLzFUTzEbFNGFkr5O/ARBEYb/RhVob64ormjHvBHlDEa4iokjcXp8iTTkGELeIWqUF/cZBb+N5x6HfW2sdREGXvAB0j5HCVsARcgOQ9EEPywJk84FeFUAydn66ziqjS33wdg/vUjA6XsAD/iOPaB3HNDIRgifyoS3kBC+w4+huRRE0/utvZwr4mTsn9WcVX+Wljc3Fw110ID5ZwD3uJYDklq9xLaOJTmeguP1ldbANbnW+uPML8uvL3Xezx9Y4QC1Ymr7MmVNL5YW75kghPuogguN+aAbaSMjJKkiwCF5A3wK5wAA5gzjPaQRzNXjCmcMzC6i+swbs2vfI4ClYmr2Fw0Zrf7ibkb/0ER3GoYreHaEiRfts3Dk3iNF5DsAr/Bibk8FEMu4TU4W5jdmsL/8LxgbgXiKqP4R4RLCKVdykrwCAlkFJHo+CSbOCfbp9uEppEV8NLdpIgtcFkJFYir+o+ID4GXeLCHEn7bwjcyemw2UIJp4lsINob4Aqcj3p6TT+4MWj3BHZwY8wziqnxyaUSIQylj/Gy7hLIyqE1ccbdjRawcm3j8GFkkSGvbERWBTYgIWNf2iwPScoOO0PAPnkwSFUHASqhGXAWvLfhEIoTxk8eOoMvV2FwQOzrJ7rjEEUkBkVCaBlFyiR76a4FavhjRSYQMhAUBOwX0HYh7h/yCQTBCggEg3rnYwJGE+zguBaOt3fM8KV87C3B7DauNwj53YR6430e2z73fNy/0l0ycgnjn2tPdj88m7l3Cfha6FstDOeLsWgEVdJMnKPIDetqXc/lXjd/miXz5fSYCErDDcAdpkN2vs7kTOCWvHsrvM/HNahOHcgmS1hR+IuehDpP4OVjC4dxBSg8/lTdQhwmln4yai5tQ+smoubiJ6h4QzYRaD4g2V6PN1eaqv2HQ5up9rt7n6n2u3ufqfa429z1Gm6vN1WhzZ66Ir0rQ5jYXMGfFUAZ2SoIOY74TMSXJekmUALVeQBGXdJjsJamfucVmGIUo9pIoIQ5nWABTjOCgEYkS0qnfW+vFZhh1KPaSLMf12y0Um2EUothLory56i+gvJdEfXPVX0DGfq6bB6D1M7fYDKMY+3X/8/ctFKXQS6K+ueovIKMxi3wvidLmqr+AIgvYjmX0HGajbubKBYQKLaDYS/I46yWp4ws3DnEP2igiphg06yWp6WsLKi2gvJdECVDzBRShgecrowzVLUADVi+0uRptrjZXm6vR5mpztbkaba42V5ur0eZqc7W5Gm2uNlebq9Hmdll9mER9WBv+gKGJ+lAjc+/3AbS+Qo1gdcGzvCii+nfuGaBBepI+BoHPAj86+GDdgKWkt4ujZAKlEaVMHCg7lmyycmiUyThNRSjTz8DpilNX/muExc1kHr/o2i5xKIusgF8jHSHatyybdGlx1IDwy7686HbF0RMlJHaanE3miGOUTcYY7VgyOdMkcHMy3OR2JC6I2ylRGhcqQqF/RYq4doe4whDKmCMO8nOZA+KwwLG6QrbLvSUdcc0tjBoI5xyxOFscotSjiKzQLvFkcuJhGtGIu5WfjFpkQGmXH1iWRiPbzcmgso2J2i6Vt2kgqmRxviKYKthcDSXU48I6wqZB4kTyJDCLBB5J1s+P1OKRUB/kR4lbycFPL9qpuYznefxqmiyxZTGX5SeLCEms8cY0Mc/NyUh/cpREuSplFSegDlvxStswDcBa/H349F/Yh2AawFW8AGYNwGjh5da2iPAhNsZGbaFlwFiav4aEThsHzOWmCOORjF7G4RaA/GQNE89Go33k2QMu52SEwC38m482G/L2eCrGK05CHW4AixA0Zr6c/tOVYf7jgt+eT5aHXw7fQEYzoGOjdiEw04U+u2DelmEMI9+MNMTiJ+LCQwDFyZb+cPsuxpkGGncyGfvAtdkHnxhPP01vS0+zeKziBNRhdXP1wdfg3L+90PvLJeQ5dxEJlIdI13lhbNQMcuy8sHHALDI6vc32g2cy6nVQnOw7PNpcQily7ptYj79v5u3P4nxFtcydRmN+OQ5HYR9m1ioUAniB5jSGI2C0hsvNJML3uJYbFcdz8nLvKTh/+8qAYBTi1VWM0eIjc2STxWG41m6ihFQGgOv42ruJcrKKE1AKC682XgpTEC+LI2cDCLfNpnEPz4B1LDawJKK4bzZzo7wdnrACxE9+Dc49Awn/vLEx/F2uy2cPo+9yrRwUyCZ7/W0InltCKgOAsbi9fB05KHB4RcX2ucwhFmMusV07ILZDxR7I6cgm7i5xHLlP9YjjErc4SiS41vg+d0Asl9Fsn8uxBmP73GyyyBJViGBMEyeTIaCkU9wtH14RTBGogJ98sYDIj/hBbsVY4AVpih/QNAr8qDgqS6CC9BgEuSx5zmeMTyYCKhjXNC6D51gRG69SUhFMbQhRTEaX+L574q51lYmfAGuhUjL28fzhZ+/HS45vFrGrloyFD+hnDdVfctRv82i0udpcba5Gm6vN1fwflx44nscyBcYAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAVQAAABVCAAAAAAz0kN4AAAAAnRSTlMA/bWfQ5kAAAa2SURBVHhe7ZwxaBvJGsf/iBQihREpHkKVUBHMffAwKkJI8WphNSbFQwQ2iCtCuMpIkMLFEbRgggtjEBwmoId4RRAYgjnQw7wqZMGEwApxxRFuQSwIRJoNwjBGzcDz7K4ZfGOt9U639mpvfmD82d9o/Nff36Ddkb4B/9PRxGOqNlWjTdWmes6Yx0DC5dxDyPAAAX8rlh7noHBl3G5BhHUIupjL6dtB+ZvbqGURAxFq7kiOhId41hGRYVlWp0p0xBWujmMitK2qYdl8Lm1qM877ZHg8LlQ1S8iJZfkTdcQ3ViWyeAREZAaR2ebzManJBUdUZTwWVDV3KUeSgUK2DnxANL0ufO5jLsMetiDYhLuPWJFqEiEHGfwBXhexP8INHABlCLI19CaIB6kmMXJUU2fiqwtsIor8AbA9RSTTASpZ+JSBXxATUk1C5KimTiajYfefLvY2EElpD+7uDFG4QA4Ba8AIcSHVJEOOampva+v5/vrh5wpuoFLDyb8QxTlQgCwULMhsNILC0mpUObFyDxKgUcfk4KT4BDfS+G1wWKrc9ETmM3wOn9oO8HcEHJfw/nX5G1rKOllejSonflMlhe2TUN/wKxQelhCQ3a3gVR6YO7Ao6+EMWMfv2Pi4PTh+8K0l4o/vPh+4z18+y114+vrp7OXzjzkoLKempMi5VVNRKLo939TTz1B4UUJI4fAlflwvzB34pOh+QsBXQK29HPAgl6sNRJh/lFvD/Rymr7GJ7IuXx3UoLKemVFDkxIl68W8Seazj8bmEtwYdEg+YS5/ICSKDmlzFII9zxxRhu88dMZVNVcdxjsjgCsuoUeXc/sX/OvDrbP8bbqJeQRSVCnoQnA6wjTmUdgDgJH9ZQ26r1fq5/BAKS6lR5cSLNHU6ASbTKfAYePsTClC5HPd1OhPRThFRtMq9EwCTN/h3AVFM3HX45FHuCnagsJQaVc4tLX+LAsRqJKI+V5HjyBShv2YjYB0y2iY1x/7yNCx1+QcctTm3xVQeEeMXsc0Vllcj5dzifqoX4MuzIv6wJ2BB7Nwg0LP74VQOEXnXm8qqlsi3/X/nEefjqmLq8mqknBTt/LMm0ZhLbCL5uhjicGZS05SrZGEcK5E7//E/jU5VKTHmm1q1PUHHf3UeW7bH/2/6RhJNjf9p2ORcnzCPuA+TA1bd1AxuiXfHJVxP+PtsGakhFbVhJa1S08AZEsUfNXUNc9Fk4q4NbapGm6pN1aZqtKlr2lR9nZrA2tDXqdpUjTZVm6pN1WhT84+mo8nqb1Lb7WRtUpNRpQ7jyQBp6OYxZYtEIkAKaqMtWySS4SpWvzbsy2YaRtTmSQCrXxsGEQsik2i8sm/8DQ9l+8w73CVqi8QKXlKp7TOHE9wlaotEAsiseG2oLRIJIJOG2jhHssisfG0oLRLJNzX5tVEoQmmRSLqpya+NH+CO4PMBlVLSTU1+bagtEqu5oaK2z9w5zPA/fD2ukr3K9/7NsHfBSsYtjGyRSAZIQW3IFomEgD+/NjSIoza0qalBm6pN1WhTtanaVI02VZuqTdVoUz1v7DEmz1vwYbZtMcdyeIjjeFzCmSPTC+E5Tjj7PaQPeZpYY9IDcHwm4lphH8BexU9AhK+A2m8Pe5VWFsDpGzwYNGrZy3StLNO7YpZfRltAbTNMB9PKuITuvjynLL3VaZDDmENNUX8GjTl3iPztSouRwTvkcCKTc5ua/m/bIjSDx3mOYXKZZn0yPJExWZD2/GmvxH1inDWJpXz5GySeN5mXMTMCU5uck8GZb6pY3GL/klXFYN4kO3xc3+QyHf5TxEPUacO4TR3Oj4Kt0AxSjDsaufKn/RoE97+DIFsBgAKAxxjii1vMAfgOpwh4CMg08AL/BQZR74BtNf4xev8zzlP/SeqDVusAl7zPVSDYqMNnTziUheAc53gggjym8hQymQaeFPdnOH6G+RTy2y08AtJvare7i5BfP30PlVlQvLiP0L7ctWmgjg+TLxvKW/Qy3n31Q/dpKfWmhoaEvNnJQmUC4BM2sI6BMPALnlybBjbx03FdmVbGox4qwEgxNd20clcKMOQEGLqVDWT38B/hzEUokWkg23APN6Ob9WaYHIZz8xQiTxMz6QLHj80Ohcft+YHN/WumZjv84HKfmiaZTJ5CdjXNPWqr08qYm2SYhk1G00vzJZV3QXAXFcTyjsoPAte43bcvx9vWWJ5C9rv0RaY6jpiWc+7ffI1t9le/9ydaMN0hyzLjPkIpFYzeAyfDhdLn+PC2joW5h78uZw18XSz9ff6sXsDi8FVAb/1p/gdSqeC6qFXgxgAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAagAAAB9CAAAAADSXag0AAAAAnRSTlMA/bWfQ5kAAA7VSURBVHhe7ZxbiBxJdoZ/iwHBLGmDtQ/tFjSah50tCJDZxgwyBcaeArUKbFhbwyAZklkzGPfOg2GTncFjKM+sSRihxXqpYXeWIXGDwW2Kbe3AkEu3YMQSUOxgln5oCJzeB49Q0jXl9QpilYxgDAHOk1FZkUF3IjXKVme143vIOqr4T+SJOOpTkX05UAuBA+opcLhEOVyiXKIcLlGO59AEk89AvLCcbX3+4mUPzeNQTSAGLCeM1dDvsegpJkr9fAJ1fLjSN2JskL+wmLFAPQWcscMS5TiDZvgKcBZI0F1CD09BdxWH4TiDxvgSuLfm3dm+Ahtk4/GkNBNtGsMiSaovNeN6vqdhQrfPZnFsJyDqYp4kEyRJBg2pTwjVDDFjoVJBrDQ+myGUHLKwxwKpVf2hH0pjxKSJ9FXJgJGUDah8WkMRXWM18FlcnW9oBiNrJsWD+f0L7FE/6AeFoXi/HzJfqGIOrisvLWTEfJ8EdIdBHlKvmIf3eqWa6I/Us6PBRPWiIgcazmLJGJNKRfThxdhQi4QaspExlGAskNJnTEg1yK+cMpIyNrCHIsZiyYMRC6vzKUFCGZJEy5Vf2n6ai3plPNZkyg91LJSXNL/0UilYnnylKCmxVJz1pcwt8qN4AloJqWWpZgNJMS1kovyR74/mO8NS2rTcGNIG+KynlMw1KmUsnBtKX2k3RG6SMjd1yqpDND1Xw1j43Myntz9SKiKJlvNSTu/TXUrMZDo2srkskiP1UMRYKunKlewV5YHuQSkvUjRSlppFdBkt3GGCuHB1Y/K9f0KJB80bP/xOsv1rTIH9XIPl66uvzY1C9SVurJLwIfACsETvXQDumSHNNPmg29nomvlstPxDLb9I/hbWZHvLkyTCend/Snf0VrCZAZeBn4+vLyEnf//3iltO6PoScA74FJYa95KfYO3yQh4mzgJ/idsJCrJ5orLpt1795H/JekD5wdsby3ODdMDWS38MWjrwPLAMjTVE/PONlS1rPgtbvry9fvvNd2tGiZ/f2Fn9fTwo7oivap9V/OiTP8Is0FsXL+4ADwGSEP9jq/GLG5tLPW9RT32XgLsYJ8hgeP9709H3y+3/HLYBD7j3ozdK8xEMZoigvP7VrXft+VAr936Db16rG83e3b668c7ut7fP6TtOUHAN052LmLE+JjqACcpWv7KxPX3rvUVMFHEe+Ck+epB039xfhWa8ifUOJrOC9J8Asj99oTQyZMDuOyCornwG7AIZbciFcsiwhNvZtpnPpiqfTPY2V7udmlHcuf0WwIB/O1/cMZtizQPQBda9snJ+5nke/hFAIXlABdBWA8vA5uIlagp8AXhruP/mzsW7+A/xEvRuZsCvMJ4C4y0vwO4Y+JdXlkujWPFaV399La9hZ5IA2Mt+itVOZYjm1js5fr8yH4jPoSVV+cM7HFTlTD6tyRgCvffeTexk2Ae+gxzvOl6mG2XwAuwkwPsvgNiZgCMfstWfIwFWF+05KmaEPgmxkT57CUYIOhIzf8iYXxzVmd8PlTHs56geY/1ePpK/iMOeo/JZRtX5IjbHt2bKJ0l5/XPUqDeM+iwo3veH/b5+MhK8r/zZc9SwDFTkhr65pdYEcuGO51KjVBoLWl6czt6jf9Bbgmsdj4VlSGIu5Zy2SorYDFkCLuz5pCaNmW/LSahN4sB9pIh5qgd4LKQer+hoHbEoHwAkp+VYas3/559HUaLU0Yl81TzmSa0FnEG7SH4NJDgyl3A8TAQgErSA31JoE5O/p+vfddAStj6m6wZagDo1uB8cOlyixHCo2o5LlBz5zI/UMyTqR8Il6mhIPmBs+Iy3LY185o+kS9QTwyPGAn4yxZaxAZcuUU9c8k5ur3jAHlsCXaIkD1hvmKoTRS5eCcRJFB7VAkRRfKVLVN3/47g9e1M5zrhE2SWvbZ8MMjafli5RVslrHSLqzUqgS5QcPXXJcyUQC3jKax4Zt/4UiBaUvFaQDttdAnECpzxXAluVqEZPee4UCHUsiJCxkKvGcKdAqOZJR72mS54rgTieB9tULSzmFJi2K1Gu5NWfAuN2JcqVvPoSGIpTl6i4puQtegnstaMEormSN+TqFJJG7SiBcCXvsfBhC0ogFuOU50og3CnvyUhP+EEYruQ9MTykErh4iaopeae8BJ7Uosu/5kjEfz//tYvZww6emK2lLtpEtnV5Gcj2UOWih2aZ3PkxNj08e1TBgAWjUdDvh2pxGRXdXITfY6zv5/TpVajmESdX+gYs0kv11aIilWBcSf1HgkLpV37K2sBt3175FnKurmJR+UF3u/MX3XH3zVPdBu4WXkHBtV0YsiQZIxknMFijqCEZ17vZwgSN8Tze+sEXG9/G74KoX0WSZGYgqxfao7B8jriehhysGiEj+odGxPll4IcskCpkOcXQgJNZyKraisC46fGoGBPaprtpg+psv88bLH2pL1R6oPSZcIo+bn2fRVKX+dzk9nKNMKLghLJWcIjPzPKFKtdjuzS4AaDwKYoSzrhkvororaLlgtDN83yplPRDutDQIGBhVWsExk1rJZmy9FOlMaLWXD6TqimEL4NYHUhUNRzOhmQNaFtpqwKW1i1XKRkwaa/goI8eFj2WmvVYLg1sQG2iAqXoTEFv6ff7dPVZqpQkq5hcMhlLo7UFB91oa7RN6Al0B7xINQRngQrZ6GCiTDiyX2xLwMTs9rng8OUO9f94oSorONRH73TIRFqux3JpcAPO6G5MD1ByjqFgDUQHwB/gU+CvcQfYW+uA2E+2rntXvIrWCGw34GGS7OEsoO1JBs0eVvaTZIqfoSHO4RK+ga/gACacvfsrHgCGu9jHqgfcXL94+HK/GVxKtj6mXTErqPPZT8aba+cfluuxXBrcgOd0q6kpNO+91ulo6/soOYtHQHfl1lXvo9dR8CoQIMdojcB2A27MGo9pexfBVQ/IvAz3aWT162iIzh5w5QpqoXB0C7cl/Ar3QOTyw5e7vPTdr/7ZS7tAZQU1PrSolde9e+V6LJcmN0DlBGULbMEUUT5OMSbnD1kjFqe9+ReuoGpvabWg4hayqCzaLCz9JFUnPYGvjgW79FmrEMwvH4y5Ns0S7LgHLFYqJnezgsN9qJzJgHGznqpLgxtApQ+vYycB8ZN12OwD+AUuAbiKWx/9DUo66x9Q+2KDLSC3Mb5WbeWn8b6BX4I4j92MRAmOG7OK2T1/iZfR1ebGFgwm7uQ2rgD/ZTcjrPPx4F0CN+upujS4AUWiOjfxtxMAW2MfORnm3AXG9/UHTzD94Co0GfAy9u4+tLUksNy6Wms0GbJP8GJheNdxB5i8h+Z5YD5yM2sV3k26Z7JJ63kHW8Dkx39oRHbcwOQDEGYFNT4Zso/xolmP5dLgBqgC0WdB2PdTsiPG5kVjEAzp3E1IqnbmKSBgfWm0RmDcDjxHEb0Rn00QsoAqTNPM7sPLV2sVMd0zJEtFudnnNcsNmR/6gvlBXFnBIT7zRSmzHmvRzW0ASiPlXFQ7punIlYiFHlaqn86H6YVLozUC263ae00SpY++o5CqeaR9PxMOIQVPSx0Xsna5ggsK0F6B7WMZZj2WS4MbAFUPRT4jYpyHNSojMG5tgrEGhG1uAzfZArYTbT8C//A11GEExq0NmHAaELa3u5iIcmKlGUVpvdIIjFsbMOEcSejaFziaTpRD1rzdpkQ5ZNQL1WHE/Ui0JVEOMaz9U0k58lnA25AoB/eZH6t6+ID1YnmyiXLIqP/4X7FMI8aG4uQS5RAD1o/kE/4eZsBPJFEOSTWPH+XXm3tx+qwT5ZDDHguPtu/pkLFIPONEuZrXG0l1ZJ5lBYRLU3yEmldzBmxjolzNs0mj3rFXQJcoXlPzWlEBXaKaP2TTh1wkXaIaxjy2ps/qUdklqh2HAHMokS5RjWF/a7X5b224RDVX8yJxfD8gOaYKCFfz2vNY5hJlznlNd7ht/gzoEkWNiBtuPdD8GdAligdNNy9p/gzoEpXGvaY7ATV/BnSJEkd4tm3+DJi6RB2h5imbtlVAlygZ9+icd5KI8HHf+HWJElEr+mrJUQNPwTjlv/jV8lhcouhzfCBUe0hD1h9KlygbEdLJuIW/NDgQLlFzpK4zbYSbM6BLlK55bSUN9fcBXaKkH8m2/zRssRLlcIlyiXK4RDlcolyiHC5RUgilEULWCWyE4EpwUQymMpWKLrLOy/aXwvYygnrs2GyaDwKqNXCmCU0nXdOulwapS1ZKCmEE3GreG/qDedPhMKJrPKCr3W+30vvXbmVsvIy0Dju2EiGM1WwQUO1Bd9L1Q9MYt9KuV/oB4/lIn/nSEnB1oHkvDaVFUlXhLZXss1TOvUwf31kj3jBgoeVlpLWY2HTgUrDAiqfZIKDag44pDmdhchbJ3rxdr/I5pcCPmK+ULAWH9CrulT15pa/3aNaQV5lpyZI0Ca+2MjZe1RvUYmKz2mSaeJoN4gzaxgXgIZaSJMnws/3pUtmuFzh3fWcy2b1Emv1