25 Astropartículas
Desde la época de la antigua Grecia, el hombre ha pensado que los átomos eran el elemento de construcción básico del universo. Ahora sabemos mejor cómo funcionan las cosas. Los átomos pueden dividirse y están compuestos por electrones ligeros de carga negativa, que orbitan alrededor de un núcleo con carga positiva formado por protones y neutrones. Estas partículas pueden también dividirse, y la física moderna ha revelado la existencia de un zoo de partículas, que construyeron el universo a partir del Big Bang.
Desmontando átomos En 1887, Joseph John Thomson consiguió liberar por primera vez los electrones de los átomos en el laboratorio, lanzando una corriente eléctrica a través de un tubo de vidrio lleno de gas. No mucho después, en 1909, Ernest Rutherford descubrió el núcleo, cuya denominación proviene de la palabra latina que designa la semilla de un fruto seco. Cuando lanzó una corriente de partículas alfa (una forma de radiación que consiste en dos protones y dos neutrones) sobre una lámina de oro, se sorprendió al descubrir que una pequeña fracción de ella rebotaba de nuevo hacia él después de haber golpeado algo compacto y duro en el centro del átomo de oro.
Aislando el núcleo de hidrógeno, Rutherford identificó los protones en 1918. No obstante, emparejar las cargas y los pesos de otros elementos resultó más difícil. A principios de la década de los treinta del siglo XX, James Chadwick descubrió el ingrediente que faltaba: el neutrón, una partícula neutra con una masa prácticamente igual a la del protón. Entonces, pudieron explicarse los pesos de los diversos elementos, incluidos aquéllos con pesos extraños llamados isótopos. Un átomo de carbono 12, por ejemplo, contiene seis protones y seis neutrones en el núcleo (que le otorgan una masa de 12 unidades atómicas), además de seis electrones que orbitan, mientras que el carbono 14 es todavía más pesado al tener dos neutrones más.
«Era casi tan increíble como si hubiera lanzado un proyectil de 40 cm contra un trozo de papel y hubiera rebotado hacia mí.»
Ernest Rutherford
El núcleo es pequeño. Es cien mil veces menor que un átomo, y tiene sólo unos pocos femtómetros (10–15 metros, o una milbillonésima parte de un metro) de radio. Si pusiéramos el átomo a escala con el diámetro de la Tierra, su núcleo tendría sólo 10 kilómetros de anchura, como la longitud de Manhattan.
Modelo estándar Cuando la radiactividad permitió aprender a romper el núcleo de los átomos (mediante la fisión) o bien a unirlos (mediante la fusión), otro fenómeno requirió explicación. Para explicar la combustión de hidrógeno en helio que se produce en el Sol, mediante un proceso de fusión, se requería otra partícula, el neutrino, que transforma los protones en neutrones. En 1930, se infirió la existencia del neutrino para explicar el decaimiento de un neutrón en un protón y un electrón, denominado decaimiento radiactivo beta. Al carecer virtualmente de masa, el neutrino no se descubrió hasta 1956.

En la década de los años sesenta del siglo XX, los físicos se dieron cuenta de que los protones y los neutrones no eran las unidades de construcción más pequeñas: en su interior albergaban partículas todavía más pequeñas, los quarks.

Los quarks se agrupan en tríos. Tienen tres «colores»: rojo, azul y verde; también aparecen con seis «sabores», formando tres parejas de masa creciente. Los más ligeros son los quarks «up» (arriba) y «down» (abajo); los siguientes son los quarks «strange» (extraño) y «charm» (encanto); y la última pareja, «top» (cima) y «bottom» (fondo), es la más pesada. Los físicos eligieron estos extraños nombres para expresar las propiedades de los quarks, que no tienen precedente. Los quarks no pueden existir por su cuenta, sino que deben permanecer siempre unidos en combinaciones neutras (es decir, que no muestren carga de color). Entre las posibilidades, encontramos los tríos llamados bariones («barys» quiere decir pesado en griego), en los que se incluyen los protones y neutrones habituales, o las parejas de quark-antiquark (denominadas mesones). Se necesitan tres quarks para formar un protón (dos up y un down) o un neutrón (dos down y un up).