SYPcqxnkAf6KbDmd4/xo0j0BUps2tVQ/ezfVutZVx1WtvLq3Fig2Z7nNpxdNoEM+hbXTexj1Mi8a4Fx5gGTlL+A1y/nzzjrf22wDmgq/bjXjh0W7pPfG2fufKWzp5//7y+fGu5VX28bVaGVe9srm0Fjs2j3zOwoqnsSBamKjM019UqxsgEhR8gYLOyr8uXysEHglq3M/ieTL3Pv0HFHg//PDVtUsr9820ZFXYXk5effQGYLwq0nrOmdg0Hr6ERaNBtO4zipCsMASfd1imii/UiLFUMr8isDomW43x+5LeqEw99+JCST0SlZ/VQ5aK1HhVpbVYsZGZslBZ8TQaxBm0EG+9aIz73XPQ7Xpvr3WACXAZa8uZJajvVfy2B5us9HoP8N7Bhu7jS+hWxp9VvIy0nmpsQGa+okw8TQbRtueoSBFy3hg3JiPUg74K44hEoiJQ+h2reS+3HkbM1KWX6f3LTStjy8tIa7FjY5F+VjLxNBwEVDuo6aRr2vXqscM65x7SvFcSlfm0aXvllhmQXBovS1qPHZu0Imw+CKjTA2Pq9HIGp4VkWzfvPaU8h1PDNMAUHZxW1ELg+D9eFh5H9o0eMgAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAPUAAACFCAAAAACm+OF4AAAAAnRSTlMA/bWfQ5kAAAfSSURBVHhe7Z1BiNvYGcf/a+ZgcgjGp+DT4EMo+0EZfCilh9BTMRGU0NNQeMvQQ1jmFEYQyhzCMoJhySEEDGEYEAw5LAbDEgoqQw8lVBBCQWbooYQIjEFg9vKGIfAGXz6oJeGIJZ4+bV4kJR79DqMPwfc9/TyShcX7nsDXkdp67amta2slFRtQTr55gQ1k4HQ4BnrbN49PZvtIOMK3SDjsYDXF5KPgA+D3KJvsQEYjImLle0SW7zP7vkXk+4qvoJj8gg8AWeiQzTEhkWRmIme5X7CGAvILPYAGlrwapicDuvEmNxXkmxfIrI+x2UVCH+fITXX5+gJ664sxfouU7l4buakg37zAxjI4BzrLeAcJb0/TDTQUkF/sAWTWP+EDxtlGj3l+eQeQWd8CLvFztvcRcziEhgLyCz2AzLoNTJfxRbOJqzlb8ane7mrytQXy55sfQGbd6o1PHyPlwXYfK5j8dKsL4NW/8QH3uzny52+w2bqygC4/K7A6P69AAi/xiII0iihacZNXtuNaIuTV6PPZF65Do5z5JgX0Ag0s+X0PPyDhpN/Bhwzf7O48Hx9gNfr8yfHRzv72d2f58o0K6AX4PVKQI5nVwIqYZUgkpGSWUhDFgUMesyDJK9Hnu+QwezTKlW9UQC8AzlAukRAkIuaQUqSklJClp1iS4NXo8/041yUvT75ZAb3AV/zzr4tLbHYA4AIJrSzAfPZ2iKctrEafP2s3L77B85Y+37SAXoBzIwc2OZINULaQXF2BTCC/tZLMPgllMKqw4+zCC+gF8lsLCpmJAv5YpOUye5ILL6AXaCAnkzHMmD/Y2QH+eV5CAb0A50RZHnNgcIYPLM/zBhRy4QX0AhvISfPpwbh11N9v4uOYH+EhEgovoBf4ipGb2bzdwkeS3UpKKKAX4OtIbb2u1Na1tTm1dW1dW7vqmll7jhBk8+fCBgomew7f28dnA5eAZ3lhKPnzoYESeHbQB5q4kovJZI4y2UDxzHBz5xzTb//STM70/0zuAdt3v0HKi87wSe8cB1vAWbxvbzaM93a/9DM8sC03fZytPBKSWQpH+eQrEuxS6JFiZZNKn2iHSoVkyy//O9wjkswq+SsoisOQfZuZRBwOyGUepQ/kBElmSc46XNfYbAHNHv4L3Mc/gHG/ixtfI6bZx729O5Mf/4ZLJEwnk+laXNc30QaA2+N3wO82n2w3X/wZ2NpCwmPg1oP2H38zRspTlEADxXMrewIE7ODl7M0WMnD4cPfkT10srU9ODtfCuoPxHJif4tcA7uLZix1kYDJEH5gg48ZaWDe/w9+Bl9jrAGjuTY/uImGOmHdxMDuK/5YHl4FLtk1uGksaLHcuCJgdEo4ISNgyoAWuQwvCdfj1If1AJkHEbEWcoOSCOAj9kDkKFLNcoJL9a/X72iXfd7hyGiiVS7w83kH1cKmokRtdzydItXVtXVvX1rV1bV1b19a1dW1dWxffDatPK50N425agwK6tOIw7qY1KKBJKw4Yd9NqChikFUejlG5YfVq5NMrphtWnlWtdUjesPq1MNoy7aTUFDNIKtDbuptUUMEgr0Nq4m1ZTwCCtQGtNN27W1mnQDatJ04xbiLW+G3f+qNX5vv2o+5HdsJo0/biFWGN7jLMtxMzGhyvbOp+37t05OAF2d7ECTQFdmn7cT04jRzPrbPo6PiEucrbj5sNkXHP0zayavlR9gZUYjGtG1p06Hz5BD+PeYQeTe0j4F+4g4UVX15eqL7AKg3GNia21zawXP0xPt3evGl1fYCUG45pj0JdqRKXj4pP1pYY+G5F/XHMan6wv9e0xDNCMW/4cpM7m4y7O0PsVCqCicVlPKJyBfkKrJ9gAzbiVPBmOQv3YvoG1wbhG1uZ4gr8YGriO1NbrSG1dW5tQW9+8ltbv6jO8tq6ta+vaurb+ojoggsFazjerfgpV9esqVD+Fqvqe3MNh//nm5euHANr33z3E5l/RxH18P8UR2ut6XduaKVRr+QTp1Wk2hWq971zVT6E6mZd6XVc/hep0/BbjfrNCa/0UquqX2jG3rn4K1enrx7fRbqEE6zKnUF3g8kYTcwDNJjCfodME4iB1fXawNUHz/+WfxxkF37kkkf0+VuZ3roAWOC4t8Nh1LGGRz8y+ZQlyFUdWICyLBoodWsAhETkBpVDI7JKwrID56tZ9sDksiN6H3krr0A9/WcGIOUyqukKytChinwaxiKNbaoeztXZWLLVjbm3wIgWttWQlUmufmRfWyiLJzDYFmqV2OFtr58qldhowwOBFCnqebCPmD7355MfpXufNdLMF4Gu80iy1k621ky21Y35d66dQRfoXKej/16MBE3FMZJNI3wqwwCMnjdKibJFiO+CE5eXkWWI0ID+pIxaQY/RL0/g9BPmtfVsl1mrgMkuLwiDNH9EgTCM7sR6RF1mcWS8/Di+1JskcaaxNUIHvR0kkU7KAWYWeEPKXWFuSE+uASMUiIxUHcRSkkSKKON5Yg1FmzcsvwUFmLQuwLuRFCoICTqzTQ1ZW8tU8ipVs5lEceeQu15pRnKAS6/Rzioh8pbGubuKY/n7tk+1YycnsLSJylG6pnWytHc/gfl3BxLFsiRyVXDqBTHcHfpRjqZ1srZ2sDpdvHZLGuvSldhpVTByrfqkdNsBg4li1S+2ASyEKZd1/XRa1dW39P1odfhaT+qaNAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAM8AAABpCAAAAAC4ryhwAAAAAnRSTlMA/bWfQ5kAAAaISURBVHhe7Zo/aBtJGMVfRAqRwhhVQZVQYY77IBhVxxUhpchCOK4SBxPEFcGkOrxwhYsQvHBFimAwBGPQYVIEg+Fws0FccZhbONJImBQh3IIQCIQJrDGGMWoGbldzEquM7fUn1mRj9gfODrPz5puHNrN/eFA3i9xPSuR+cj8ykAwpW8cfzZfdxpT2bheoNRa2d4ZrGLOFFd34rQwTU4cEIb8KXza1b5PdCQZ7RKSk5xJZnqeU51lEnieVwXm6BCG/Cl829eOQrSJ8oiA8EDmTfqEuwNQlCNlV+LICNP/s6p8P1RUwYOn4VfiyiZ9tVKq6VccxkgFDxxzNl5l+Trr4DprqaglXZsjR8avwZXp/i1yXoUFTH/5t6wNmGK0gxm8jQ3e+kFOFLzP9HMGgOz3EKT7D6QImf6UuEoQn7zBl6WpV+DLTz13gDLM01vRPsIsZSigBk7+i1l0iPIvJn1ytCl9m+ikBfWhwUizCBKOPqCzi5D5i7CfqyjuYgpMrVuHLekd3qzP3U0GkJk33vC3eEy2H9tQMps4UanhVuDJpOy1L+PH7TwM4nGxZ92DS295qrjWeH2JCgs6AVYUp2/34tPm6ux6//zyo4Y1u7dTLMPm7+xKooYcJCToDVhWmbNh/h8Va9yT+/BYIcgKl5KY1UCrwiUQQhI2wm6KGR0KpFrkqhqkzhRN4VZiywJUqIDH7viBbREKQCBU+aYKANL5Sg1BiWbEFmrpzhRpuFaZM+q4QY9UtFd9bzlAp6x1lzOK0MT797NPGIqYYuguEGmYVpuzkTb/deDqWqasSCFuqNEi/itSXquS8bwdWSyk3UCmQehVBvlJEnel+nczol2YT+OsYKZB2lV4XU67q5/fjO+32qzZSIPUq5cqLKg5R+2byvJPMaAu/Ih3Sr1LcWO8ubtXXigD0/paIsV9xueYqw1FJi/LviZkh95P7acn5dIEts+bHdYQgey4z/p5FgUqF20gH/SpfWwMf3Ed6pOWn/e7FEvQ9gM17tFO7WReQDq/W60ARFzPq9XAhC1n7fYZYaB6jv/JzcXzdve/9ADQePoZmv4o/nteOsb58GHWtDnd153WgUqFjRw/6LXKUdEkESgXCkR55kkTY66s92lNSUBD2ky+lT3YQl3tEQab2N3e8IDn+V9AgavrKs5UiETUDIhmtOvQcmVIDctT1+CkgJSqLQLGGD8AT/Al061Xc+RYRxTr6qAx7vSMcIKTf633CDNnb3xZQQshS9xT4vvKyUdz/CVhexpgXaKO/DqC2hJANaNDsAo21TPq5G3/ebz4/WPq4PHu6toMJG5Ovxo8eTIXI2H5dRncEjNq4B+AhXrWbiFMZn8bhIeL82Gw269n0U3yOt8ABVssAiqv9rYcYM9KHxZXo9PAZLuAUOEM6qJRokW1TS7cD2px0kv7sIh2yHXJVh0JazuynRkFjWtl6Hg28jt5zB0pZA90ngxCle/XpqEPGuvWoMTKb7z8t8jxHfSkKSJszHGw38cVQaSP3WoP8fTv3k/vJIrmf3E/uJ/eT+7n+NDF/PH/w7fmzx3wZP33Mn1zFcTjZ4ymSK3MYoWXm5DN+bE72eH6ZzQgtcycvxGPBbU6amC/jj+dPXkg5Tcwdn/bkhZTTxNzxrMG874nHnOzxVWVmxPkTI33MWJPp5ygpe5ycJjZlZsS5f/Fw3uRJfpKyx8lpYlOWEHE2hrMmT/CTnFnWuWBmmpgZcZ4/qqxhZI/juWCGjJc+Zk1uLqnAiAXHc8EcGX88P6o8ocCIBcdzwRwZ+OP5UeUJl2SPB5fkgjmyS8abw3mTG0sCI3sczwVzZLz0MW/yz5d0SzGyx/FcMEPGSh8zJzeWNFcuOCuYS8JcueCsYC6pwMsFZw1zSZzf1nKV6mTpejOXBI7aF86mTqpkBHNJ4MkHfgbcGEvKvyfeHD+5nzyvLN3NlitvTl7Z2nQdsvxM+XEoRATzSIU71ttZ8uNarj/nvUmHSVOKXGYgr3yK9j5wmqm8y8DyhWXRptTXnfKJyOmQhnyp9ig83zk/L7YpBirUWSoFspBXjuiQ5X+9eeWAnM+3OMv/ivPKfczSe1x6Xc3S/x+PhN60o63XIqnsjj6h+10iEeEoJcYtcv7PWTr6YnOkCjoqBa4pr3zv8rzysB7PK/cerzaBD9s72c0r71+eV74TzyuP1lea0cmbkld+222Hxh5t3ZS8siCNuCF5ZRl8pXnlPK+c55X/Azz5DfQvt4QIAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAb4AAABYCAAAAACvjM0eAAAAAnRSTlMA/bWfQ5kAAAgNSURBVHhe7JcxaBtNEIVfjAtVRrgyqoSKEJgmqPrLlCJqUqrZ4CqYVMbqXIUcuEhlUCMEAuPCCFQfuD8QIeDD/JWxwAgEQs0aETjjZiAcd2ZJNs4uOwkiwV9zi+B9e/MGCQT+i3kC/M/wtL5MZyxAKpDnWU/nLGAN04himzCcj1Kg2dkanCwOkYM+9orDUQ1O5AKTR5hgMkibt7ODTgVugXwaeV5egtl5l7oXej4mIs6SmKidJMxJ0iZKkowdiAR2PkjAEfUy5piUdgvk08jz8hJgZqcu50yJNDMTRQ+fK3YgFtj5EEGvFIyp7RbIp5Hn5SVsoGQyKr+hjT0EIBXI87js4w1yXmN2Bjfrn0Ye20DJAPVGcWrhFgHIBPI8joEmciod9BcwrH0aacy9vlWK/1DQONiGP5AKfuMLtCrFsQn8Dyfrn0Ye20TBLVBDyW7xuD4vHnAgF9j5AMEMqKJgC7hxCMTTyPPyEsz6lrBIzcOJXLCEUHBnRgewcgjE08jz8hLM+nby+b+nc4icoxEcSAUmLxFAIBBMI8iLSzDr2wZmKFlVKvgFl0tYPG84BNK8W1AHVij4CryAiD85jbwEe33VZnr+CQX7nRZscLPcaQDA5Ass3jU8BPdXqFcD825BrT77bH6DXkKAdx2BbQTGzLUGLomJLorTnOb2/0XOutGwraZs4SvgRA0jGnvmwwTl6ynqWgJv5HW484El2NduoORVE2fF6aRVg83o6v3uafoRFr6Cm0F/97Dz4TIw7xa0WhghZ5JiHwKEddj5P3gtP6AVRZo567XnzHpKpLRm1loR5YeIYmZFmi08BUOKmGMae+WDBJmimJnnbbr4mcAXeR3ufGAJ1rUwyWxIpBSpOfOUCrSmginrOGNNii18BUkeHlLskw8XqF5E3UcEnsjrcOdDS/jx2mcMw/3VHeo187cJVXPA/eJ6hOMqLHwFi+3K6i1Oq+58uGA1W249KvBFXoc7H1iCde239s4gpHEsDuPfDh6CBymexJP0sMg+kOBBZA/iaQlbkMHD4CWlx8HT0IIHjy3I4mEoFBYZ6FDmsBQWhmGh0tOwjCDLQkPwsIiFUBgoMlApQkougfU1rS9xLZQ+k5rt/3eQ+vp/78H7yGvS5vsy/m5SyvHjWgY7p4cwQPSI5Zj2tBj/J2CXb1+2zNR6jneXHmD6iOWY7rTjy6fzDZuxhsTip8quW+vIDxAR8svRPAt72hcYD8uAJM6bTAb4fCM/QETIL8fVu7CnHVe+5ZXjJEysr2JS3t/M1+u/1iE/wPQRyzHlaecwHkoxbyROtEMFE+Kc4AAcqQGiRH45FsKf1h2br82OK0HHQ36AqJBfjpoe9rRwJSDk5JPnBWIM8WTyESQfQfKRfATJRyzEWT7iluQjJpaPIPkIko8g+ZzukUPyxZSudZqu3uD/xRxmhS0AmKejL6ZcXBwjYpY2ZlE+xzLPYZ1bw/+s7mNboeXgv/DakSwgYla09oxsnmYaQz5dHQB7V99XtUNuJ/oFi0Z2T/EXJFF5u36DvOp1y7arXuuwFkD9AH3WK5gWImRmZMqMPO4zoaOzZqfTZLn7GI0G9wmdsRJ/VQgW1JjNE1Bsr9W2eauv9g77K/u9U2Y12xWc8bCNaAiGzEikzMQl08wzXnS8xfdcACnWsFO81c2xRqCgxMo8vqUR6Oar5bCmW2Nn7pTkC4bMSNjV4nmzxDKATZiXLe7HxA84h5+X2S3r4x/ogdOyrBYAPKxdxPQIhszM3pmnAk6v54mwhG5Q3KU3eWzAo5jPFwEgWNsdDIHM2traEWSQD5mZFfl6GOCAMz8/bE4ECo4O9iu7SXgUK5W+PMHam5WBfDvZbHYdMsiHzMzKZfs8BrSTwF9QV2E4CnCJH/0FVhUaYD3o5qt1LtWrTXjsIkpGh8yIhJYZ2DzrgNnSVOUYp1wuTYWPW8BB+4T/9eGrfZ8+N7bFsSy69SDNxCEzMKp9DDwh7vOgwe4oFwbWU8YKuZJ3yl1juQIr2MGCAtMLeoPpuZqvVdTy072C2+Gtuu/Mtk/ZjYIzxkriZSG0M885PA/ULwAU7A+tp4fm9QcVALTNVi+z/KDgcI/HY9S/rSqbolXUYjcJFQmvx5ATBxwFUTBmyIw87nOEMTfmpFjK9Sgz1pyp6z7rI1A3EWv20bLQ509oydm67rvNZq+vEWuCITPx2jyJYMjMqJQZeb5zEQqEU327vtGtam+WAVgv0ecLtu5/NXkKQpKPECEzIxJaaPMknpV8BMlH8hEkH0HyESQfyUeQfATJR9i1UrlmxzNViei+spLtg1dWLL80I/SaeEpj3I4+wjI+d4Ft1Ltkjg7fKeXcO6WAJ7FK3aL+SUSOzIEIyyp1PHRK5RVMZpV6xCmlvv77J8DASoI++0K2Sgmn1GRWqRFOKf5eqkkXDmFbpYRTyp3YKiWcUoJOKtWkC4cInVKQsEot4gFWevFDkj77InRKYbRVanFnw0CfIjxErd8phYzhPUrTTO9llW5LJfnCt0o5imehGWWVqh5rqMOjmEBbAwK1wimFnW0uKax0NgP8865CFw7hW6Xa6Dul+vYnjGmVErWOiXunFHYzmYwGJ/86A8CkUKwInVKYzCr1iFPq1KjfybhzQneahW6VEk6pyaxSjzmldOahh3KbLtEFoMABkMAaLszrJXXwRqu3shwsGDxJuP1tVfG3iloT6qCDAg+Hl4gGl4ixU+oFiBg7peZAhOiUwjXCxY0xRKzlI/4Fup50c773NXoAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAcEAAAJxCAAAAAAf8lbcAAAAAnRSTlMA/bWfQ5kAADKpSURBVHhe7J1RaBxXmu//MSYPG8q747BLpv0g3XmYafjwsCiQG1svIQMjbUHgTgxBDBQIBrImgx9SF5tNoDNOGhwTs7MPxQaNoUEQWESDNA9LsVJghkBh2VyY5hJzoNcPGYlCfUOW+B5cJA+GA3eqqtun1Uel0pXdUp3W93tod5W+81WV/+dU1+k+3/dB2Q1zQhRkBRlWkGEFpZRVai9FbGxOpILC+wv5xXkZKvZyZLpD/7WE0CMiL4yOv31G5JHnUksqY9N0b7mCMmoTeTITM3K9SCgVhURuFCkVRS5R+qYU2SRfyLhNREoec/uUgAKpVEhebG4a7u2/ixJRQ2U0g8GepspokKcOQoN8lSKIZAXaN/ubbXKVsWm4Hy+ncCSsrSLjr9DnMTKex4HYXMOvkFK/XIX23RX8AimXsH3D2DTcj5cjUfA3U/iwiz6HubbbmKoj43XsHH/7m8B5ZLyJld7opunefgV/eAu42sMwj3FwkHTwMnLq/rnjbp9uzjnIeBX4cmRTuz8aTuMoqH9ybftfPnCg2VpHygMchB1gGn0Wj7/9feAHyDkDfHVm96bhfiIUxHxnZeO/vQNNR/9TzkNoqtG+pt9+Y26a7u1XEFcedJZ+NK+3F95HyvU1lIOzwPfQVKB98ebzhvsJUdC5MY9r049R9Cy6efacA6C7BYPp+jngz+iTOEZ77eBp2xc4GGk/PRhpwCPg/O7NnxjuJ0RB1JYu42pdd9VdQm7efq238ptLwB//FwzehjPT2biFnCsL80Z77eAw7ctPoL67fW1q+0/I+RqgkU3j8saNGj8UqZQWEbVUhp7iZ1Ne4cn0rVBFhNT3oWKKjfbawRG1D2lg6pFvbBruLZ/RaxbngL3H4L1OAMxAoIjZGfweGctzNaO9dnBE7efnsIaUzQ7eNTYnbgxKQW0ps3cutfp7yIulUrH0iGKpIvLSIRru48SjhlRKBm68R3vt4Cjap3iZbeySMDYN97Z/LxpRSlOliExBQTlSUo5QcXr57r7X2iLyPPLiPdtrB+NvP9j0gib5xuae7sfKcwpjJkGKg5TumdqTPXD0GyD56L8CB/vSfYjpGgraawdjb5+T7GydMTcL3I8VVQmk54/Pwfjb82/00m0pFcrxOBh/e1ZQem2llC+Oy4FubyGnUAE++xbr6zc2jsuBbm8jp3H8JEv48Lgc6Pa28pyqgoTIcI7LgW5vI8puGFNBhhVkWEGGFWQFGVaQYQUZVpAVZFhB2Q5akbIWVjByg7BJvlR2wgrKbNldkL5aCf8+eB9rXeDvsQY74d8mpOdmC2RdpZFCSGUgZSyVTF+NP5r2UohIiUiYBuZxyr2ZlqbB0CnGMtaNSpxrQ6ufRaVHkd5qkee6Il+U50qlYiIiEaWvjVb6Gor0tdXsL9SLXNejlkztB4gwNfayz1dtsMtCH2dfb54YnFF+hjJwKUNl5G2VSF+UGDrFLOA6v6yQcjzzTPR5RBYrKNoBeUJvh6SU9EmmwvoUKdV28zwJHsWZnLnkQiqRCRRRoJSgRn+vzPbmkeqpxZDBsIU+zr7ehEvxkKWSLrWlbFFb6s4nlGr41FS7T7Gdauqn2zKmtmxRKIecRxRJ8lSLhPZur4Jp92/pCwjSS29TqqkXpQp4rTy2wCOppEf05L9KUjP7P03b+iQyi8GzkaLMg0ti2EBb6OMUecv3NikathREmfihyhicFclQ7j5FmRn2gykynaJh55GvVHpVJLR3q++i7tCzaNwSop3ffzzRoDgmQd5AtWY4UFAIEeXDzM1vvUFfnzgfDrldg1rDBtpCH2cfb+lOf5el8tMx2N6loBCt1N/uU8zPOQxUCslUwWHnopUr6Avt3dJn0e4bVxM4i1jrYfGnP/3pDaD20tWbeAU5C/j87tw59HFW/2YefW7evHkbj4GHeBEAXoIEgARw8Hg4fKb3xOAbaAvo4xR4y/denvrFbstbn3w4O/shhnnrrd/WMHqKW0iZfyc/ZI4+E9QX++7q2rula9XWtrd/VccPga3aG6+lV4fra5/MYx059anVFxcS9Ll/7wMMCBwkszp+8jtkOJlsOpLzMWpnBwZ/t8tCH6fYW+AkH11u13dZ/gHt+vo1aHDH6b71/Tsjp3gGmp0pBzn6TDTau525LB7g8jngETCNS4uLi/PormEe+Ap9Frc7sw76fPyBg9F8FxfRSQD8J94cjf7dAfAnvHpuYPD6cLvBcUq8Oa9iRVui2+1uLNSxmwT1y0u9bm/4FAeOlleTLrYuIN9nnok+D2sVfAOvO0hWsFCDBr0lpHz7EBcw5yTo854WEAmQ7/8EnwPdlbm63pvzR2Bze67uaANtoY+zv7fev+P8E8sED9fu4TWM4ACv48s/Ptp9ir/BKtBbvfDZW5ud14DvTOfI0N5tXW3YombgUkvvaJLX9AR5fpjNoZphNsGKhiZb7d0zuJD8BjXlyLyOqOEH5EmlDXZb6OMUeyNy20pbSumSK9XofDBQyidXjswHW+Q33CidFjaUzOeD+kyUyq9KDXu39reJKBRSafKvUuLoSbJHmZL/Y7zPDUQUKzWyl0iJUCilDUYs9HGKvcnhM8qcRbH+y8AquwipDEeRyA6Tthtxrt1r7/z74AhEKoc5BQvprgLrXaQwp2EjiY+vUUcKo+yGgWJYQYYVZFhBVpBhBRlWkGEFWUGGFWRYQYYVZAUZVpBhBRlWkBW0voaubmaWytXbrGB1a+jqZkbl3NLSuazgcdbQNZsZpXJLS+eygsdcQ9dsFgyVyi0rncurDY+9hq7ZbHNpuFTukZfOtSBuolo1dM1mt0dK5ZaUzmUFj7eGrtlstFRuQelcXvFbkRq6ZrPNkVK590tK57KCx19D92FJ5dzi0rmsYAVq6BrNjFK5By+dywqW18BF9+HZ+iFr8B6w2Wip3IOXzmUFy2vgJh+9ML364j/VD1lD92DNRkrllpfO5ciXg9fAbblSxeQdsv3BmhmlcktL5/KM/uA1cHvbd1Cb6SSHbH+gZqOlco1tgMfgoWvoylApSd4h2x+omVEq92hL51pbxVWz/FvMoDNzo4buW8i4g1lktOtpAdQVBM6h25c362/NvCJX5t6tASPbJV659llZDdzksz9vvPk/nUO2L29mlMp9tqVzOYZX9quJ2wqvsvBI5GkC90VEqppwLotuBxlnsS9bt7EnzLErWJ/6pI4uZs7BUvhzUHjNoLyeQeSpysKrDWMhVRlhgYLMaRw/tRoqC38OMqwgwwqyggwryLCCZ2A3rOAjPFNYQYYVZFhBhhVkBRlWkGEFGWUHIlAM55PhX3iPhe5NADdqOgJ0ufc+8jfJFQD5X6sL30Vl1CbyZL7k0PUiYV/yEL6Lko4sCpSyMtSIa5+trSLjrwALQ414NvGbKXzYhca2kFtW8Ie3gKsJNLZJx/UH659c2/5oV63sB1YlD2EFMX9vbeO/vVOQkoQVtIHrW52lH83rB5c3ryPlxgp/DtrCDeBa93kUPot2NxNWsNLUloCr/7foWXRz8d4Xs6usYKW56GN7o2AMdm8Hi+8vfNhlBSvN4lzhfPBeJwBmIFjBKtLr4UGSAMAHU8hIusBW0gOS3gN0egnwYzwAvsYLOHk8p1BxNi/rR8/uW/7i3slDejUkv8TvaqxgBUl0fhB0z9SKkockH/1X4PCvS/YiPZ9/XbKZ2G0pFUpW0Fq8tlLKF/z7oK3c+PaF9fUbG/y9qLWs4BpshhW8gwx+Fk1h+EmGYQUZVpAVZFhBhhVkWEFWkGEFZRi0LP7JgL/ZTn751Y96137Zg6Xwt2peqKtSWwiPwW7nDwnwc2wksBReq7axOprVLul2ExgkSS9Bkr4afzTsMx+b6G52TQvzOKa3UlPz7/oMe0nPaFJyqonNd9HAi5Vqkqv3tMhzXaGUICJXKhUTEYkofW200tdQpK+tZrZfqch1PWrJrMEAEabWXpN8qbTFsIE+zv7ePKG0aVYojTJURt5WifxFn6FSbXK9rExNSDmeeSL6NCLLZxOCXKEGhKSU9ElmS5MoUqrt5kHyHsWZnHndOSGVyPSJKEg9NAa7Zb5bETVVaqIthg30cfb3JlyKh01dakvZorbUFfCEUg2fmrvPsE0tpfx0W8bUlq1U1IHzpoookuSpFgnt22YFZda/BwTptbcp3eNFqQBeK4+E90gq6RGpwf+VpGbaOLt6n0TfRMk8gp6yPS4JbaENRo5T5C27PURDpoIoEz9UGYOzIhnKXWcoU7tBrahMp2jIeRT5SqUXRUL7tlhB4XpSaeKWEO38BuSJBsUxCfIGqjXDgYJCiCgfZW5+6w0GCsbZeFC5YYNa2kIbjBynyFu6199l6qdjsL1LQSFaqb9dZ5ifchioFJK5gtq5aOUK+kL7tjefTPethStOslPHYicrGF576eqLb7zSQcbC2ufO3Dn0cVb/Zv4acm72QyMe4kUAeAnfDIphO3g8HIrde2Ihdxno4xR7u4nO1C92md762bUPsZu3AH/0DLeQMj9cunDYeb2OjFvat53rZPQy+fu3l/HGa+nV4fraJ/NYR059avXFhQR97t/7AAMCB8msDhb8Dn+HFCeXbaAmHqN2dmCx20Afp9hb4CQfXW7Xh03/gHZ9/Ro0uON03/r+nd1neAaanSkHOdq5Rvu2dDaR3FxYBPAFgEuLi4vz6K5hHvgKfRa3O7MO+nz8gWOkq7iITgLgP/G6EbW0A+BPePXcwOJNbYDBccq8Oa9iRZt2u92NhTp2k6B+eanX7ekzfOJneTXpYusCMkzn0Kdhr4Kfd+7+Rbg3VrCL3hJSvn2IC5hzEvR5TwuIBMj3f4LPge7KXF3v7vNHYHN7ru5oi4GBPk6Zt96/47w2fbhyD69hBAd4HV+uPdp1hr/BKtBbvfDZW5ud14DvDOfJyOUmts4HPT1b6tMkr+kJ8vww290MsxlWNDTbau+ewYXkN6gpRyd2RA0/IE8qbbHLQB+nyFuG21baNHbJlWp0Phgo5ZMrd88HW+Q33CidFjaU7F+hdq7yixq+XGnps6jsozQiEkrFUfa3Jyb5P8b73EBE8cCZ3k2kRCiUGlgYBvo4xd7kyCmpKNZ/SOm/lZF5VpHIjiK0leFc+xb8+6ABkbIYjpvorgLrXdgLr7pPfHyNOpjDPskwvE6GYQUZVpAVZFhBhhVkoBhWkGEFGVaQFWRYQYYVZFhBVpBhBRlWkGEFWUG92u7ASBGrisCVlNdXOsDMwpnby3rfoHZx4CzuVbt483Zn5ttt/5KDY4dXOskm+ULGbSLSO0tqFwcUZGF33nGPQ76L6rwTeTDkMETNgYWndtHsN2mTq8ZL+d2a76Kba/gVAKQBO8CBKt92V/ALpFz6cPvG+xgL5t26oCY930W9J+NIkDDG4J71w70no7VBNNYR0qRAZXdrWXRf57uoJGqoPi2pNMUV4CWRr3JColCNj0DfrWXBGfFddAeYRp9FjLC1Z+3i+8APkHNmrMGO3aX+3frnH25/9s7edUA5buIhTMprF9f0228wNm6iH63pLKws/Y/anp/MrOBZ4HsUsfB+PzQcI3x/FFXiex3MOciYWcGXNZZuTwXPAX9Gn8Q50LPotB54j4CfYFw8Al4YuVubNelZQWems3ELOVcW5tGDg8TZqe/5qdN9eLYO1Ka2/4ScrwHCuHgITOstufd9nRXEQgebF/t3rRtI5gel380xmFz5WxJpzcZfX9vu5hJ/gbk6xoF5t35cUJOecxvOzuD3yFieq2EHl33/8tR1mGMQH03fWrz1twEwP4c1pGx28C7GxjQg9Q31fOGzKH8v6lFDZkn+YqWiIJ1+heluQeTFUqlYekTpm2x2Hbj5nD41iV0Saoy45KqcFpEong/yr0stIs8jL+6LF3tKZ4aUknKEcilS0m31m3hBk/xYjZOQBj3EI9/4ppYVHEZEkRajGQ6lFRl6I1zyUgEzpAh1k3Hh9xWLiGLjOxlWsIiIVAHtPMHq0SH13XpwX5dZhs/8vn5SKatmfvUH72NPPv2PW+dWf4v1Go6O5d/OvCJX5t6t7V2THvwkYxJTqyhxb5iNw7Y6SvTd2ryv7wnfRUMKiu6uoq9jxeGcThJ7ch73ANybmkWl4buooGZx9uWWX/2VMfwsKqQqIhZHrp+IlNXwit/QUwXw5yDDVXvKYVjBM7AbVvARjhVWkGEFGVaQFWRYQYYVZHg+yAryfJAVZFhBhhVkBRlWkGEFGWUTIlATBmfGY07DKhLAgbVwDVCdtM/GlE6sYPLPa3Ptc8ndawCctx9dw9R76Rt8vI0l1PhJpsqYSftsCh/k9aJm0j7AwjB6ng/exlQdGa9jB9aldGIFkw4uIKfun7NPOn6S2YF+WlmEfSmdWMGHxan6WEELMJL22ZTSiT8HzaR9Fj6LsoLODDbQ58q6fc+irCAWgM1BqtGfWjgGWcH54aR9Fo5BVhDBzMaNBEg+vfsukHSBraQHJL0H6PQSnFieU7CH5d9iBp2ZGzVLUzqxgkh2HmK6ph9H4eg3JxZlAaGvdiMjZRG8ykLSqGChqyyCFQw8Y5fXUtbACsYkjH2CYmULrKDfVCbNprIEVjAiWTAwrYAVlG5b7UXLU1bACrbdImVDZQGsoKSo5O5abVjBwFdF+IGqLqygWUvWyhkFK+gHJeOTgVUzCfMzssKwguXPm21XqgrDCpbP+dy2qjCsoNSPMVbOKFhB/d2nnTMKVrAdK41lMwpW8KC1sIQ2LPE2HjiOfhBOHTiLOpx6KNwa+2AYlhrtdbSng+Mmav1wagc6nDoJVvrh1iUYhmVGjnk0+1HHilFP1wi3LsQ0LDcaT/VejsLWi6/NcOtiTMNyozEt9eY128+XhFtrSgzLjMYkHSv4eCTc+uWRcGtNuWG50WOOAH3mbA2HU+8A0zrcuhDTsNzIONrTwwqa4dQPcUAeViZ4mxVcyKdp19d0uPWedOvQFBuWGOmjsYLP+lnUDLd2Bm/udB50AGDmx6+dd7CXYXcLBtN1w9v4n0V5PugRqT5eqFJkk6gRRrGIo7ZP1JRKmYaBZxKZ3sz5oIgEfy/6FJgJ0kKiSGXEFKf6ha4bKU3kuW1lGpqYRnscTfnNlutZrGEFx6D0yFcZzfTf2Ke22oUMyZemoYnpzTxay42VJI8VPDRSEHmxVCqWHlHcV6YhlZKBGysVz6avI0SuH48YFjBiZB6tSaFSHkllK8ccw1sQTq3DrXv/WP/AgUFv4a9/Vxs2PHTwdnJnHsnszDJHYR+K4nDqbj/c+up/BQ724mr33xxtWEJ3n+DtZGdrBYEDa1GVJih8RIndhnomyMCnhuTPwWeLiFSGpLDYhoQ2fQqkUhF5khV8poSeymh4qphGQ5seHo+EUkSCfx8cB921f0Ixb6/18NR0O8h4CGtRVSTyzGmeidt6BmPQDbO7KP9GP5Zan3d/hv34hy/w9NxaufHp5bkA1lLlz0FBcfli0eiph08sJK82HBc17Ecdj2p49PQHqfEqizEhprA/U1uoMqzgCy9jf+qoNKzgdyjja1QaHoMow0E1YQXPIGMN+7PxQzBVng9OI8F+JDgL5hSqyzncx37cQR04wwpWF2fuf2M//rAA4BErWGHoP7APycZrqDas4CWsopg7OI9qwwo6i8sJikj+9bKDasMK4hI+QhGfbXuoOqwgbm0U3UfXl5YcMABUFRGB6tMmsbcF9U1EU1UazkbizQplEpJfrUQjnI1kObmydzaS5atv/eYSRvh06fI7RqIR09FRwHfRKCRyo0ipKHKJ0jdKNsgXMm4TUX4j9SI1jPAo3zFsKA1HxwTHLplJRmSTvFascuJ2FgdhGBqOTgpVymXxuCB/iPP++iur81ev31i/cX1xfvmV9nXHMDy5lXkrOAY9cvfIsh2F7Uaj0W7rPYbhyRyDpyuXTybp4IKZZAQXgUtAieHzXI/+eHgwko2kVpZkxDQ0HFUAzkZiTaIRVvDN60i5sXLgJCOGoeHoxFCpZ1EzyQgKMAxP7rNo9XIbOjPYQJ8r6yjAMKxMqhgeg1gANpHR6/wUBRiGlRmDPAYxP4PfI2N5roYCDEMeg8dF0gW2kh6Q9B6g00sABDMbNxIg+fTuuyhmxNB0dEKoejaSYsoTjeD44GwkyU55kpERQ9PRCUFVFRkpq+GaL6GrrIYVVF5LlRL6agzIMGiFkhV8OnQY/ZHXkJRuEDbIjdUzIWw1Glz7rIjAU2PAC9OD0zMa3lGb6KQqGJMoN3j2iCx7aUQk1bOB6KTmdKr5N7Ev/7JQxzjYWC2JiUq63ZEdvSQlfR35w2Zm2d1MdEODbjfBobGvDu/4K4AGXqxUg9yhUUnkynTME5HIVs+5rlAR9RGpATVb6WuoVEg5nlKxS42AqNVw3Vjtbthq9r1FrutRS6qhhiekFrYcZxVeQa7QW9LzKVKq7ZInUx3aWVrgiCJJnmqRSDfjTOH+3b0tW6mWqkFhqlekBPm6oZIeCSUHt+sgPVxjqOFJqUffdtXYiNOhMoQXpQp4LfIGOkXUinyl0h0kBrrkCmZ7QooyU6lk/yWWg4a5uYqpmfbDrJf6JHRD+z8HNb9a6qGA5MP3MC66//jiv9UxzNmFjV6v82oe5D/V7Xb/D744S8iYQ0qCYGE0lcMjwIHT/zHzy/uDhgBwv9t9hMfAzvZUakD4o25ozyqLcuqX/+VWUfTZ3MXxfd2+8D56j+rAYmdQI+bNlc+duTMAsIXtm1ntknpf5PwMndW/mb+GjAS13Ut5nFzPQcO8JhuA51OTFwHgJXyjG06SgvBmf7G3UN2l9vgE9BeBrdvLwBuvAS8hpT61+uKCkw+TPfOq37/3AfrsTEGjq81MDzcMHCSzjzHgO/ydbjhJ8YNwfvNxgr1oXa5jPCQ3FxYBZFkYLi0uLs4jY3G7M5sAwHl0kmyCgF183M/Jn2xi6wJyzgMJEqR0MH0ub7jZRU6C54GL+c77eF03nCgFcQmfwwSbGx7GxOedu3/R7Y0laPDtQ/wcc06mkXM5PaXe1bO7l2K95yDjs8ub917rpxRzFnAfO6k+m5ir9xt+3JcPDh4D+CTd2V2bq+uGNs8Hy2cUeqY4LjxjVhZlW80wyGdwskl+I3vmz3ekBno+2Ca3qWTfgfTcICAKAteVatAwN281+o3DdGdTKd3Q/vlg+Yyi5anxIfvs3jP8bxwJafxB9l+FGOzI1I8UkYpSvXVDmaIbiyhO/9UNbVew/DcKSULZw0n9ZlsjCn61sAMRErXFycrSXJ4I9icXYA9f+0geYnwohldZMJzrvgw9gxqFsUZBM+9I4Cxak3eEFUyClbn2ueTuNQDO24+uYeo9OHgbH29jCTXOylVlzLwjRjHdk80pWICRd2TcUUrJKp45yxgPdih4G1N1ZLyOnfEHmHV/+QKePYvJyVUw6eBlnXdk7EGevauX5scg4I+vJCf2SWYHmB7JO7I1xrwj728vYgwszv/z9ZMzBsvzjqxkdPDsWe+8iZxkc3PvkFV0u5vobnYHe/SbpHgJaG1mrXtSn0UFUaA0Y34W9aitMppuu6GjJ/If9ZRIX0IianoN8pVeBKpaTddzKVKqaAloQI2T+q2aJB3EINWYM6hJoihX0pVKDfmXHgmpmj41B31IkDe0CLTlSSVdilOxm+YS0NSSTqqCytPX7oVjHoNRX8EmhdmRY5WTyyRJhlINqme7JJ6sHlWtKNsTFy4BDYniEzgfNPOOjH8+mK2AWcEsUh5Bs9NdXXDmnUFCIlzAvSerR/Hz8+iubvu1/ZaAPjqp36rNznR+f1HnHTmKzDE7mHEAdHBGLxrFW4CPPk52+O+frB5FDb3WxsyrxUtAz5zkb9VknthXBm6slBREXiyViqVHlL55loj8LhpRkG24SrVbrVZ+R5VPcuwTyexO23pSCV0GrWwNvVAi39XOPbhqvHdRKEtoEXkeebFSgnKkpByhniVxrqCgVnbUttr1OagCikU89Dkocy0jERFlmrYH8jZIyEiFzWEFT/YvvCKK4uG1ZPrNs8XNVXP7z5Maj7L+EwaRUtn8JguHCVLz2BWSGv0xqMJ0lyBfBRQ1onQ0RupoZhOMvvsp4Tab6buR+aDyyc3nM35Anl4EmunZcNM3RUtAfYqOREHGdaVKEUKqIQYDP8pnE0qEQi8CzRtkb4qWgEry1ZEoyAgKx7EGNHDjI1KQEa4oMWgT5SPw4ITa6dgVZOKgRMFWf4JxcGRTKlaQeTYKMqwgwwoyrCAryLCCDCvIsIKsIMMKMqwgK8iwggwryLCCrCAjRWxxNhJm83Zn5ttt/5IDwK5sGWPorDYSUCCVCsnLLi0KidwoUiqKXKIomqy7aOSR5+bBcbGXI5WXY6myukZPm9ySCEX7FdSd1aq+Wh4roZUzIhQrDZ6ms05MZhePSA4ug2J9XYaC9ueT6a7gF0i5hO0bmJT600kHcw4yXgW+1Nc1gVm5bgLnkfHm2spiTUtnNfeBH+gYv6+MbBlWKljeWdfwZW1yyvfX9NtvkNHR/9isYHln1X3Var5Hjr6p5FG7uL5mt4LlnVX3VXuZBr7Rge4/sevz/fRTd1bdV62lNrX9J+R8DRCMSP0qc+ppO6vuqxbza2x3kfEF5urGGJwgBWtTMDqr7qv2Mj+HNaRsdvAuJnYMmp11YsYgbs2srCOridSu9XOnPeglQC/ZQqeXTNDn4PwfNtbe153V9jGoWV6+tvKKXJn7XS0rXwegM487mM8uGu36BP024VGYVTkloQoyu1iKFGEUK1WQLaO6PKfw/8nyb2fSzvpuLeurGXcwi5Rj6KuMoWA5yc7Wmela/hYZjn5z5DBqQuB1MoyIToqCIlITSeidlHoTW7fBVHBGz5yxXEHmkaUKWt5XmVPW91VWkGEFGVaQYQVZQYbng1bC80GG54MM30VZQYYVZFhBhhVkBZnpV07KWjURqArCa9UYKaXFOZ2Y9ZUOMLNw5vayZSmdDqNgMnmLs5NgZa59Lrl7DQBqbz+6hqn34OBtfLyNJdQm63Mw9IjICyNvglI6qQb5g9RA0rI0OaeforM6Zl+1lM01/Aop9ctLsC1NzlN0VqOvWotHrsoRJOxK6aROHbqzGn3V6pxOLyOn7p/T1zWJOZ1uY6qOjNeXdupaOrvZAabRZxF2pXTC6aftrI9hPw9hYE+anNNP0VknJqXT2V1pcoyUTpOk4MOSvmop54A/o0/iWPb5fuppO+vCcsabsBhnBhvoc2XdshQdpw7fWSfnWRQLwCYyep2fTuwYNDvr5KSTmZ3B75GxPFeb2DFodtbJGYNOMLNxPQGST+++C6DXM1I6Tcx3MtIjX2U0fZvTbJu0iDwvz/8uKCeWlCOs/n3QlLAhlZKBGysVx/andNKIKIoLUjpNWk4nzKAzc6P2JKXTumNzSqf1P9wazXhUn8ycTvpSuw8xXZuUlE7J7NLFkev813+fzHUykqKRHUJNAIFn7PJayiJw+EsNXWU/MZn9UFA8WQrqSzX7qvX4TWXSbE6ign6zoK9aTURSmcQUTZaC+lLNvmo30m2rvWh5E6agvlSzr1pN25VqT9xw0hRsu3b31fLHa/OWYwl4ukt1Q2Uxga+K8IPJUjDw7e+rJkI/Xlv8lIanvFQ/sH4mUd5p7VfQD6zuq4e6f0iKJkfBiKT9fdXEDcueUydFQemG9vdVk5ZXOoGaFAVbnv191USSKL/1WK+gvlT7+2rx90mWzyhwuEu1f0bRjpXG5qc0PINL9YMJjbcW2tDmVRbldN9ar6GKDMKpl5MrOpx6ON56f7ThXo4qw0T31SgkcqNIqShyidI3SjbIFzJuE5EqZsRQGo4qdheNvRwlvZx4d7h1CdpwD0fHDFFDh3IaIawFGIaGowpxejj0H44Op07+eU3nBihmt6FjOjpOzMXXZry1iWlY7VXcE9tXzesy460LMAyrPAZPlffVg8dlV7KvPj8SwnphJIRVU2L4fGXjB82AeDPcugDDsIKRFA+GQ1R3oG/siyjGNNSOqqbgJPdVM0T14eTFup6e+L765nWk3FgpCGHVsbsaw9BwVCEFJ7yv6o/lwnjr3t37W51MovMXagWB2fY9iwqiQBnEcdQO25GQKscwtOFZlFQfL8wuwCdqhlEs4jBwyYtUimFoOKrYjN4MBJREvuoj+/K1sol7I331w2ynYVi1iELzdEKivkgxxUrJgPxIW4uAPKGUYVjlSEkctK+2yQ0Ggy9qErWlDX3VPJ1dIawheZHxXVqgDEPrxqDZBSPXDUd+1/VE9fuqFESeTMdaPAhRlR41ByGsAUXKQLiBVCOGpqPqgAP01axjGifdpKDqfVVQjtTh1MPx1q1UQJPY9aUaNixwVBFwgL4ae26kTEIKZIX7anE4tczjrSMK1Z7EbmPIsMBRtX4fHIRT34EOp9bh1s4vX9z757DNy3MfOEZctuGoovTms8Rbe1+Yv2hRFHZxOHWyk4VbX//T72pF/wmX39GGlsVlX8UtFLH64R1ncqKw24XLCfWNyCZEdIBFMF6gTW1fJyPdliommFW2EfZ/PWuUrN7Sprbm+O1uIuVzXEIx7/z1qja1ie7aAvbh4swqbKGkr5atBm27MjO1h8jTU5+SvA+RvWNQs4pL2I9L23esLLe78jPsy+udXmpqAadKyu1+cQn7c/keLGQTs9iXOr60ufaZ7qu9zqvYnx+twUIezTjYn4WvbVZQc3eqjv2ZRdfG6tjTKGNrMhR84WWU4EBYWB27gzJmMBkK3kMpb74A+3h8HiV89cfJUBCvopSvYB/P/ydK+NF/nxAFvwPKLP4MqzgDALXHKOHrH6SmJ6IO7wuvWjgffKm0Z25hMuaDz98vH4OwkY1SBWcmYz44U67Pxg9hH7PYxL70OtM2K6g5U9pXezhr4XzQmfsC+/L5VH0yFDyPTZRf6iNYx89WEuyH+AdMhILlfRXiEmxkdupz7EN34+8nREH87G6C/Ug2fgwbcX69nKCYlZmLk6LgPD4ruYlehJXM7ndh3bW3MSkK4tdLCYpJPlyEZUy/ghTnvaV1FNC7OndRm9r8G32G50tVhPQ9bWpbNpmARIGB52pDi1c6iUBlxBSoIloUZ6ZNVT3KM3T42R4Tn+JhwwJPVQHlnbVNomiYUqQNDUxvVcsm47nxniMwHjE0PVUIHKCzNl1RsJI02GVYtZwz5Rk6fDOcIPZ9aRganioEyjtr+r6tDGRA7RHDiuVHMgOpoicxK0EmjGyNhJ/FTWpIw7DShRZxoM7aJl8YfZUiw7BqOWfKs8nIJlEzktlbkQfxGoYWjMHyzho3KBBKEwXUiE3DPTCMjKONewzq/3eZbee0pMqRoU9EfsMl8rI8joah4alS4KCdNfLIbYYiFrEIm5TFLhuGlcuPROSFGd4gO0CrIJYibIeiL59haHiqFKcPmk7m4sXe3fvXkLHwyaxTYHjQnDPVyiZTL8/QoT1VjNMHTydTu3TpOpKdcw40hmHVcs6Y2WTKMAwNTxVU8OCdFU7d6KwVzjlTnk3GxDQ0PFXze9E3lzMW8BSdtdzIONoYMbPFOTN6dcWVdRRgGla68P7pZ9pZu1swmK4fV34k80ALHWxe7K+iuIECDMNqj0EcJJ1MAaZh4JlEB8k5IyJx5NlkijAMrZsPmlliiig3PFh+JOk3Wq4njjibTDGGoeGpQuBZd1aT8pwzLVeqmLyjzSZTgjYs8FQV8Cw7awGlOWeaFKYqy6PMJlOONjQ9VYjnVFk6mRpKKDcsyzmT3JlHMjuzDOYw+WTK0smUUm5YmnMm2dlaQeDgqEh26pgY1H7ISB0JMvCpIdWREboHsPGVFaD8SsePlEpFR/qU7rWUZqJrgHqto+isHgml6Cj/y8rLmgWesgOUXun4O6ugXEFRofKDMQnbFdRXOv7O6oapjJ5UR0dMUVmd7AlRMCYx/s4qvGZAvqxQGd6IpP0K6is9gs4aC1mRUthmZVr7cxuG9nbWw55521XWgMNeqe6stuIHE1GhHQe6Uis76+FnFIGv7AEHvFL7O+vBhRIkbFfQvFLLO2tx/7O/tjcOd6W6s9pM25X2P5zhgFdqf2ctfw7TD98Tp6By25Mykyi/gpanrAKHuFKzs07QjEKSmDgF9ZWWd1b7ZxTNprILHOJKdWe1H+Ma2vGkKaiv1OLOevgQcfsV1FjeWQ8WIm4hp3FYLmFCSIKVufa55O412Ik60ZTFkVte88UkSRJMGptr+BVS6pdhI6dxcNZXOsDMwpnby+i9j4zAWUTGjRos5TYGqURfX9qpT/JdVDZLcuTYiSRqGNkRbAKH+rgwwp2sRCc9sJlTh/+40FGtNvMQlnPqEB8X2LFdOjNEfPIVTDp4eTTtyGPYjRlHPsnPojvA9GjakS2dUsRenJnOxi3kXFmYn0gFy3PkWIuZ9MBCDv7IFuyTN9BipBFHbhenDvNxMUnPonCCmY3rCZB8evddTOgYNNOOTNIYNLMj2D+jL88oYiSksB2d9MA6cKiPC2MMMlVWUEvYGMmRE0ulYnmsOXKY5xQMSjOKFCQwOS44G8nB6WYZRQpSihwPjLIf/hxkRGS3gkzo2fz7IGP/74PMGcsVZB6xggwryLCCrCDDCjKsIMMK8nzwZMDzQYYVZFhBhhVkBRlWkGEFGcUoJYKTuU6GYQUZVpA5DQZILF50zgoO56qyMVUVK/j/2jl7FkuOMwo3xjgx48AGB3Ig40hwEJh1pj9gUaEMDhYKDAahuMGGDRpWFHjBBicNRg4KNjJLgTYrUF6wzpyIFxZHFoUXO5B58eDEcMC6feve6r69PR/S7dHe9T3BTHXNvDPNnKl6qmfOfcetDS/e//evmzcfNBfN+82jz5qPmjdeh6cJDb1P/y+tDecvizz9zPaz+//80YsPfnV5nP3q8cOHr25rwxNtD8CrpehI9uh4DKUA8NWShSkjgYzXoHtN1uCnzdPnTfPj5mlzDL3zijUGnvequn2rqo+fv9onmbfvff6dTQrhzWZRz5u3Do7mlxcXmzeXB+eAy0+/+9bwMtK3L15aWCZ/sPrBfrlX1e1bVT378KMjnYj/8bfm4QoOXjze/OifNA/K9fD66zf/dNG8eHf72uuPP7z3efPgnc30oNBsRu/98PdN0/z23eaT0r363uPm8v5n732/aR6/+HPzxzeaSWH74sn2qz171HzvL+3PLppx4Zr611dsVfXi0dHSVv952jxc5SwqoYeVeq22RSKDgVUyIJAWmpAUlh5CWmQyAySpGUE9IskOkQlITGhrIdVClIJWyYSeFHTjwnUlQP9VWlW1QOKRBKzzVzXxDvBaJ+zggPWwpAJKJvjUkrAkZO8LOAjCiDRYquXzgbwvLIYrHKkGSrKFjArXlQLtfnz7NjnhagdV5GAi60abt5xIkxCgJK2FM4norRysUoNu5KB0yBkCSyYYEQmw4rcOtmUNurh3ULdGyDABKGkR94WkhYgkOFJgSNKjHxWuqnmvqvkalCRckJg8dlAAGCUzAAgZYI0RJhSJAIDzABDJWKYtmQ26HvCdMZnTQu/KV0vG2LKUauX1DopplQxApgXgBgcFPrQKS0bAbuTIwcFBFhr63Z6gOyNScZCDg6NCO4zQkQl2e3/dqHBNzXtVzddg67yxsvCbLQqkL0sYzglDmRGGOiNMrbyBg25rP5AYvPdxcJDG2JhhSdm5NnUwtbpzUAxf5uCo0ELLLlocDOhr4d22NpyvQW8ydWFDdYF1Dc4IkwHemjC6JQz3hFEyzwhTK6930KJXMgK5TgkDoFo5yCRTB41uvVJhdFsjKgJJQEqhyN7BbrfH0kE01cL1NO9VNW9V5RDLLc4UW1IPHBS3J4zcgDD5WsIkEUF3SBgi39TBACHVwtUpk5jRMg+GOQQyGyGp1cFUVluP5BLphwmHVM+iu8K031g6khGBFLS7woB0p60NBVuploFQIxfWoKKPMQB9nBEm35QwvBlh3IgwrlTe1EF6uN7AT2ht6aIHgEQ6tB0iyd2EAEA3XIUA01ELc9Wavgf63hjlvlAmtI6bSaccFd5pa0PdajSgSrRWOVd2X6gFbCeHhBksT7cnjC4QphsRxpXKGztITVGUVeUgrFoGOUmd2A12VyK7iY1SIsAUyVo4+XRSJWVyXPh1S/sWnXJBdRcdEyaPCCNpgTBpSpg9ZqSiqXKw+MsOMqm8+5QFwBOTkgl2ycI8ddAkKtqy7fbXEabbg8IhUQphamEhjE4IUyu/DgclAkF4SrIQEli4aQCoH0yFMH1B6J4wZYJp9DwYYNwCYUpheR7sJoQhOaq8ewf9F0o8IQm2Di7ctA6ql+XikDD1A5UZFRR6JWGUh4QZVV7v4FkmllPE+gLOfdVW0O+e/OYPH/y0b1bX80++5P8aeY3OyqKvMmFWdvCsc2b7rLODZwc1cBV5nnUnPX6f3/92s45+cdmctX5mOxvPleSscnWdd1EL5UrK6HiCWp8w/pgORria0SGZ536qkCqSRoESqQOdjaoshCctMXEVB60ez0GLwI18C3iyB4RFAgCeAnhGAJ11aHWX00mkd8YaJLKmdKYhnf40F+H6hHFWj+Vg/eeJtPAUCzvJJwjZtXAlX3KQ0/FWqQZ5MQcaAJ6yLNbjy7EclL2DwcOzDQgHjFRoVJKAkDRINQnq0zCTF3OgEcg8XUV0HKTKnDJfyhdO+KJSB9fw5UgOpv2u2Qpich55+n3Eu/Ef1jv4fcCHmSoBfjkHGnGyIKyEEQtED5jqQzrgi7MdWtYc6I34cmwH1WQEq9aSrLkeAPBjBx36ccAnt7CynANNp+xgDVi0aIO2kClflG7CF7vAF7fjC6d8OdouWm4seoHxgkCy5nqgFPTkKMbhi12k9p5UA1nIgZ76LpqKgwrEysRlvkgGeAu+HPMko15bERgGiMbxfWayR5Zc77PmdNIwcAiLOdAI6Ek7KNv3XUksL/FFSboJX5Qv5Use8+U4DtIgkB16S0GkNbmVg6d9QeyFBHpOkqCiJWosNaUzDZCyh+PpO9hDyIh4NV+6m/CFlS9HczCgL0+BYkkDK5PkKHqyLQG6ru1haxJ08LMziORSDrRF4qmqntMNlHTIV/PFvZQvcgVfjuSgGqNU0dHx+DDXo0lJApQo5CRCKsNgKQeqaHmiqoShwJEKyzjhi17NF0740s35Ah7JQQriWjGd3mSeqCphGBBJQRfdhIN5y5c05ku/50s350sNgR7naaJKjPBaSQCi8FaKRnjSCuirWXA8fB5kC8MxX3SRLzUEWvlyNAeZ+xvGdCJvI3XKE5cxSpZk6IwvehVfeAVftPBl/ZTFWYK4Jl/Wd/AsMbImX9Z38Kzcr8yX19/Bs/4HPX0M4FSYtcMAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAdgAAACMCAAAAAD62ucQAAAAAnRSTlMA/bWfQ5kAAAnASURBVHhe7J2xaxtJGMXfmVQBhXDqXC2XJtx0WxnlHxAnzrUhLKg8AobDAhepBALfcUUawWEMAldBJHCFQaB+L+4iXB6CDVu5MPExeMHdwslZ2YM46wPDytJ8er9C862em+89LO9Ymk/IVUKWGixhsITBEgbLYAmDtdYWaxIPkjmaE5Wy/GafoFyG/REQ7jw7Or7cBvaa92twokLkZtN2sR5nu0XRDrAI8jKxHdP6bJOPxpjJ1UfTm6M5USNyszYeGNOI4zyP44YxcezDS/GknW9rYkyS5wPTm6c5USdys8Z0bn8syhfEBkrktI83uCH4BVVR08bqNVtqsEcIgqL6CZeipgvZCP+DTUfYQkGwVxU1baxes09QKpuY0hQ1/cjNYjwsFj+CPRc1xTy82ZFbPAh2E7gQNa08vNmdt7jhoO/F39gq8BVTMlHTysOb9SLYSoghpuwORU0XshH+B4sd4Oz2vvClqOlCNkJBsPUQ74vqQz0QNV3IRigIFt1wuJ8B+PPvN0D2BRfZjHZwqzlRHc6Iec1mKTBOs5tijNGkWAjf5SiV43cIMQrbAdJtADis3ac5USNys8UV8AmviuIk8CFY4Owam8Hd/WDlPs2JOpGbzYql4oqFkJdNEudk+UaUH+wgYuorYMQGHpV/jkAexYgN+AMpP1jCYJ/J4vogG+FfsFeyuD7IRvClmDBYwmAZLGGwhMES7mN9gftY/XAfSxgsYbCEwTJYwu3Ojxnmco0M+nFGCGQLdqL0D/oYY6JBHMmifuReBw2nevFhNjdTw8qiKmQjZNWPYFtupoaVRVXIRsiqH8NFhm6mhiiqQjZCVhUMFxFE5cNFZNWHmydrTOe27llZVIVshKz6MHLvcnamRhMOtDVPF5GNEJ3wcbjIr88tntvpQ3C6psNFZCe8GS5yDccLVIHq7cNTJ2rGGSE64VewVSDFlKySvYIDJy9mRKhCNgLLcSIvkciYu3Igi7qQe12KE48wXEQW9Q8XkVUvfmNtZFpF1WnJoi7kXpfjBMpuqGMna7eRyKIqZCNk1ZsT7T1joshEiSyqx/Uqqz6NKvgcx4ksKkTuVVb59SyEwRKOAyoJjgNSCscBEY4DIjxtt2x42k41PG1HGCxhsITBMljCYAn3sfrgPpb7WO5jCYMlDJbBEgZLGCzx7rRd2i6WrNLEN9oBdCM7kTa7c524np7Hyi7Pr14Gq/6lhadX+/j+ADWc4vcUh6j9L/R/69Gu4tBlJxzD/ggId54dHafbwF5z9ec83Z3C75hoRrDxwJhGHOd5HDeMmRT6kJ1wWDcNaHL10fRWe1SBTKWGfWzVANSwlYY1rDHdfv0PoBKE20gDPFVy80RO+24aUJV3xUpnBflwV1wwHhYLA5zjRDrCFgqCvao/wY6mC0Of74SbBgR/gt15ixsO+lKrupGdOMej8GQ5ra4xm8CFwn8pkirwFVMyPcGSSoghpuwOGazSWUF+BJulwDjNbooxRpNiTZGdqId4X1Qf6oEX3wmQmAJrp0WSO+xEjRJ7U0TGTArFyE7MTgOyXfPbIswo9d2drFgqrrgj3S7WT3hVFCcB9CE74Th+hxCjsB1MfTmsLe9tu/JbXWvOrrEZ3PlSWYWXYsJxQITBEgZLGCyDJQyWMFjCYAmDJQyWwRIGSxgsYbCEwRIGy2AJg7UdO3s96PYGNleG97Zs4EFk6V8/92efef3lh/P91yl04b8t+YNwn6Wc+WrbjmnluvDeFuQPZGCMzR2JaU0uY/ekEry3ZQMF//FyBaeS5DB0I9hEXgwdgWNQFA7BhwnAZ0dg9mjYu+HfDD8BQYcg5p8FO7ZU46nh99CfLVoHoVKpXHpPstx16Y+lPsx2bXJ/u//h/1jlr3//efhfnh9TfsypqR/L/W5339/f9ss+7m64uOt6caj396X8Pe92PS/e7j8cZhqil9DivPwfWnRKDEiqGrBtstEyQswYuuX3LszEqglhe+DCY+pUpm7L5gasxRpMSLWHQChivkRptXrIN0ISHXBh1QoKYZirJHNeIYOAEYGkGciqWhJiBAKvREtKk49OnkTRV9CyeXmSljMvexRXNFVGmnabtoDMLprN7dI/IZSNBRfJJANZju5gYMYQiuG1J6oUtLnct5lUMuhp2lEV0YyOLiAtYK2oKgSZaqjYrLtGAmIV3HKVAIfYtSFN+F0FaNO7ipTAL6FFO7Lx8iwtJ152YRPYK+p2X63JINWI9qA1XSTcTqBqVrbO9kLAosDjdjyLYayFtVpcDWvcBAx1J/eJhlQwBBDPymAg6UXCQFMxFacjoxp0RvS0vOsFQV9By