La siguiente clase básica de partículas, los leptones, está relacionada con los neutrinos y, de hecho, los incluye. De nuevo, hay tres tipos con una masa creciente: electrones, muones y tauones. Los muones son 200 veces más pesados que un electrón, y los tauones, 3.70 veces más pesados. Todos los leptones tienen una sola carga negativa, además de una partícula asociada llamada neutrino (neutrino electrónico, umónico y tauónico) que no tiene carga.
Los neutrinos casi no tienen masa y prácticamente no interaccionan. Pueden atravesar la Tierra sin ser vistos, así que son difíciles de detectar.
Las fuerzas fundamentales se transmiten mediante el intercambio de partículas. Igual que se puede describir la onda electromagnética como una corriente de fotones, se puede considerar que la fuerza nuclear débil es transportada por unas partículas llamadas bosones W y Z, mientras que la fuerza nuclear fuerte es transmitida por los gluones.
La gravedad no está todavía incluida en el modelo estándar de física de partículas que acabamos de describir, pero los físicos siguen intentándolo.
Colisión de partículas La física de partículas se ha comparado a coger un complicado reloj suizo, destrozarlo con un martillo y estudiar, después, los fragmentos para averiguar su funcionamiento. Los aceleradores de partículas en la Tierra usan imanes gigantes para acelerar las partículas a velocidades extremadamente altas, y después destrozan esos haces de partículas contra un objetivo o contra otro haz disparado en la dirección opuesta. A velocidades modestas, las partículas se separan un poco y se desprenden las partículas más ligeras. Como masa significa energía, se necesita un haz de partículas con una energía más alta para liberar las partículas más pesadas.
«Nada existe excepto los átomos y el espacio vacío; todo lo demás es opinión.»
Demócrito
Las partículas producidas se identifican a partir de fotografías del rastro que dejan. Al atravesar un campo magnético, las partículas de carga positiva giran hacia un lado y las negativas hacia otro. La masa de la partícula también dicta lo rápido que se lanza a través del detector y la curvatura que el campo magnético imprime a su trayectoria. Así las partículas de luz apenas se curvan y las partículas más pesadas pueden incluso girar en bucles. Localizando sus características en el detector y comparándolas con lo esperado en las teorías, los físicos pueden identificar cada partícula.
Rayos cósmicos En el espacio, las partículas se producen a través de procesos similares a los usados en los aceleradores en la Tierra. Dondequiera que haya campos magnéticos fuertes —como los que hay en medio de nuestra galaxia, en la explosión de una supernova o en los chorros acelerados cerca de un agujero negro—, las partículas pueden alcanzar energías increíbles y viajar a velocidades cercanas a la de la luz. También se pueden crear antipartículas, lo que plantea la posibilidad de observar su destrucción al entrar en contacto con la materia normal.
Los rayos cósmicos son partículas que chocan contra nuestra atmósfera. Cuando colisionan con las moléculas de aire, se rompen y producen una cascada de partículas más pequeñas, algunas de las cuales alcanzan el suelo. Estas cascadas de partículas pueden observarse como destellos en detectores de la superficie de la Tierra. Midiendo las energías características de los rayos cósmicos y las direcciones de las que provienen, los astrónomos esperan poder comprender su origen.
Asimismo, la búsqueda de los neutrinos levanta mucha expectación, porque es muy posible que sean la clave para averiguar la cantidad de materia oscura que hay en el universo. No obstante, son difíciles de detectar porque en muy raras ocasiones interactúan con algo. Para conseguir su propósito, los físicos han tenido que pensar a lo grande, de manera que usan toda la Tierra como un detector. Los neutrinos que atraviesen la Tierra se ralentizarán en alguna ocasión, y entonces los estará esperando un vasto despliegue de detectores, incluidos los nuevos que están dentro del hielo del Antártico y los del mar Mediterráneo. Asimismo, otros experimentos subterráneos localizados en minas profundas atraparán otro tipo de partículas. Por tanto, es posible que gracias a todos estos imaginativos recursos, los astrónomos consigan averiguar en las próximas décadas de qué está compuesto nuestro universo.
Cronología:
400 a. C.: Demócrito propone la idea de los átomos
1887: Thomson descubre el electrón
1909: Rutherford realiza el experimento de la lámina de oro
1918: Rutherford aísla el protón
1932: Chadwick descubre el neutrón
1956: Se detecta el neutrino
Década de 1960: Se propone la existencia de los quarks
1995: Se descubre el quark top
La idea en síntesis: acelerador cósmico