4mXJ2k58+KFlV/bEbcFbqzYPnHoHxHwjc6e3DYC1tSAo4F3B0MWgmFMlTUDbeWEokOZOaGMshBo5IHAzBW0kuIxLius703bIdV2sFjxMrrvrBXQe0XWV9By4uVJWpyXc2EZ2avrtgbYO9WEAKTPEaylZOwYXSehI5CaFTgY/AmVYXOug35y63EJWZWJKNgaRwRoSlKlZV1X2AR2VY69aYVkQCw3S6sUQv8qLR70NVpOvDxJi/NyLmxFnyq7faDpiGpSSynts8PEm7DTjmHIbs0e5UAgYR9LHAzBsPzqecdKZZuIG4EHql4/ihEOFXxvVpt4A1GPkSu+KeSrtHjQ12g58fIULQ9GcYToAIYkszmgSdSOpA9nTqE+06LVDZlOZ8lGEEQPBFQ1L7cMbckReNbnM7Yj2MDaCMQCx7i8sAzL17Zq7ZrRbMP5DxhwrxYgIB3tFbRsXp6k5UFhCb1RwCB2+4aRhmoIopza+USyhRlrzYobEd2wEUiYHbcPI0cgkeY9VNWMnvoxGqaDbQvAiIyGv09lZO5fNGEXNuoV4mmUyWBDKXlSmJQXchBzAJjEojpKTfICWjYvz9Ny5sULWwCSBMRtr1i+AaHrFsKSMjNaUNyxESQcMn7/YCOLloqQVPyphpi8y4AUM2jxkiKqJe7fePJtBjb/XovXfccSxNWAbd5EAVHs5WEE0BHQJ/LX0OK8PE3LiZddWOWhKiNb2jyV+I1lbBGTaZZgDve4pDDWdQHbva3Fon1yHE/J6F4hQEcby5QxfMW9NvfpOy13hYi4cuQNTQf/SovuANHX0OK8PE3LiZf/2rljFISBIAqgP/ZWXkBsp7P1IjaexsIDWNvaBCyEQA5gG/ACCx5BsP6gRZgmEXarYeG/AyzLDL+Z4k9uxW/rmG+YT8yxHR8rD5QZ4/E08/EKx7KAw3m/Q77rnxaJjdcZlXndgP6JaJ8HVpiocCx0aWCkdPnpGKw9mI3pclWOpSGcZJR9hFK5iIDBRIsVLVa+cPd5nwKghr8AAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAHkAAABLCAAAAABxI3czAAAAAnRSTlMA/bWfQ5kAAAJUSURBVHhe7dpBhBtRHAbwr5FD9BCR09pT5LCXR9UeqnrqMeS2p1wee4ra0+oQtacSVvUaKkJq9RT2PMyplxBVMlZP1aGWIXJ5EWHWXv7UeMMkHtPnvzSr3u/y3uWbjzBz+AS0L3tsds2JSoiBky9jSzAJgeNOdXS1uEAKQ7zRl8tDFODkt5svJ60vjbtvPQD17qaHxjtU0MWHWwxRRwFenjJEnvAoFQmhiEiIPqWoLyQV4OZLyGAWZL9MUx+W2Pm8eYRGU99aWMEaN583r0O8hNZ8W4c1dr6MzAo4ROZUH78CfaAIN583L2EI86MAM583HwB32NW5yF4WFODm8+Y6cIvMulIp6LhZwnDUtM2bzbXjMPgI7bzTggn3P9GoAbPvMHSbtnmzGZ0QN8+RWoSXMGE2er2YvD/B2RlM9nnzG5ZI4elbPz2Nb1Akk/Q+JwMvjzyqpOgromTQjolULIRUikgpKUR6GadP8sU1GXh5UC4ZCyGlkDFRJDSlhBbRVMg07pOBl8dudj6dxpRS2taF4oRUu63IwMuD7FHiSUV8Os9pVtJLiE/nOc2qPSbyFRl4+TK0Z9j1w/wOnJ+eAF+PamAx82Rr0PZ9fyAiMvDyZVi6H6KHv/m9fGWdf0J2QWCtjxoKBJMr+zxt8SUxMB9Qwr48kuYqHqjKbd7ggTaP/Nd2za7Zvc/ufXbNrvngBezRlvngv9893e7pdk+3e7rd0+2ebvd0u6fbPd3uad+cyGsi8iIy8PIl2Pq8ehoEnwIYmHnG7lmMsXtqjN2TmXf/rfiX/gDz8ZXPBiC9SgAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAGMAAACPCAAAAADL1jqwAAAAAnRSTlMA/bWfQ5kAAAXLSURBVHhe7VpBaNxGFP0xJpdWxxZ7D6HpYS8DKSylhfiQg4KJrsGFpSDwxSU99KAcciiIGgTuqb0sxCVhwaci6HpzEiy5VbAmp4XmoqJCMBWsC4EyoJDDgqCypc1fdnZmosxModTvom/p+T9m9cfeN/9DYR7/hsY6NEYOYEETNNYYhROATtd6fDT9trrTs3ar4KClRSPvhduDzXz8AACsvfwBbHwHFuzB93/CIbSAg6IRfOJdXBNCaHkhJJjfdwsu1qAJxkP46iJo34MKs+pyFQRopvEYrrWr6DacMcm1aOQT+LQO2/c3cR066+oM4KN5XNfS6ejikmrTeAkMJnjRo/EBwOulW91qk+wPdb2PTYAXuNvN1JXVgafz+JvRYvKZNg3oAoyraDq5YWh/3OnAkyo62m4ZWgf0Ok/3c4D84cl9gDwFSKc5wDQ/hUkZcHClgEbIj3+EDkw6By1Id6pbY9iqgkFbUQORvoTrLSwtsDDg4L/+v/ZSA0ETzRqRx95y9GpQErM33b5WjZ5bsEhIolEjW50tCDRqeIFEWl0jJnT1g76rTcMJeU/sSJNGaItWqKiBdcuF19Oi0fMEDxOSqWrId0HP06Dh9WSfpKqG/K2GjqoGdSJ5ZStq9F3VlYK8bhPFNybXwL964vpV0Qjxt0Ui77oOSsUFJSeiRuZWoEUdZEWJyCWEuFEse+VI5GSq1hFHhNhxXAaxQ8h5UNCAeAnNQkKIID1DZDPVGozRZow4ByyRzYT+HI0EY8QbOnbMxHqDqxIjjhATMROrMZMYcYSMOOP4WjTarBFv4NiZTKjBGO2XwENeZm2LHDtmQg3GaKMRZ/KPoklN3il1kCix7Exd8Yw45EdbwWeDwfj5aHCY7uymLJFXV5z94eLWc6OLS2wvfstJfOJThthkf7BGfLr99d7xHXiD9v7gdGvMEButo3Dr7VsE59fM9tjd3ifxEpGzDqi8CiFuRstc1CXkPCjKwC+vtOdktQSLmIRLRDbTXCMhFSitg+Sc3S/ZLnGzMvRc3v/YeIHIy1RcKXhGG434w59GnCPPg5NHLSRyMxVSJILvT66v5j+SOnXfE+knSH0Hjch9i6+Bvj+nqpzv/tDZAj6+HE41nL0OuyBA+9pzFQ08ORLh5jMFjbruft22QIRbw4raXANrffa57Dx2WlLVPquhJTuPfaX+zj8GISz1M/0cZNj4TVXDAhn+ArmGMj5R15B+FOr74y6IkcL7yvvjwwiEeAEt5f1xezIFEZ511d95G8biPXpLXQP8SPw6rmvQ+GIiWsjP3ZYGDbj3RLCM4Q7IUXCRBPMzw5BHobaPVCXvHHKPGlybNvTOBeV4Z89enaNPkkUiJxN6Z6dyvPbc8foLlpjaXlaw6JFwibgyE3pnvwqCld45s2324/JIzBDZTCWWfe1spSVuHd/c+WWponZ/P9xiiCtbbZx1uMReOkyMHRuPZ2jskYAyRDYTc86AT7L5zyX6tM7bt4nTj8IkioLycZmQITKZluYy0kXH+wqgtWyJrd3d9OT0dAgbN+HwhgVcYvrW3vk9YNFuA+wDgiFKvPPd6pcPwtoS/wEy8IiYqcbqutoE+Fv2zYRHxEwCf143sXNsYvPAEuXnPkjoApyhJeaAITZYR9XEfoRNbAFYIrsO9M40K4NslXfmgyEymWpfy2lSH71pYouBRF4mgXfOzypLLEJNVPLONDbfr40cExrNu6WRp6Ih7zahf1fqG/jyRq6qRkYShed6+jheoKPP6UTSNpGxvhq2u4z2B7GRq97nzIR1a65fiw9M9p2xkaulf+7IXpS6RmGH3IIzNs+AjVydcxm9xo1cqYa8filJFDXk3dIgMD+3FGb/txmvdWMz4Yh1czPhqGFuJhxhbCYcsWZsJhyxZm4mHDWMzYQj1s3NhKOGuZlw1DA2E45YMzcTjhrmZsJRw9xMOGqYmwlHDYMz4TizbW4mHDVMzIRfzoVfapjHP5AjMj2F2XeCAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAVUAAABzCAAAAAAN5c5tAAAAAnRSTlMA/bWfQ5kAAAXNSURBVHhe7Z09aFtXFMf/NhpEhiA0BU9GQylc6KApU8ho0OIpaHlFdAghk7HAFA+lVBBKhhAQFGFQCRmKwEsXgaZSKjChYOExWCACBpPlGhF45i0Hij7Sa/m9x616Xk4e4fzAWKBzDuf+bD8/2fwRKHsUv1VFrapVtRrakFvE7pdagE8BMy4PMaeDJ5jzbAs3GfRGQLV+9+gV0nFFnnGsfpEFPEK8LKyWH384wPb3KOIxfn6HDsq4ybPezuvt6zcHSMcVecax+kUW8AvxQ0uMadGclglolaZp0oyxMZZiJBWlj2P3iyzgEeJlE15OBssfg8oTZhHY/bldIMJN/FZxhO0K5uzgilHk4PTnc4HJo+l6Vqcj3MeCyn6ZUeTg9Odzgcr9vQiOgnt4Plh8wipXwBaWNODwFCWPY/fLLLD+gP1HL/aLSVZH7tNN3sOPK/KMY/QLLMAYUOzslJ4mWa0fLm8wsMI94BoeXJFnHKNfdAH/gCgCcH3HfTw/wHdFZ9VDGXiHJdNi8ew9YnxVuVWEdLj9kFnAS+8FbtO50/Bbnby/VwFQqo4Gz7Fgr75z8jdiPK7cKkIC0VtslwBuP2QXiPtYsvsAq5wf1OveVwFhs9WtBWMi6htzSnMuzAUlESuKj6Nh0G2ZY2L3iywQE+J8pGFrrZA+kmq1W7NkF/MC01w+1aREYkXxceMgnD0+5faLLBAT4nyktwch3bZqL4wJrCWyNjDG2tmsPlFgLBHZwLQsUdiuXVAaq0Xxcd3Zjn1zzO2XWSA+wPlIpl2zdNvq2Cyw1iwYk+2H/35twq4xQWCCNKmrRYnjhrNRXdPn9ksskCjE+UhivPoNt0GYMcWcknuA6PK8h5elj1f6a2xvIR1XlDLuslycfovXJW6/zALxAc5HItPVJygN226alqXsCJuBZfdLDOD7QOoKlmhogpCywgbNUKCfO8Dng2c1MGMiY04zk1rrEvUtu19gAN/HJpKZjJAp0V6jAfxxxe6XGMD3QcmEtT7RaXZXgHat3++3zZjdLzCA76OAZIovfxqVOjuHRWRC1MEBu19qAN/HBiGNy6hcQja4OxV2v8QAvg/KHoVjVVGralWtKmpVrapVRa2qVbWqqFW1qlYVtapW1apaVdSqWuVHNuWDlnwK4CIW2cx/0NJBmRAO+8bUhkOi4bBmzHAYrjzbNM1Te3FsjKE48aKkcfw2f79ngOgVwB/ZbPkim/Gi+Dh+m7/fM4CfuPQT4T9y0nNhRkYRs83fnx3OKiNkKBLZlA9aylt1IUOByKZw0JJPAR68IUPByKZ80FLeavHlrgsZCkQ2pYOWQlajaCVieF12IUORyKZ80JJvlREylIhsygctIWA1NWQoEdkUDlrGjyH02sqFDCUim9JBy/gx5F4F7JX3i0il9/Zp4/XoJwAPq/gNc17tbCEJf9H/bZscdRqH9R/P1uuPH0PiezUeMrTjDCOb8XFrtDGClp5jCPwdwIUMRSKbwkHL+DHWYoPgxRMylIhsygQt/ccQzgUIRDY5QUvhY/CtCkQ2BYOW/mPIW+VHNsdDYsIPWvKPsQku2UY2z4/kk57ZH+OTWd3afl7BGapf47Py69WdweCXgfAxCuAiENnkBi3lj0GfjouxpXXpB5QpdoHwMUD5YhjQF8Am8sUHfAnwrSp8q4paVatqVVGravWuWvWg96s5Rq0qalWtqlWF8sVpW/NWnyeXlX8KkIcbuco/ubIa/TBgvEmdXlcZ2Sn9D4tc9knvrPjZJ7Uqn33S31b87JRazT5ypVazj1zpdXW9XFaETFCrpSoGWLL3J5KYnEzU6prUgTPMuRx9gzjRQe98r+G8qlVGdooRfdJXrN7slIs+5Z4NQo6Iei9Qxaj6bAuTXcz5Cw8w5/fK9M3D4vRB9RVyj7hVRuTKRZ/0CiCT4NL/BcgnuNSqP/qkf1+VTnDpdZX/JnN89AowDlpt09TfVhIJri/fqqJW1apaVf4BKrNi/yqjXhAAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAaIAAAAxCAAAAAC95fLqAAAAAnRSTlMA/bWfQ5kAAAVbSURBVHhe7ZkxaBxHFIYfRsXiwghVxpW4Ipg8MEZFECmMS5OFYFKEQzBwuDKuhBdEUBW84CKFEBwEYdhgUhiBILhZUBWCFowJ7CFSGS8choXDzQhhGHPNg/h2CS/SDJ6bWwZfMR9Ic+g9fe9mfnbFrYCWnMAXiygQIgoRVUdZrkoqU1HTEhIiUmmcF1mMUuZY0RISIsqaYAqsqPIcUeAKLMJkb6MHAN9ugHcCi0X0D3zTrNsRfAC/BFZgEd7D1Wa9DXANlpBwFS1/LiGiHkya9XQMsJS3uhDRzfXD6Wx90V5SMH566+kElogQUfQTHALAK+jBjOn24O/DXfBDgBajjJMsTSSVCSZljUMSSEtGeEZXFTURKSmloryuMKNlJjxGrePlTihEVMeFHNLyEiJSoqAcyTMhIiUVLUiOM4hxEnKnqoq8IhNe3e5DuN7RbTdxRLlARJEXgmrRopRoqckJZyF3VoiY+Xa7b8A8heud3BYTR5RiUsr6CBFJFTliXBRERREjFoUiV+xCcyfRkfYGVS49uJ2GGKdwnTq5SWkmY0QJJs1aIc58iOl/LkFzoIdoF5o7c+0NSqw8uN2GaFO0ege31dQ8XXh1DA9hRq9ZXBn/eA6MReje+cGj232IXu/mtpuaiJ7Beg8a7sEZONPb3J4CYxE6d17z43YfYq+7uzWTOaLzEWxCS+/xGrjz+GyPM7IK3Ts9uF2GWOsd3HOYVgBm4d2AFhi0y9vjdoG5iPbvrz4Cxi40d1rw57YP4Sl6vYt7rJmMEb0HjREvJqZT+HgV+Gvtlx14EEGDk5A7daZ/wSc+wklzKpurHdzdh/AUrnd1W00c0fWZ5yL93WZ5eghGDvfgMgdXB9DgINQ6DWf8ESbAdHB3HMJTuN7VbTNxRGsA76AFzqMIzJze5tf378BF3u70+9Ayn3D8/nrP0hk1mZ8ffNcMdnBP38D6qrGTy+5DbHXelotbN+knTp8Q/PRG5OaPGp9/BifjVBFjFaokzWJRaZ32z0V2NxUiS/HI6Oay0xBtilZv3LwtB7fBxCfOn4v6AKfQMBndAiOTnc/ddLfXHkfAWIWHbx4Nfh89sXQyLu7xs4PBbv/nU2Mnl12H2Ou8LQe3ZtJPvIno7ga8gIbn926YQ9iFz/Db2X4EjF04efcaVjdG55ZOxsF9MtoD2ICxsZPLrkPsdd6Wg1s36SdOM6TAVBKpYVwTyRpRSEkkpUCcvSDKMkS6QJmKilqquCZmHqHMFUkUemeGQ6ndJ9zcxcybYW50c9lhiD5Fqzdu3paLWzddOnFoF5UhCoGiJqqwRUpsqWZ5yMsRySMeLUnDIlRVLoQ0dxaXRNLRXSuScSzNbi7PPcQ8Ra8XvC0Ht9HEJ84REamyKNpfkS3/fyGkFhEVHJGGTUhymGAqzZ3EuLvbciKMbi67DdGn6HXelpNbM+knDjQHSUm1KSJVKSJ5NPuWKXJAtXccRV6QIlEOZRf8b4tP3CWiAtM0QUzzSz/NUhFLGmJBlGNJDgisiBBLPwnFGVEunctmfG/LfuJXwM7XL/v9LYD+Jlxksnvw7jU82ngJ8BWsw/yMR+CP6fZgAPDnmXPZjPdt2U+c5sP0t6gkwowox4qqITmg4pyo9HSjG8Z5ng+xspU74X9bfOIrMBe/HgMMvv/B+H+Qu3DSO74PDkT7T0arB/d2Ix8X0QHs2Mrd8b8tPvE5I3qwBQARGIke/nEHboALveeT6dYq+CA6addV17IZ/9uynzgtSoFVe6OjCmNJvggsHFEpMFFDjJvnlRl5I7ACC3JzHyB6sNVci/sR+CNAS07gS0cUCBGFiAIhosC/XbXCkLWTDXsAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAKAAAAAkCAAAAAArhW4/AAAAAnRSTlMA/bWfQ5kAAAK8SURBVHhe7dYxaBpRHAbwr6HDkaGIkzgdDqXwh1IyZSoZpS6ZghQuhE6SSRQyZCglt2WQgIsULKFDCAghy4FzhJBFyRhyIIIgWS7ccnLLH9pntY/X1z6vNIUb/EEeOfj8/AjKCzjlwOmzGth3HZ+fyhqenv1qgCfzPwZmckjrQCkexkB4IY7TOIUDrxpHOyHOPg2Am8ZdCgdODlujG+xvXAIvYadw4DtYeADK3SFQyaRw4AvMbOEK3W2kbaBkVS6GyKd4IIqj6nv8G16Igmj+i9/zfDZQ83q871A9alKpw8xOm3WBP15SpF91nkNEjtdzmH0iarOBmtfjURAE4hDvOztU43rJIeqYivSBLtX7wbhDROKpYxio5fW42bjUEwc1zUV96siBXKc6Cz5RwMye4R31vDkeaa91xekRjY1FLpXkPwvXXVQgFCpIInkew50Qirh7vgcgB4yMRfu1E/kt/gy7gJkiHqFDHEPS8iaFzWoMFQYT4AFYNxZl9go/B4YDbC76alnowh35d9DzZrXHhrLQatmVPDAA7GRFzOwr3x79MygCPksyr8d1PjVZkhVesqLnAB6wRKGFAiRzPo4xXYf8yR4f4IMFRVjFcVEWmYiBOWCKP7m+hyDOXBGCOY/zBn7VWt9Tnm8/jr6+UYrMA7PACHOhZcFoaX77LVT3B+Wyum/X7uYNRfpV5xDxnOP97rPQ67Ok5ZW4Jii5kXoTUj1ijtxkRWsAUAZuMTMZvIZuWNkdQtLyJnE1W7MgYbJbPrKA+DxZ0Wzg1gbOMHNazENn2XYWkpY3+fJ4ouzD4YYYHF4mLWIhcMgNmKNmaSye2tQM1PsqYknNK3Gd/z2h8GghWRHmC9pEjkOOaPNJ6LGBzC+NB6xyaSFZ0TPGD/HdFHYeQiiODAxk3hg335qZZEWccquBS6wGrgZ+A9k8B7DYQHGpAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAWAAAABECAAAAACaQLAEAAAAAnRSTlMA/bWfQ5kAAAc8SURBVHhe7Jk/iBtHFMa/GBfiCiNcHVcJFcZkIBxXXRVcimxzpDCLYUCkCIer4xaucGWyIEKKwyAwwiDjKiwITJo1wkU4vHCYgMThKnhBCATLNWNEYI0aQd7NjjKSZrWrxQqBoB/c7czOvI8333uL/mH6r7Ll/2/w1uCtwVu2Bm8N3hoci3i6eUQ42hp8g88ZY9wP+FQz4glxrAZreZVs7shxwBm3WDtevJ1Pfsk3H5+3VxTqJy0HOXOY0xOjDpk81cSBz5gVBGRUYDEWBKk5xL5YmAvG3DCU91zWpBCf8ZtZGPYYa0/XRpfcLHSx+HUEYtfPkWOZGxb7iXD8eYNd5shJyNiiW2RWMnAZX1U0Fi7NZzY2lWqHWUKvrImrS24Wulj8GgKCu7PRik7lZEAOzYV+sjra4IDNTGoWN3ikYvVc2UgNG8hBzFgzx2DjxM5CyfPzyIzPFRDcUhl0WMdYVYdhvdySKgkp5iulWwBeoFKFpIZPKMjOqvkz4AAESjZaEbIYPBxjgcsujkGgeozCFI//tV8vQfIe+0jjTY12IYsrD0cg8B2G5wAeVJ5GIMjgcR+HSKie3sWGINWayvoA+IAsqocnE2i+rOTF4wetma2TLvaQQuQ9stGN9HwwwPjsmwYkRj95EV1qeAXiNigDrVrHEh+7yQVFGQJlJNwBBsjk9OH5aQmKLyx58fh3yoDudYSKB7uEZd5W9u94eFtX8o1uZVhBvevV99L6ycMHur8LWpYGXyOD/uxiMrkA8RnvpPuHZWjk/flmGCOT0rOj8mMojJIXKrQZnyvwGpXEm90LHO7C9Hfy+jGqB/1zZf1J/7QeHQ/3T6O9jH7ahfT5thx9xirsJyDQ8GBynRgZIZUsVUwm+LwD/Xf3lzP8UNLCBQqdmlgRgckQSZfX8BzUdCYXw0PA7uOiBuKyjyPs1Vrek8x+2gH6NWkwqQ+hGJdKwORPVMpYydU+JKU6iKhlV5FCRbftX8D9Jb+9cyzT2qlDoUqeW2gTMz5f4BNmDIaVNH/hHZeBB3StqePQdAcfs/vpDghpcPmg3/0FCSd2DZcvHkTe0++xgu7ZB/Ndg8leZfheN9T+0s6jb7HIxzPbhsIoeQZX1zC4VyCemOgkUEMKg77slcqwL3vrHhDtIaJrZj8RY2mwbH7VlVG/gcGLVgl4Wt1HKoMzZKHr+PhsOEh6+wK15SYvl7HA+LmtX+WMkhvop+zyDxj8WM2NT39M+0g9tHdgg7j/FG9oHVXbe2Vfe6jPCZn9pBodkN8TMGcqcenaZq56m2y+P5d72Zqf5BwVHDA2yvugwXk8P/f/eVs/krFGHgFvuzJFEzM+RyBms8NZTKjvHEQ8fyJ/FivPGnLHIT2pq4X8ZJFQbobJ5ytICc5cEo6bFkUFjJPLN6KC9nAhaEAbGA2Idnttg2MuMxtZdNgcg5uW0BOj5KY/IY9pTLomZnyugMUsVQxOCzIfNpdQh6lxTx4gtmi3QguZ/URXXxlMQWQb54zLlVE8FZYlqAQJQqgBOdlzhTZYhYo0g5Uqb7rMIdVsg0MqrMYouRgtFVo/ZSZmfK5Ak7E4scQNudzPZPdJhM9YhyKSfmP+zX/HcV03oBgtZPaTamnMzOgFAWmricNvJEXC/IALbbCBaaPo+aRqruR/F6hLnlJo/ZQZmPH5AqHqOUGtHM4sd1Vmswit0mES2eRayOgn9V0XUsvvxNNUnN50VMRgc2VddMnNQuunLD9+LQFXOS16s3OH8o6OnVfxrXZAuNTkWsjsJ4uFKwwWFvngpyUfMNd1qLj+Bg0ujn7KNiVADsVLa87KuFA1t2BOViaBOuwtLDM5qdeB3z/B5OvfbPsRYB8ik9eNRtdQbTQa2CDjY7TKmxIot/AS87ws/4TVeN3BOLp6jqOMTMY/H9chSXlF932/ycLVHTrNJLhhlH+7OOZTtjEB4fhr/z4UuhZjzGqGWZk4nVW/KsdMssrgJolzCv5viWUKTrhBAVEsfoWQKffV9G9m7NAGYBgGAuBHCjDsDB2vA2SUyGMEdprMUFgSqSTMMrJe7kODA9ab2JR7n437pQFEkJt+X8DUcbKBOFTN5PC1vdv0vIpGACiQafD/Y68sDhChr307RmkgiKMwPlhZibWVpApsI55i0cbSxgukEjyCFxC2sUkrwtb2giA2G0LaQBCEkEaQQNIt2AReYBoZ5uEufN8RftXwH15rjboOvAHYlJ47SdUVwH+qKZKE66IB2CIsX4AdwvIF2CEsX4AdwvIF2CEsX4AdwvIF2CEsX4AdwvIF2CEsX4A9wvIFOF3Y6AuwhLWZyuELsGqqeDO199XetABnKdrg5QzgeIPX6Q5CH5s+ajP1FDpdv4ATNngAmzZ4CmDDBi89gOPNFMAWY1cAx5upzAF8chr2N1MAZ28UPhdBG7zcAVyW4TnsdsO3odu1PSve4Dni2KPNlCOAtZkC+J8CGGACGGD6BYfHdND0sqoOAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAZ0AAACNCAAAAABJFfhRAAAAAnRSTlMA/bWfQ5kAAAm3SURBVHhe7JgxaONWGMf/lA4iwyEyhUxGQym8xXjKFDKK02I6HF5UTIejZAoxZOgUMNxwQygYDhMI3HQYAt0EGY8IwlGIMDcdEQiDwXh5xhR0eBFU78mt5PuE3quDTQf/IHly8n3///fx1yALyf+XHUgoO3bp7Nils0tnxy6dXToxj/XaeDjWtqAG2xdWGzzfJ9ZwiNdPx3MZY67nu8nYzYhjN2PVz3eZ67AbYaUolVCD8rZcWEt3i5NTH0Lc9RL1Ch1v3XS6rPPIx7epfxL7HmOO76dmvsOY769k3mO99LPHXJ4kilIJNShtKwrr6G548tjjFT7fwt2uOFQrhM7teul0WEeeIWNiLMa6/4zkkhnlecscsQ8ppVAD0kaE1bobnpyzsMKHhOPEWit47L/E8x2WPNzhVwgscVQwHKAJwUuMrqABNdiq8PoGf+n7fAjahpbDSe1yAhULLPk3nWvULEhszFDB70ADAqOFwQQ6UIMtCq9v8KLKZz6JhMQ8igBEfdT1HAwb76EgejX/Jp15gCNkWOf7oCAvtA1IGsBn6EANtiWsNljTZ3hsN1OJ9nGzCeAeONR0OFDfGNbR2QKS75Exk/oZbUie7rIDK4wAM7+3IlpKoQYgbURYrbvBydU+9ft3AwD9Lz8j5Q/UDM0VDoDPh6jm/NXVuVFMZwpCkB8FvgIF8TkppVAD6kCF1bobm3zxMSu/fxLnkVnqY0otoyYbRtjXXWEPCGxUY/Rt87SYzoHQXqX1GwRvBgBZU1FKoAa0TVFA2Nzk06x2Qn3KmQHQXeEFKFgsROte/vP2Ar8YeTr7wAhL5oZRKvEFNRM1YJ4/0/wICoZTEH5QGRBhTV3ruZNTjLbU6r+so0CFz6JqBco8n2nJgD7g9ffaeTpmI7h7i4yzlg3Kw/XJZHD502Ft9Cm/xeooq/wThNeWyoAIa+o+b3L9ZzaFj3KFPDYznwkZzWOs8nTRaiFPB60Aw0xvErwBJbruG8ClVT+9GEUWBB9hW6Dg9BQEtQGIsEJ3A5MTlD4zmUrVCjRyszATJKaJFebvWudG8fvOSQMfIHlvH4JyH1wBDUSwbQwgeAhwBjW6BpsRVk++vs8UwHD5bDDTXWEKWIWZSlmc7ctwgMLLCNYVL4d6zjj9MGbM5Ty94C5j4sIXryJumJdWuOJ3MnbYo+ijpRRqQNtWhHV0Nzw5Z2HlAr54aROKxjjpMRYnidYKHmNhYaZSeg4nb0Hjm1TLZW5qHbIMzuUhBcdxwh2HZ4Vur8s6aWFpKYEYlLflwlq6m5xc1vIKHxmE43ZEb1dIib/prNAToRZnooQifQlW3B99P/sHz8gvBHHHXcrxR08UlpcSqAFtI8Jq3S1OTn3ktRfK3li85PSSRGsFR2a0nOlvds4YtIkwiuOvJcPRoYRMkik4iHCLZBIHcSxmEQfJklIcpDhJAg4ZSjHg0KEEAiUUItJBAl1EOLhRDIgICcGpKIRAILhcCULKLR+IJ/IIHyfve/F83/D9hhLKve//4M8FrukvKSkR47PRqNZYKiuR3zyqVGgJA79nsBMYLNBTKoiUjchvPqt0aKt0CDuZt7OsnSulGt+UlchvHpE+9mycE3ZitNOpBEHQ8a1tR37ziHoNfacc0Ii78BxsRn7zPPUa+k4bCmgs8HjL4G9u/07KXhz2t+Pacbh2HK4d147DteMA5XDtOFw7rh2Ha8fh2nHtOFw7rh2+n8w/QNq/5o/yM5AcZEXYHwGUq9unr2HehIQu7EPCy6LRAYR5xtjH01H5clqvegCmG87bF4URHD4EIGfwUOvBF6zpBwj717p9PasMfv3wO4qcIfjOtmQI1jrpB8j61/r/7DaSKwPfnyl6BodNYKBbqDQPmilSy/rXun0dh/2937rVlJVBh9eObqHSPGimSC3tX+vC2mie2ARbQM+Qagfql8cxw4PmidTy/rXXLe0XExW0BFlloHO9Nl77Qf6pgWBtKjjb5l/feQcAkz4c5Q0y/l87cbzioF4VEguVKFgT0A4Q8q91+xpnnsHRjmlG9u2kW6hUwZoAHiDoX+v2NTI+mJ7dYmRk3E66hUrzk/kiNX+MIHjT7GuM3y2FRUBoGdm3k26h0v1k1NSZIjVzDGMN/ettrZydFx7Ex00AegaHf+Ng1JZqhcD3hyphlvLINqj1Wtq3YaUcoM1zxzA20TcTan7D9Gl05reWye+VImeIPY3Cq8u2R/WgUVPfa1YPx0yRmjeGsev5181y3QNYvAWEkCF076CFShese34Lv0qOIVLzxjCW7l/r907g/0GRMwT/zhYZC9aohPNEauYYxtL9a92+bmE75AweGwqyIr64glJxRVfBFzAveItdOMuTDtDnGWNa7GL6fTu50DAhjlGWImZwUQKgEi4aa38GiGrqsrH2Z4Cwpi4Za38GWK2pD4cCsRZlbEKWnIzTH5G2wvAkhL8zmQAbeqy9GTn4Sb0dGgEAgzAURSCQnaFDMgvzIJkIWVGJ5nL5JvJNkM3qom/qk2UyVCBZ/j0glsTQ197ds0YRRQEYPiwWW4XFSqyWFCJcEMkvsAymsUwzYCViFViwtBEsRQiICAFJIUI6YWDL4ICkGRELG2ERAovNyhLYZZsFMzJwBJUjDPfeI3nfJqQ4pHhgP8k5ErUNY61C6gb/19/oSdTOhPzq+A8dQgcdQofQQWdDiPc76BA6hA46hA46hA4l/vbt3hXp1KZc8NYR0jUXWebt2MRSFaHYCQeL5PN26Oiai+jzdugYay66zF/YetI1e81F+nleUXdYcxF9Hp0Iay6M+Q6hY6y5iDVvh46x5iLlPDp2y2zz6ERac2HPdw+dq0Mx1lxEm0fH7oF8bZ/Lj2V7M+G8HTrGmouI83Z8Rm2suYg6b8fnbLrmIsM8OnazuqxOu8+j4656tFg7DZ06HEGTQme/9ouDzlGoHeKgozwOcdBRHoc46CiPQxx0lMchDjrK4xAHHeVxiIOO8jjEQUd5HOKgozwOcdBRHp846Ng8+7lw0FEeb6GjPKMOd5LRiZ16lEUIoSirAgPjznW6+u3P1aPx9uFwefJQyN+Vise/Hjz+W9STHL1/8y8HjymBjn3weD6dTEVkPplI9nhkmzWH7NoOZus6hFA2p+tCWKeMRzb74PFAbr7blfNeHEryeGSzDx4Pflr1h5I3dPTgsb/Q+f3Q8kpchc5gS8bStncsrkJHdkXaq1bTDzf0xYLkCB374PE3acA8hE7/2db4yVxk9fxkT867Jp9FJm95FnJyDVYPHjctirBTjGZB36Xmjf8QWdRVdaq/lF+aQ95/+MoHHUKH0EGH0KEfOpiFyfo1Z3cAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAR4AAABECAAAAABywAUvAAAAAnRSTlMA/bWfQ5kAAAPSSURBVHhe7ZoxaONWHMa/GA2ajMl0eDIeysF/KZ5ChtDR1MuNWV65KYRORw3HcUOGGkK5oQQM5TgIlA7FcMsthswVHKVgEzodFhiDIHhREQYFLw/66MOIc2T9rTwdVeL3C+b94U++7/OHowgjyAwsu1CPrcfWY+ux9dh6bD1xGGdsQz+QxvD25gJ8fOgjEJo4FpqsNzgURCSGnkjdeoJEhy5jaQhvz8TmBfj40EfsDYk6nqfWXofI8zLeXY+6ozB4T0Rp2z71Y5WARCjN4O2Z2LwAHx9yBVFv9etCZtCl7n+nTxSmeevte+rE0gzenonNC7DxK8jJxyucQoHmKe5yPcAzKPAtZj/DBN7eXICPn7ued2g09dTGP1jnAmhBAfcYgxvwGNkbCzDx89cTjXEATfOH/ZRt29VjC/gbPEb2xgJsfAcJkyt9IANVeB0aPAeWp0jA2QKoQVMFpjCBt2di8wJ8fAcJ49WRwRyf4Z5hUcXqVZ8n5ooIBnD2fGxegI/vIOH4NRQ4H2AzT4BbJGBf/WD1cqG35vD2fGxegI/vYBPXc9zhq6ZSmUGDyHWjIyTgQyP5yCyApyicNXsARvmXTPyMej7+hTucNGut8dUbaF4ct2trl9/G7M/kU/w1CmfNHmlM50+a2+bn4ue+LRwSjfQUUJC29fUkqCvN4O3TYsfd3mVH+NsJsPEryMk3Lfyup1/bdazTbmOgP3tjvECR8Paawafvn/82/nE7AT6+1IQBkQhDNYSCSA0bUfueWsf9TpCyjQUN1RF0aCTN4O1TY/dI+QsKtxHg4+t6pE+aMCSNLzcSXxIJQSLYtBX9HnUDaQZvnx47HMYyJLGVAB9/T352j1JLhgyWn27RqGMD0WxeVVtTePv02MubyQAX2+Xn48vHRtjvUi+0X6amE6tmPBLx/1iP78nSIsiXkmhUTP4K7sHkHcrKdFxo/goeF/XGmyau0XoKht2sx70YnP/yXfvCRTHIe+AJWWICPywsv4N7sECZqReYvwLLo6/H1mPrsfXYemw9VTxsql+2ngVKze7e99hrj63H1mPrsfVY5D0Y9WUpKT7/nsQucfNan29xqofzOrJwzOUfEvsni5dovIKLE/w0w1vsF/XHxT//XH5yP+nrIBfuIV7i4BDAIQ5mrUP7n4thh+uxONgh8j/p65jJlx+zJ30dY/nyY/Ckr2Moz2MvzbYeW4/F1hNNgUkUqSGaYKyGYi/N0S2UPGqIoOTVgAfF9BmA8RH+wBEUR/jQRBZ7Mr88sJJHIl96mAeUmXoM5Hf120LLF6rH1mPrsfwLYYmFUUKzBHgAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAHUAAABICAAAAADti+UTAAAAAnRSTlMA/bWfQ5kAAAN2SURBVHhe7ZgxaONWHMa/hgyagvFUNBkP5eAPHTR1Kh1Ntdzo5ZVMR7gp1BDKDRkqCKXDETCUchA4bjgEt9wi8Fj6INwiETodERiDwHR5hzEoeHlQRU/xxXkiLy7PSin+gXn/5MH3A1l+PD7Ix+D/bt1ac5HLf4s5QKRZjTViRMQizqTMmCLPqyEzClcDdDgj5tNZfsca0CAW2TsikjLnEZHPuZSc+0ScG56BFqAxpGGRERETK9YBDco1JSo3iIKbMGY26gGrBNXmO/JzWbKDgvMRDnBN9wBrYwy4CPG0HL7H5CVKSusrdLoo6eET1sQYcAp45eD0EU6X1lmCb6Do/tjGmmgB+mbPUaMH/FUOuwA+AS4q9qG4HKkFRrSAxcpTPp4DLSj2gPHS+jd0kuViQgtwjjHfw83HLTZdLJktrV8CV7hD/0W5nIQwoQe00QZuPg5q0nfV3gQVM8fBPVzUPJevuqsBi29xi/cdYAbFHHiiJlnAiGQFi+p/rylPZcGQ6XAtYBWf/Go6I0o/nxIRUSxLMsrqrPkgOPNZKuvQA/TNVE2MBrdOie88vEXJ656LGsKPz/ffJD+jDmNAr4dQnSUJDqEo3YJRIKTMh352/VdGxIQoBsGIroeAIikZCVmDFqCRM4qKJfMpXj398zMixohl5VmqEIIUqRRRLgWxWqEWULvJhgENlptY7sScV/8ViluDzNOIMVEv1AN0RBzxbO27hBgOKBAN32DyQsiJ5fIeUm7byiiVkii+/zLxcOsOzGCcwC4PsrqdX7u4gPekUatzGp789kPv1IEt5MPIUtMbzFnzt3D7b5N9/ovWrXVr3XsU63z7vW6teBSkLeLhtuXalHX9lmwXdhiFCeD19169xvQFSn7HgRpOXNzBjnVxPOq96Vx9OEJB+9n8CJ2f4OAZfpkU8vaG3uHA3JLZvzedh2u2ZJrVQsnVjNXckll/mwwt2cas5pbMvtXUkm3qe11tyRaoZXw+tmxteRih4vAP1LA4Ci8P98dWregDF2qaJl8b+iprVnNLNp18QMtLZhZPRL0lS++0ZFpf9YWEDRbhS3hIvBMXGD9FyZ+oytP3XSymlyFOW6hQVhvej1fouLeaZ7Q+D5i9nYz6z1s2n/D6fVUTVr2v2kED6H2VbIDcj6SMG3/CKQuGNBCyUavqq7a38Ab5B8qdxUgo03lsAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAZEAAADKCAAAAABBdCILAAAAAnRSTlMA/bWfQ5kAAA+gSURBVHhe7Z1BaBvJmsf/z+SwBNqEgBfjk1AghClmMDoMxoHlXRaaJ1hC9uJLDz4FEwgEN4RhICFMMyH4MAQEgwkIzA4Es2LMENBDEBjCNDHhQRuRhWWIiBAIhElgKNxg3qVgu6uklNoddVvaKN2Rv5+M3LSq6vvX92/bKlmfCiJfENNxhCBHyBGCHGllGjzvjnDOxf8L3uqKMbHrQjOZ5HQ52QfXjnhWH7tST0l33WKMWXXXEqJrKbiwFKdKtGsxq8yqXIwzALcdpWsCxVpyghwhyTq4doS7taCb67rVMmM1kYDDbI93g9YsHLDOWNl1gwM36BcepFNhFR7oZFY3aQDOT3x17bI0MUFxuuQ0OdkHh9AwZRUPMyNGYjNbhLQY46qXM4hsidPwQ3+AGiuL0QNU2Icot4RIUpwuOUlOpsETHBE1maMRuIz1hVUmc8QbTIAz9kPSAPzkzS7XhSRBcarkFDnZB5/DmDxGoQiJiXeYgEfAlwgx1vCkh9EY0ZvvFJ6a0EwoOUVO9sHjjsDfAf6GEfgHWIGiuLmAMdADmAYkJeAVkmnow8q1m5AkKU6XnCIn++DnMEyvjaPmXgdbyxjBO2AJfdaheN1Q33Aa3gAXoJgH2okD9HZUUxVtEDdJcbpk/xY0ePA2Kifj4HFHdncBmN9+aWAUh4hzoL+lc6wlBvCkAfYfrl/HAN0rSXG6ZOMecDQ/uBmdqJyMg8cd2VxH71GjsIqRLMqcRln7Tlm+i9Nw2gGaTxrm+QZOcLmIRMXpkhd8YwGDmxGRk31w7Yhm6XZju2hKVYeIcXkB6KCPDwMfpIlLxoj+xYK+Eo+AKxhF814Hb39DjCLGVFyMSsZVaPBrTE7mwc/FYxQ6uzLE/j8Q40axdNDYguLWmvmhZwf7j//a271/fUT/YPiX+id6uT9AnOWnjZ9w10Aa6YqNqORXiBCTk3nw+BNsh7Eur3LxYeqMeULSZV3Vy44sJ1oWD489kTqAxezYABEqlkgkrjhdcoqc7IPPIcYVoIMfR601rpbwBJIdcwmSC5G/TL8fVIAS2hiBaeLvCNk/wO3YABFurt1BnCTF6ZLT5GQfXAzgLcZszkMvmeWwkaZziznhg5Vyt9/L6oa9gvMsPHDDK73K6mIklnywW2behwaIMEJFguIUyWlysg8OvdpXqFd1khIqqoEGS7021mIKzpmiFQwfRijzxAGsisPsEQOkMb5iLTlNTg6C/0Wgjw+JAaB9WFhCEs1jqBa6l+4O+M7bioEE/DeH8wkDpDCuYi05VU4egouPD7dsMQzRcjP9ry4vV4Wo87ylJEvqljg1c/jY+LfW14Hf3iFPvH6Mz4WP78jPf6LReNjAZBDn8JHxt3EfUYj5LB0xXsSeMxFHWToCI9cXaf6Zo4uUHCHGcoQgRwhyhBwh5nPmCHFEjtB6JANoPUJk4whBjhDkCDlCLF5u9zJ4NT7PLH6NDNl/fPD6z87mOoDed5DsDAoXHiydLUd0CixjXafg0/LwycYO0LjzPAht3Di6g8K3CA7wsINtxNWImSa9mnj6VHT152kKN+cw66yawMrqKrC6uoJScPCJaW7jGkL+HZ2fM/3LTsSrP7d7mTtC9KLVn5k/1yLeJlTCnl1HdAqmweSVsGfXEZ2CDEiqhD27jugUfHJi1Z8Z/2UnlgqIVn9q5jJxhF69u4lOG5LnMIvQ4M8z7MifyA7TxO6J6k8OyYWz64guBs6Cu6XdBoDeQ/zXEuC3gbd+D/B7r3HQ8xFDzDQJxcDTZfJK2L8IzDbta5C8wFVIfi3iEzB5JexMO5KQghwj8gUxO46QIwQ5Qo4Q5AhBjpAjBDlCjhDkCDnCWy1+8lSXB8h70fJc0XJbYorEhaQ39cQwSqsS/DHg3ok0jJQXO6kbTupIjZUt5gqPvaclj50qC6jXw0PLYTYXuk1rSi9yl8syE3WmsFTEqpAMBa+ppgM9zrDgSMsxGcTzZNDoqCpPEXVCuOXgZJVHMqPmMbkjtTC2HYzELeZx3pKpFxbryo/1VJlwQnV2ED9QFAipTsWROuOC28FdQJfVeDVMg1QlFLxicY9VeKi5Fkrk4aMt3rKciGDV0pUtx0WNKBw7nLMeVeepG1EXBAlT44SZ4Sozeh4TOsIZ4+Gdq6YoukqKmm7fEWlAmXnCtUXoCJ+KI5VwyrV+/uXM3IGSPrWK8FhVaQ6zUe0/WleOKMGDlq3g4QlQM2e8ziNp0HkaVsfLUpzNPJ0ZPY8J34n9BiUDxtbGKhQG+viorKHPAoAVNHH+C9XGxBS4tvlv7b2nOIbkX4Yktts+Qg6LmFeaC+/a7UM8VzpxWanSgsOW46Pj/bJmmIZOw4k8aXVvOgUDwBfY15nR85jw/VqHCDERw9i7YN6J2HSM5WVItjAFlhZvX/yPrw8Q0sMS3vMIB9j8TwNofD/Q3AmPSpf72orfIUQLli0n5htgM5oGnaeoumNcRMAiuM6MnseEjixCA9+Ajz4vXt4dPh9wHlPlwe6WiQYk/ywMP7CEBz/OX0evc2mgubQDTUywbDk5L4z2teObetRInrQ6nZFjXIjNY/L3olzCgQ9gZw8BhvxS/KT3IsA7AC+xjGnS3oUJtAH4TbxegcYASvgDeLlhRDQ3m5DEBauWk1Pc2O61e3rU4TwNq1tWJ//Aamwekzti3McvQG9Pp4BD8r0R2QGq2TGlIz6mxBHgo7cN+D9/s3/wV+AYfXz4v+EK/J3lsNUxYGzgGdC7By0oIli3nAgfMPHqv9/qUYfzFFG3hWehBzI1/sl5QDHJMsB2yv31SNWOrUfks1+7wiz+fmdBT0wDh1mO5TEriFV2BNfrkYByTTh6uSS4E2hmdb1aiQjWLSdejwiblaOjvs9TbUidEPVQiKMzMzwPPvma3fXCzjxE3g8f89AR4dUHLshTU0G9MNANAnlhMK6VyIhO2ZOHajHUHdYcEc8jLcdEh3V5dFSdJ8+LBPbcru4Zmcf0XtdiTOQApyYknLXGaJk9c/jYtPeARhPZU4TEKI3RMgOm/w669u8AFk1MCCHyBTFDjpAjBDlCjhDkCEGOkCMEOUKOEOQIOUKQI+QIQY4Q5Ag5QpAj5AhBjpAjBDnSIkdOw6TvU+StrhgTuy4UUxAq5eTWEc/qY1fqKemuW4wxq+5aQnQtBReWImmKrsWsMqtyMU4/bjtSzgQ6tdAkObl1hLu1QL3rutUyYzWRgMNsj3eD1my83T0qstCvzqxuUj/OT3x17bI0MUFnqtBkOfn9rdUvcuVhisRIbGaLkBZj8Q1OEvhBb4wiRversA9RbokknelCk+XkijnEMNaB5xjFfgMb/SoWjEPzid4Y5SFGcvPVi5M3s7D1tIgEnalC0+R83p8W/RiFIiQm3k24McqTHkZjRG++U3hqQjG50BQ5OXfE3wH+hhH4B1iBori5gFPjj7UxSkMfVq7dhCRdZ7rQdDnZcw7D9No4au51sLWMEbyDropdH2N3jzdjbIzS21FNVZB+uCSd6UL9W4iUjsbk5NWR3V0A5rdfGhjF4Ri7e0y4Mcr+w/Xr6KN7JelMF2rcA47mBzcjJie3jmyuo/eoUVjFSBbH2+BEc9p+zScN83wDJ7hcTNSZLnTBNxYwuBkxOflzRLN0u7FdNGVuDhHj8gLQQR8fBqKM7FY87cYozXsdvP0NMYpj6ixGheIqNPg1JifPjmCp0NmVM93/B2LcKJYOGltQ3FozY88ORnULRo1tjDKHOMtPGz/hroEU0nUaUaGvECEmJ0fEV14OY11e5eLD1N8XQ3dZV/WyIyu91H4Ws5P7VRLGSdCZJDRZTt5XiFeADn4ctda4WsITSHbMpTF29zBN/F1vjJLY7+baHcRI0pkuNEVOrojs02Fz+flMzHIYT/hAKSd8sFLujre7hyU/YapbZl5qv6Rh4jrThabIyRN6/5H9DUheAT9tA1smRrLzI0o4KD1YStndI96v9DXfNW+P008zvk4tNEVOrnjvyPD2HO3DQrLM5jESNjiZfGOUdOI604Umy5n96mmC/s9OjrRckXe01DPhSN0SmTDLUjVzyBfELDhCjszjs2H+bDhyhM+GI/qtRZAj5AhBjpAjBDlC0HokB9B6hH5rEeQIOUKQI+QIQY4QYny8ihiCO47IH1rq58aYu100H0Hxr4XiV0sI2btfeIrPA7+C75B3zmEsLt04vI/SDeD1Xgf3rwPw7+MRsiX94rlqIOTZbmHmfmvFa5drrC5yRGLhO2MtkXsmdkTUVEF62RG5JX7xnIF3B+1f/A75Rhe+75jmzD771bXLqxXkHX3xbAGYsb/suna5vdOvXTaQc/TF8yUmIf97vX0FiXltFXnnK6yt9QvfTUhm8GdE1y5fzL8j8cL32f07snQbTxrIP5uvXjXMRtPAzDuCpQJ2kW/0xbPdOAOOYAUHvr/jI9/oi2f2HbkC/I8va5dzzwoOevLimUlH/DbQ6/nACvB4B0XkHV34PpuO7F+9BuyaV4GlDRzsbiHH+G3gf/3+xVPBAjCD65F47XJuiRe+z6Aj+Sf94qHdwAmqZydHCHKEHCHIEXKEIEcIcoQcIcgRcoQgR8gRghwhyBFyhCBHyBGCHCFHvBYXUTjvci66wb3gLc8VLbclPildFS+MniB3Rh2psbLFXOGx97TksVNlAfV6eGg5zOa6ydTsUSGqohXcKW1WuezpwJ4QbjmQW+X9lo6UM1uO1MK526wruMU8zr0w9UJYrCs3aXm/ZW5wXrjM5cwS1SmmQKoQwrGZI7XVQil8KLDLKqEYR7ZscSH1zpQjnDEeJt2VUxeCy1TIY24xpmtiy8xzbSGYJcQ0HVGRGa/zgTaXVXVgXg5PCZt58qqRemesMvQNSgawtbEKhY/3VNbQZwHACprnv4DExFR50/5lzTCNUFvhXbt9iOc68JtOwQDwBfYR8LbdfjNzNVaHwzn2DV2I6D+7YN6BQp08Xl6GZAtT5Rtgs6+t8z2A0mUdeB8XEbAIjoBHs1j1tgiFzvwcJJ2XdzHAlw+cx6fhhdG+dnxTaivtQKM14FjtLFcx4F+dm7H6kWUc+AB29jDgT0ge6o0l8Q7ASyzj0+CjuLHdbvdwSWlrNmNy/8Cq1jtjjuA+fgF6eysqF/BxAZLvtSFoAM2OuSxbTB8DMPG68RbGBp4BvXvQgbEVnmrvSjFab44R41NltlN2I8/v5bGt1iPy2a9dYRaXbdWiYLrrkYoQNiuH8ZxAG6tHAtfDU84srkc03PV4+C1A3vHosWBMeHVlgzo1TfoBuKvCdKW2SGDuuV0R0XvmXtdiTOQI2seqvQc0mpgM4hw+PkebOASRQY0VQf8fIUcIcoT4P8BjYF30+AYJAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAc4AAADPCAAAAABZpm59AAAAAnRSTlMA/bWfQ5kAABARSURBVHhe7NkxiBNRFIXhg9husE61bCHiRZFtrYWBNJY2A5ZiJUy9jQPBUpjGZkGwGbAesFwYCDYuiwGLDQ6BB0GsHhlId8GZB8vbMiwO7J09H7wyIeEn78AEOiL0P3IScxJz+qXTkWDOOpV0JqdeR4A5cylUtZLUq3nMWUimva8ys9rTr5wO6x6MuPiEl+i9wPoLLFq8fv7+zdPPGJQakYp4DXIRp/YUUviwFY6XrTqRTAOtRCo1J49bwcsWf4EHCDABGlhzUcatmGMwVnLugCmuwMOaj8AT9A5eodzc5ZyxqF3tOZIDBMfAzzuf8zD+JLfAIxjze4CtsJxzeojvCPDnek5uhcmceIt1g+AMyWPYs0PEnEmCEr3FOd4hMrkVzImT4/IbgM0HlFNEFrfiGZ8KdU4lLXLJnBpUiSw1SCXjU6HAL6vaqU2Z5NqrRZz9nJRKpapuJj90L8zJrYCasVp1p1a7rm8Fc1ZVd3KlW/ePCvER/ASmNU13Fsx5ZQvTLi+7c8acxJw2x4LbybHgdvKyJeYkbie3k9tJtzonMSfH4j7MeNifyUi2kzmP+nOEffGybdsWN9D+2iAa4OU3+2ztfI5g33cf/jvs/CDfIfrHzRlERpLFYfyblcNeao0hjJyihxjzt5ecRu5Dk8scm/HoU+SyjPRl5bQ0c8hhDH2J0DRrV9Pnpo+hTKwlERty2Ka1FG3tsp5t5vbYLjXT3ekvz/+pMCX1u9Rr//q+/D8vJF3q/+Dm9I2ImH5snEtMhrMmIwk5sUDRcXFVznBvHs7NZxqtfuJo9C7QXQ3OBGe4aufLkO9tBNuUxrlNeiLinI37Irtx7Fwc74rEcdCJBYqOiiRnuDcPNp5VTRzH7Zl1z82wIkNHKO5KcKbQDAxWx0mHn18cFGl+KZjQEwsUHRVJznBvXkTa6cWm25Ba8lCv7q4HZ4rPwC+XnHWxj5TKPqKvc2KBLs/VW1QHTgF0alUQqvuDzMD/Cp1gs5Ktqvgn3xTq8QTEfeX5ezt7cghGd3+AGXg7Jxd4iYzKwTpCmShTqPeU5+pt2gFeAzstECHuDzADf++0S/OHdWT8Ocgu4ScWKDoqspzh3vxMrr/9b9QZ4+gFgAiE6q4EIIrKoG8nczG/LDP9iDlbNIVKOq9p+BCrRSjdLoDqj99HCMeGBmeKyqBv51MeJ0XtECnvulhmuvRxDyQjnVIkOUG9+TmoY/JhsLkDQnfXAzAFZdC3cx0Yzzcsgh9sdLBgQlOo9xpivb4BsVW53Zvnpnl7bwfHlSqCCU/u+cF5Mvi8KEPe7Yy2LwZHyPih5rG6xLNodQp1nP/EApaf/g5ir7LS2903LXt2qwiEk/uDe7rLlcFzl5pBZzFOep6tEs9jhNi0m9LjKdThrSnU8McILCe4N/0reHbGGz9wC3NXghPFZNAfI1S38Wu26lQ3+M83MDpp1Q9rP13qJxZY+IFV5AT1pvEcGE/eJyBC3fXghWfQH8FbI007u7R2k/TTUMTY2comRiSZFdrSdK5Pv6V2PoV65e7SLeAiyxnubQGZN1PPRMQ0hepB7lpwpqgM+kBgW8SY7EDHoWRYKxlXLhaT3tL3T6HerVvAxRU5w735iCVjtmyJUJth7npwpsgMzCOHOdPEYnMjWyIF0WKBSRRN3+CXCKtMk5vvUplHN4eLJCeoN4LMgdFfip/PXQ/OFJqBceHYhklcaShlcLhgrGm4ElHK4AgPtdt2rm9dWShlcASHMj3nXGPoykIpg68hkJ//xQCjQR1loZTB1/A/s3WIAlAIBAF0f7MIP3sMr+JNPIHHEA9k9AyCUbBsFsRo0iCDr2wcBjbMGfbk5hWEweVXBAAojvR1WuxHNEIMSbdsDSDtWnGu4oEHHOydsUvDQBSHw6NrxdlJHEpJKYj/QyHg4tjFXZwEN0EQDqRjoYtLJ5dCly4HjoIgLoooOCiKIIg4HRXcAg5CFUqHlFdeuX7fkLHk+P3Io8cl39+uoltMn5F3ikKt3BjrOO19Rt7pSlJMEXxGChyfZLvlJMmObnZ4g0z3dKC9JIU4Jx+NQ5JSBMFnpC5JMUTwGWlLUohTyVFBASUmRwUFlJh8RhRQ8BmpS1IMEXxGKgV8GBVwjTgVfEbGBRyMCsgWvKnPyDtVSQpb8LY+I+9UC0ictngXkVCrlKgA5TTlf6eupAIkJkkF/ZMkIuif8GHpWUOcQz5WaxknDIkTmJ3A7GR2ArMT5ibO7GChHl0K67aA2cnsBGanPVCKSmgE+T9CKPA+ZXh6y/UZ/91pbjA493uZyLTL/qHtDEKbiIIwPIqHXlZEEKQglBxEsliKp2IvXoRgLlIvBSn0JEEIiAtBPJSi4KGHIuQSBCEUIoFCKUIlRzEoRbAEA0EMSjCwBLw8XCi9BExfVifJ/7bT7e5OyJIm78373iwhzcLkC6Brtwf3XaXig+s21SmAjtfiqD7YYbDbWB6MYZ7GeWU3jtkmo9gmIyhlMKu0keh03RPDbWWzWdtpC9VFIDJrW9AOE9xtjIMx8Gd5cBrk9QMBJZtM37bb+hCjEyc2OoTD+hSPVhjANIXqAhBocZq2raTfpdWD2akkq2S6UFmYhnk5EFC2ychKGcwq7zo6HcJhfdpHA5kBoRAItDi+QSCdS6Db2KLDCF3MACjaZDKZ4YHDg4dC1qToEA7rc6gH0jTteycGAi1OmrUt8XcbT0XoYkZAySaz7h84imXyw7vfErImSodwWJ/0Et0iIpdmrDBAfDo90LbE3G18GKWLWQZkm8wdbZMZHjjKe/f4TfLEFbImSAdwxvo8/XqTqFWlh6GA+HtnV9DiCN3GkkrGg3cnrCF0MSMg2mQa2x1anyMii/SBo7axyX8ufstVLFNWedfR6RDOXJ+ffxobtJ6BMglAJ9LiyDKcYJWMBjmgDxplwQphyRlbkwEBJyXaZGqFQR058t/zRYvZQ+86Op1cn2cDgNxVgJKavv3TeUHQ4gTJcGSVTG+4sksUypIzuSYDwkspySZTK+RmPc/i26NV/3xyVnnXcdLJ9SmTWy6VNucQCpu+8SLflVFtC1kxynBWdMrS3XToLuaxNb1RwHEcyYjTKlCpROPRyZeFbeOuY6OT61OjDE3n9zqrFStc0/fZf3IYqpEf+Y8JdBtPRehiFgF5fpUw0mu0tFPdGYnNmZmikDVBOrk+24VCjciap84PMkar4RmA+HTSElGDdLj7s/B5Kncbq9P9Z6uEvBwIiDFP+65Xhu9qi2vVXjrFcekNVSxDViRKhE6uz1ui3jFl+rTy+d3CthmINR+Of6lhwlbkGK6POP6LdTYrw2DpqhBOw7w6EDBIDrRl23VlWur12JOsMoGswq4TocP6OMMJy7atDFDtZTVYxv5iAprU4vRHtDha0KJAbwPdxjAYAndhmAZ5OQAQEjnqv00G1teT+NldDYNZhY0kRof1aep16voaL0KxpweBzFqc5qQdph3QbSwM5uG4C5wmdDEzYHibjHKKXLq6Mau0keTosD717HLRsbN1Y5nY08NAJi0ONQ6CtThmE4w8GCO8JQcBw9tkPAseQVZhIwnSYa7e+cupgDK50+TmqGKZgP6yd4YuDUVRHJaDdWI2yZIwBPF/EAYWo2VgNgnCsjAYwySsrFhMgxXLBaMgikURBoaNDUEQ4zCI5YFtpzy4F2QH79n3C68NvscJ5533dr9TkCz39MwibgTLGPznwSm77umxL6e9Yd0/u+7psS6nvWHdP7vu6RlmUc7413/NcrJ390MYdMsHWFl6w/pNOzP23luzedYrf8+2moVhvd8/SrbzuWe/18knAyefjvu1U90DHgysXxmwxyKeDOuwiyfDOuziybAOu3gyrMMungzrsIsnwzrsgmHdhp1HofO54v8qcRCHPTJO+1f8h5YBOy54K8N6aBmwU06D+LtvV+YSIp4M67CLJ8M67OLJjAa7YEZbEDvlJJST0DvpnfROeiehnITeCTu9k95JkIf/59Tr9M48ggve4pRx/OdqWJ89hWT7u14Ss5B7V/ZiGNLV9X+gLz/f+cvKGUPUAoZh+EhDS0m0ROQMSSlXU2qO1NLYEndKIlJLmiIaGhItiWjK5ZKW0hgpiZKioZSIREuKtriu4pef8/T1nGf4RV7e1+Gc6XvABc9XxpAD+bu3v6cnhN/O5dkOD+2BuAuer4whR/J3bX9PTwi/ncuzHR7aE3EXPF8ZQw7k79b+np4QfjuXZzs8tEfABS+ujEVc2d/TE8Jv5/Jsh4f2jHDBgx9dxIX9PT1R/HZfntsz7II3Vvh43Njf0xPEb+fyZIfn9kzUBc9XxpBD+buxv6cnht/O5dEOz+2ZgAs+AVb4PPdT+Xsx4FcXlG97RA6ft/cEXPAJtsKnnJK/FwN+dYHfHpfDQ3sBuuCFFV7J31Ml9qsLyrgd5PDQ3sMu+NxALq+MIS786gK/nctzew+74HMDOV0Zp5yUv3u/OiO2i/Lc3n+cPZ2FjY+/1vs+f+Frvyy7XV3+PTM0e8ZXximXk/7JR8p5pZyW/19qi08FgdgeK8/tPd91wScDeQk/ep4T8nfhV4/gt3N5bO+JuuCTgbzElXGeE/J361dn1PZweW7v+dfeGUTGEcVh/JfaQ5RXeylrSUVKDjvE2kOt9tLj0ltPe9kcq+cue1g2IktVDlVC9RJClSW6eimhlyitXBKrYQ6JjpVlVQ81DBHL0MxkmnmyEhmyRp//7/D2/958y/x91hrjfe/6WfBRAvmV+ejj30sQ/j6BfPUEJO49wc1P+O51kiaQm4R5vZMsgdwszOudxAnkBmFe7yROIDcI83oncQK5QZjXe4Zr8o4GwAkGYV7vmcQJ5AZhYO++QQj4qSOInYLYKXYKYqcgdgpipyB2ip2C2CmInYLYKYidYqcgdgpipyB2ChkS4OEpCAd18dKAAmCPjh/abjYovVAbiVNFIhZ7i+e7kLcahJQ2wsVq/jWwmgvqF8MO0ClAd7n0h5VioK0ezHcqLXWJ+NMcE0S4fFPVvntYa5+WA2vTjfbb1KxBMLf+CfxDq+6GEUebwUU3SljaterjYt8NxUIaR8opmFFzVYA8RZXjDhFeMxYwTVbBcJmn8IyPAFUozm71AJQuRoXilJDwcA/mCZnWbV6rok8BXGZtx/nFNsBdoEwPwNPEPx3nN+kh8cQK5prAkDwx3WyloVsOcER/FSjNxw4fh6UmfkNqiJ06J7PEfNtpxV6qyLscpQ19Fbh9Ufwyj/cIId20aa/HQZmYty1FBOfVffY8oGcDDIAdHoyL00b+O+H94ve9x1rm0YrSBJEG9ZwvMFwaAWxDr18pxGINlzSQB5Vd65T1s6zWtu8Gs9rZYns9GD8HdUT7LIu3HT7LnE7ra1bNHRev16M8hMkhTPlX/DQVYI+KRLPoQxuB/VflJjDsZ2cUsMAP++heATSxPiomiXDDJ7tblv8/IyfTLxDjdGHLJi2EKZ8bxPkK5CqYi+zvFOR9pyB2Cn8B3JDc7qfMsy8AAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAJYAAABHCAAAAADACOG0AAAAAnRSTlMA/bWfQ5kAAAOJSURBVHhe7ZkxaCNHFIb/CBcixSFUGVViixB4kEJVqsOlQE1KNQuqzHGVOIEIV5gjAnFcEQxqzIFBXBEWDOEagcqQBWMCWlweWhCGBeNmgjhYo+ZB8D7IHV5Gepix94r9mnksD/5/Z4bZYX/wN8mj2yptlbZSk/JjoxfaQ8Y8iIBW99n76fVrZJzghRTjBrZzefx/Vw93TGFDL5S9wIAGC5OcERGn4YyoE4bMYdghCsOd72bCMyI/a1uEHT9csA29UGZrRAO+IyYyzEw0YpbnPqsgooFUownb0QtVAJwHMo/wZHgQ8z9l/B529EIVAO/R9JDRxr94EG+aeHOJXeiFKsA6ws8QvFd1PIj9Y+Boje3ohbCHO98NCOjJsJzLADXeu+HV+HUNdvRCYusGOaIvg5Z2FMybL2FHLyS29oHbe0+7cqaMA+h5tYxOvANY0QuJrTpwBQHrahV5sLrZ9wDg8gY5fvBkrI7bGH4E7H1aIbFVa0XzdxD63TZybI5qjbf1Iw84/wc5Dj0IjZMX6P/YAGx9eiGAmWdEC85IKMmfcnzaMWyktEAhZ41EdMp29EIVAAct/IGMabuBPNdXF3dTusYuem1sRS8EZmbj08gwp5NOwmxiIt8YZmN8oqyYpVtny8R0ZtKs6mydLb0Q5BN6SuT75CfMMQnGkBAzp/HM9w1bCLM2WY54qy29EFhIF2GYyBsJXxVsJgMaWW1JYyp1nLAdvRBUFzfmUK4uDlAI6Wz5FDMTLdgBSqEKdrKKoGB1DgVqIcXUdmbMi12LOPNZgVYIivbYH01oYNiBLa0QWEMSG2YHttRCe9DQgBP0QhU44hmc4NrWZ8e2iqe0VdoqbZXnVrmIpa3Slh12xGJSphg63OcNe9ADVQwAew6gx5GtcdD+0Ly9GAJA/fDzEM1fUcUh3l7hBPWitvzg6xjAngPoqcAB5/NcDFDAuaWJAYq3pY8B3G95fQyQywGKsnUDew5QnC2JAWw5QFF7617esPlmtnythTkE9P+y/JRbPbktdIFLqa6jn5BnMwyW/d7qaWzpY4Dg08veh+i3R/n4qGMANsm9HGBEM2afDKv5juGCTfA7Woha4waw+gUZf+O5FB/rFwfV9fPWFGoc2QI2n27RlBVcI6P2pdhcLwMc16CHnwJJJwq4narSiQJsuY1BKnh8VlEBt1NtOlHAIirTieJt6WMQva3i+Q/AMcE3Q3ucOAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAZUAAACBCAAAAAAtAHjeAAAAAnRSTlMA/bWfQ5kAAApzSURBVHhe7JgxaBtnFMf/hE5BHB48GE3ihlJ4pQRPwbRbh4NbSiYN/kB0KMEYU2zwIEoxqITioZQqFBEQZCoGg+miorHkQGSxMBktEIYDYUrJZw4Tshz08t0lXz+9u9P5Q0MG/Qbde/f939P78yzJHOKPjxUf4VZWrLay2sqK1VZWW5FSLrssnISxNcs3U67UE/PUfivnIiFtIhRxKLJAZkHJWwwEEYlBIGLLMk4gSPjUl/FdWi4Uc582ZrjSnJilvE+1rcjglEikgwe+CM6TOwMiPwiS/oFPlASFHNDBuQyTBhRbljE61H1nm4Rc1FIOpE4WiblPezOyo5XmxCxlfap/gxHRQRp1uu/vdLIbykgRnaxuQhRal5l0s7NT+mrRJJImOikXc5+WZrjSnJilvE8596DB8AyK+7gDoxM8VoH7GLXllF308I0Kvsbr31HOLSrDfVqa4Upz4rm0IpEO9VZw1MDRFHfmGRouFB7+XU7Zr8DnKnCa6M1QSg3VYD7tzXClOfGUGajCdDvK28pG0uvbCHdkNsZDpLj765Zl7MxzoNgEXi3ns8J82pvhSnPiy4gZqID7cC9CxifQuMeHr3/6wYHmcpheUMxboI6Mlm2ZyT/AGlIcYFresgZGrpj7tDOjlWtaOTUn3mAGeB/O7vbTXYdvBd74ZNjYgWasLxpEIx1/eg2NVRk/ewPUdXpT2FLZfIMXyuiWw9+ft3aZT0sz18avkjnx1QNmgPfhOD1vbYdvBWhfjnuup/NmW12enBiqW53iuw01k8KujJ+hYstrKOUMhWLW2mU+Lc0wpc6wBpQPlRHhtnaL2vuXGo4Pse3wreCJh8MNFHMB10H9OTQRcPUhdkqqysrMsxlwo2WfoYiWUvSaLkowWnOftmbW/69Ew5w4SVHBwNkvmKd3X5m6N2ehB/x4gwJGrYu/vjyDgbOJITL2hiVV1cvqDbzUH4cHWB7cp6UZUzmam7iigUd/znGM5iPwrQBb+7gaIp/ps99a7ebRBQyaQHZnNv6irKp62Q6uplD8Dc9d5v9g3KetGVNpTlzRgOOarP/cbDu5W0HLg8b8a3oxfgpsYgoDbxN/QPHcq7MyVlVcpvE8nKhgNMb3RktODRE0xeIin7ZmTKU5sZlWHSraa7SREafICZ3KNPKpn90hIcMkCAVRmBwGJOK4T4PYRArqyOTS9cO8Ml7Fy/iZ0oc+nee0LH3iwsXzx33Dp50ZpjQm5ikfitP15dxzsIASPjzY6avXFCmzIDH/rq3v8559IiFIhLllvIqX5Z2JbocO8luaSt15sZj7tDajlWxiI83vw5n44X/tnUFoI1UYxz+HHBaRh4gH6UlyKMKKlD2ILCvswUNwL+KpBws5SRERsdDDIiJGivQg0pWyCEIQkYAgsvCWOcliSvFSCR5XGAqBsIgwy0MWLwHTrO3fvs2bLy++6Xt0v9/2kKH7ffNNPpLJZN7368njJ8b4EoYUTSkuLOFrGYUHE8ynf+woepTBA3p+EuQIQ5QjbAamuKecKd24/7PjOBc/GLt+VGxv8kdgf+gb+1CubZTY8opKid/7eJzkwZBXRdcmr3mNovyi0kGv4XGSB5PR/Jj32m2inwoCtUXtF0RFQYmBg6mXBs3Pt4dP5lTk6wRqi7pzqUl3qUlJgYNJqCs3aZNA8Kj0wcEk1JU9fICoMQooQ3XA18IfTEJdUWf8FBiqCROhn15k5IOQYlcE6YqSriSIka4I0hVBzit84vjIecWcj64I0hWhQWly9TmiZXpsGT+G6LVx2mSUKKNiREkhrxVMFdbCwY1x2jQoRXZvrneJ8s07O4qCMrpOU95SbZqytSSvFQfMWGRIjuZGX517bhSIBeFg8nT9uy7yYsj3Gq+5UTnbc2OR8ZGrSHssMgrSFXYsMj5ybW+PRQYGc6PSFd/GhIOfP+WRrthDhhQazI3KeYWBGYuMjXTFniqMg3SFH4uUrsTnw0u9nIhGn9E3S1Qb9+U7Yz8wVRgQDLMejYsOS8yNpgPmItMDU4WhKd6gKXt0hab82KQEQVfOOfwwa/rvYILc9cpJmXl/yP2bFgVE3sH2DYWgReeGFJTNWrNhPLof0nhdQhGNzUDwad1d4fTT5RjKZFYkXR2mtSuMrcZKwu8ReBujobHms7L/F2k9uwItcwkts9etb4iYx2VFmO67wrhqrK7we+QLna4buFHCGI3NIXvnX5fzrxJAWq+uQMvc8dFPgw2ImMuqMK2dYXw1SGKFLlxo52Qxx7VpLDa5wx96KK+ttOx9e0M2PWiZPdjPIWIOEMZVo4Ls8S8a9E4U0YdbZG0GkiszaTOn7tjWMkf2T/PVmCB7/PvUYo7eyNoMJfarTptV6o6hZX5/RL6Y+f3TigljqmFC/Qq1FNHWZqjXSnXaRqXuGFrmwy989dNU2Mpmd5hxhgFnNeBPfo/Ehg1CGKPZp6qw0vJdge6Y109XyaI97pjnyiDMmbFpVzP9tTLH1/v3FhJeNxHma4z2UV77LBlpHOuO8Q+6Y/Auo59mRNJMmDI9R5jtiLarwa9plYjZoysrY4zGZlVWXnntsWSkUaU7BorTTxOjbCZFbgx1HWHIOLsa/JpyW/2s5quTM0b7Ka9fXwmxZCRz6Y7bjJbZYjAwlcrm/aBhqCb8Hnlj9OLjyaigOm02U3e827rOaJlZvbetbA4YhmrC7hHG6AEWc9ibXrgrqE6bzdT4PbM9n5b5fqXe+7KlbHaGKT6Mr0bZod6Fwhh9G4s57E0rK3O94qzASmvj1h1DPz0soWWedev766OvFfTF7x3K5knCYWWY1s4wABk2qvkvWluhCxY64ZQi2t60szLKa0cFVloLqtAdQ8vcqdRPw4jtVDZXh2ntCgOOaoDWHnu0CGKMtpXXbAVI6+4KON3+I473Mk1QPgQPIAWfwUG/PxwzYVq7wwCSoBqrKwhdrFDs50BjC5uOrA6YCpC2tlmvcmOtXDisrwNIopGE32MEvCrIQnl+aUctHGb8fMZ3v5qZy6vQCPhUMGaozYiNMLz5gI7Ge9J8EgOt46u7Q1WQxTNi82Eqvro7TgVZKCN2vpurRcNcgcanWcqr0Ah4VNCIZ8RGmAmh9zLpesj5CsJ3BUbsWsMiFBqhgoBdUTWFqfhqwzgVZCkLJk3EZ1ymikyQJNIVIUJXRMkuXQl1vRITOa8YOa8ISXdFkPPK1WWi5WWvJGKiqv28ctkUF5pyvZIW++0rn6y/1KWEkK7srr+81721/Xl7JJ78aChDp9jqtd4hotaDj9dvzdIRHxroiK0kwRALgtZOc26H1xEjybkhxa6sncxDdiZL25hBw7PpiviMTXrmXLlesceg5P5KJEwIc66hCIg5NyUdsZhz4+uI5bzCm3NXu1NWz/C8IucVZgwq3nlFzLm3xZybHNuMOTcKcn+l+8Fme3er9UK+wuuIkaRG5HswjEF56Yi1Fhto3agVp4741xbtPXRMtqAjluuVeDSPF0/Xv45b3sH6OkKSlJF1xvIZTAjTFUGuV2SpuMyvyCdj3pSv/ucPhUX+ekFODPLXCwRZeVQ30hVBuiJdEaQrwj9IsbY+p7dMQgAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAKwAAABDCAAAAAAkSLFTAAAAAnRSTlMA/bWfQ5kAAAOQSURBVHhe7dpBZCRZHMfx77Y+lByi5bT61PqQy2NFn8aecmzCWnPqS40+Rcsptok1hzG2KWsOI4QRIWvMYTXDHJZQp7VmiFim5LSimzY0LZcXJVTU5c/OVsq0nUrndanoSqjPpd6hf/y0qlfF/yEPSFE2haJsoAMxMOWyKwNhB+CHx8zk9j1otJYPXjN5SmSfDhGnOk8uVQxubhWV9Wi1WGEmp998U7s62QFY2bzcofYzFpv8+on9uXLmWJL1jMsnrDMFIjJW6lBu0VXd6DpUSstnSvUk0lN2ilwiZpAsVgKWuNWxSweAegcDQy6dZLESRgfU6kSaXGBgyGVjLut7PCJC/acVDAy5bMqYXECVWJsIA/f6kipnjmUve06SF18MubSx7GW/hSu+0noab02GnCGWqezpOQmrK/CJmG9ZxEyxujlHeEatMis/o+wVseO/SdisNzz3BRG2W00SZsQq5tzB+qT//PGMfFQsWXaJ2NYWSbQ8TtcAmHgOCXEsfW50sG/B8/raNJ99n11v8DuR180qU1lz772X0GB0l/ss1m7DdXwIX51sA/4EBr4Pvj/A8/05c8nYKgM4ZwmDkfvudPLK8QER0YZvAwkOlbJtZY+jF/01rePFcI7czbFxIHpjQ8sscbHhoer13qojkTJmWO3W2RW1KkD9PZEKXxbG3IxYldBZ2a1wqyha2RqxnPhnF0vb3UBmmRazNwJ5q7RIifz4T9ZfWK6Pge+1Lf5oViAu+85xXG7jOty1cLvdhj8vuFnoOA4AJ6zhe4/CU8pAZR+gxq0G3LXfLpZcRm6Hm1nr8CM18Gp1/qH+sk0Z4HtyEO6zw0zTVmG/A5c8261SJi+WeTeJf2dBc7VqATKfD7bkr8R8LskfJdIoyhZli7JF2WXyR7HPFmWLskXZmMxprAPJWxkj89hlUcxlzWOXxRED09hlkUopxy65KqUeu+SolMPYJesDlnXskn9Z89glx7LZxy7537P/G7uE9/wBqzRwiW3/xU1Gx6N7UpYWnBKZeN+RFO70B9vtUR5l049d+mdb7TfeL/fkdatt1dMiwd7GWESPlbK1FtHaVuq/RU8didhK53CgJ/3YRR8FohfxmfCNMJfwy7jGJ1KZLggngz7msUt2cgf0Xlf19MM4hBZokQ/KDh5EWVsNRZT6mP/3rNnIY1Eks2DjSOTjQ7kNhnZvT3VzesDSGw91cST1K/8CNmDtmNdyGNIAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAALAAAABCCAAAAADShgOQAAAAAnRSTlMA/bWfQ5kAAANBSURBVHhe7ZkxaONmGEBfTQaRIQhPhyejIcsPJXg6bvJoCJRykxcFTyFkCg2EkiEcGES54QgcHCbgcnQohsANBYOmoyQQQqHCUzlsMAcGk0VBGGS0CHonqYFUlX+lCGSB3iIL+cHDWPKHP/yCUQb/b8pg13Z9CRIvEzYA8A4AvntJIubAgkZ76+I981MCegQWGLU03pO05Koo2KLdppqsnpmtX+rL2xOA6v7ihPqPKOzz02d6qTy5Fkc5Y7FHk8f4X7GF6Psr6Irj4DgRwv56FKL7zwU9tRfX5MTDKgAsWcnNgAMAtANiZOrJCYM3WckFdY2AFvfEyNSTB8txLJ4Tov1QJUaGnpwN5NxDjYgOIWMzPKT2JFqmwXfEsaKD1JNr2Qc/i9+VtE8BMAYSL0nLKnh0R4ztKnwmwlEUAuSaJvfwPlFXk3xgKQu++YMY+1rDMl8TctRuESLXVLl30ZwPXr1M8IHNhOAlEYeHxKFtMdoBYG4ZxEjQ5N70oqfAK20n8DN8Djcb/ErA+1YNGem9K+sNNJhm/RxGOW+YhgPeu9sjwJnC2HHAccZYjpPSi2vbjOGOTSRMzQ+j+TvDST9L+G5fCF0X+iwYDEJsW4RMUnj/rc1c397dtWWzxKQvut1LMQzHy1QonfanJfUagHZFgMrDC6mXoNXwjOq5yipCVT2csvWvTzgPbP3YTTGt6buufxkOihXyxNlrvlZMRz6UdBR+a6mPbroPhmGyCtMga7yjTgc+3iddNgwDgFt2cKzn3ujhOaz2AOqsZEzW/Hy/aTI1k4ZlpQnfUwerrvEX2pvOQzAvyAGvxwmriKq8wQEsODuvBcFp2SJrFPlTJnqfAq3tmgKAn5ah7q8DFQrG2gaXwWVwGbxVtOBF+ZUog8vgMrgQ+KmZResgd3I9nKz/2muoCyH04bUe/MHQX/dg91gc/2nPLoUQX84u1ytYvg4a5hhcefI6KGcqGayDcg6Wr4NyZYMnr5EK8AnfFe2X7hksCxX8aB3kFSBYbWAScfR7AYJpw4iAufXtmgXL10GFmNZsXXRt33ff7s6+nPTFW3vNZgn5Oug6p+BvfFLiPayRHACVnPALRhm8mjK4DC6D/wZdS4KODK214gAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAALMAAABFCAAAAAAktIgrAAAAAnRSTlMA/bWfQ5kAAAQASURBVHhe7doxaONmAIbhtyaDyBCMhxI8GQ9ZfijB09GhZDQYjnJD8eLgKYRMoYZw3HAcZxDlhhAIHCaQEjqUQCBDwaCplAuEUKgIHUqwwRwYTBYFYZDR8kNd2a1pfsu/LkQoB3qGSKB88BFkofAZ+flJOz+GtLPneFIRQ05niQl/G+D5C0JZpzaUqitHJwxeEWgRpMDMR8lFj7Gw1X+dbapVcoQyT8s/FUZXewC5reEehZcYbPHDR1qRcvqYynjNcJMN7pETfSGO5QIN0QiOXSEcOSZEUwaaohY1p8Q0woplmFhmoUuLbQCK2yhiyAHhxTJEckShSKDMHYE4cnrRO7s2z5gofp8jEFdOb4ko7iDPVJ2JjjU5RM4psXg736KyZwd9To3F3nkVRtxTfTV9lmlymthjdL6+RbGWg49MuYYBRIoV9Tn8GwrZsPziziOmLn9HsVUs2dY7JnarZRQhsaw+d7QxOH3zIiQPjMI7LzO1s4OKqs31OgAD20ShxKLmekctA94U14P84z6fN0r8TOCknEcneu6DvQ8lejE8nzEOSpbpgv/+ahdwB9BxXXDdDrbrRsypsTU6cMsyGj3r/Hrw3nQJyAlH874hvWMhajVR6wcvDxOOIya6EXLzY31POpWKI8NMi3WPRbN5JtrTd9GIjHr1ZkQhD1D8QCDLvyf6XEgsj2/mDrJojKPZnR4r6t85CU6t4ckws2K1iifPhDN9r0uWu7nxzrBcNFy7bvBLOXv/M3humhaLWCaPzd+t1+HXu7DLpmkCcMU6rv3Mv549nyHbAiiwUIfH9uPdskXP2mY+YwO+pQB2ochfFPfrs87A1yTAb7FHqFkr/3Qbhrw+yE86J8mYPUA0v2dAeS1vEJDRXdTkk5AhuiFPQ4b4pJ3TzmnntPMKT0P6fE47p53Tzp9MfoK+48knYAmVfria0gxYcVE76weoGXWJSure0A9QM+oSFb9MDANU3DKxDFDJd1YHqGQt8eDhCs2AlXTnWxTKEpVsZ/0ApV+ikr+f/zdA+Z/HZzBbwmJq9zeA3uWAuXqA30u+M1ThmsDA/grc+ttO+Zx53u6dmN8Nk+6sDlD+5petKm+Yx7b2OVgnTtE3BNF0pPQOK30pj8Uf4x9tKZ2+EDXHGZ+Mr4t/TrxGEt+h0g9QXkX02+3u3CXKaXbbF56M0xeSyPzpAIX7DaXnN+PJF5dAdnbS2y2vnnBQJEbyAbpCtKUnRF+q2u3x9Xhf8R7auStlbVw8RHA9NhkeIA85WGOEyqoPAG6f2v+wRpkRdFhFdWr/iQ+rxEg+RFecSUdUPKk6bErZFs3E72fVReWwUnPkHF6j0RBNL/nOKq/blyH6XSf9LnHaORl/A7gEMBfHJCJ3AAAAAElFTkSuQmCC