Ton J. Cleophas and Aeilko H. ZwindermanStatistical Analysis of Clinical Data on a Pocket CalculatorStatistics on a Pocket Calculator10.1007/978-94-007-1211-9_4© Springer Science+Business Media B.V. 2011

4. Non-Parametric Tests

Ton J. Cleophas1, 2   and Aeilko H. Zwinderman2, 3  
(1)
Department of Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College of Pharmaceutical Medicine, Lyon, France
(3)
Department of Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 
 
Ton J. Cleophas (Corresponding author)
 
Aeilko H. Zwinderman
Abstract
The t-tests reviewed in the previous chapter are suitable for studies with normally distributed results. However, if there are outliers, then the t-tests are not sensitive and non-parametric tests have to be applied. We should add that non-parametric are also adequate for testing normally distributed data. And, so, these tests are, actually, universal, and are, therefore, absolutely to be recommended.

Wilcoxon Test

The t-tests reviewed in the previous chapter are suitable for studies with normally distributed results. However, if there are outliers, then the t-tests are not sensitive and non-parametric tests have to be applied. We should add that non-parametric are also adequate for testing normally distributed data. And, so, these tests are, actually, universal, and are, therefore, absolutely to be recommended.
Calculate the p-value with the paired Wilcoxon test.
Observation 1:
6.0,
7.1,
8.1,
7.5,
6.4,
7.9,
6.8,
6.6,
7.3,
5.6
Observation 2:
5.1,
8.0,
3.8,
4.4,
5.2,
5.4,
4.3,
6.0,
7.3,
6.2
Individual differences:
0.9,
−0.9,
4.3,
3.1,
1.2,
2.5,
2.5,
0.6,
3.6,
−0.6
Rank number:
3.5,
3.5,
10,
7,
5,
8,
6,
2,
9,
1
A.
not significant
 
B.
0.05  <  p  <  0.10
 
C.
p  <  0.05
 
D.
P  <  0.01
 
Is there a significant difference between observation 1 and 2? Which significance level is correct?
The individual differences are given a rank number dependent on their magnitude of difference. If two differences are identical, and if they have for example the rank numbers 3 and 4, then an average rank number is given to both of them, which means 3.5 and 3.5. Next, all positive and all negative rank numbers have to be added up separately. We will find 4.5 and 50.5. According to the Wilcoxon table underneath the smaller one of the two add-up numbers must be smaller than 8 in order to be able to speak of a p-value <0.05. This is true in our example.
A216868_1_En_4_Figa_HTML.gif
Wilcoxon test table
Number of pairs
P  <  0.05
P  <  0.01
 7
 2
 0
 8
 2
 0
 9
 6
 2
10
 8
 3
11
11
 5
12
14
 7
13
17
10
14
21
13
15
25
16
16
30
19

Mann-Whitney Test

Like the Wilcoxon test, being the non-parametric alternative for the paired t-test, the Mann-Whitney test is the non-parametric alternative for the unpaired t-test. Also this test is applicable for all kinds of data, and, therefore, particularly, to be recommended for investigators with little affection for medical statistics.
Calculate the p-value of the difference between two groups of ten patients with the help of this test.
Group 1:
6.0
7.1,
8.1,
7.5,
6.4,
7.9,
6.8,
6.6,
7.3,
5.6
Group 2:
5.1,
8.0,
3.8,
4.4,
5.2,
5.4,
4.3,
6.0,
3.7,
6.2
A.
not significant
 
B.
0.05  <  p  <  0.10
 
C.
p  <  0.05
 
D.
p  <  0.01
 
Is there a significant difference between the two groups? What significance level is correct?
All values are ranked together in ascending order of magnitude. The values from group 1 are printed thin, those from group 2 are printed fat. Add a rank number to each value. If there are identical values, for example, the rank numbers 9 and 10, then replace those rank numbers with average rank numbers, 9.5 and 9.5.
Subsequently, all fat printed rank numbers are added up, and so are the thin printed rank numbers. We will find the values 142.5 for fat print, and 67.5 for thin print.
According to the Mann-Whitney table of page 13, the difference should be larger than 71 in order for the significance level of difference to be <0.05. We find a difference of 75, which means that there is a p-value <0.05 and that the difference between the two groups is, thus, significant.
3.7
 1
3.8
 2
4.3
 3
4.4
 4
5.1
 5
5.2
 6
5.4
 7
5.6
 8
6.0
 9.5
6.0
 9.5
6.2
11
6.4
12
6.6
13
6.8
14
7.1
15
7.3
16
7.5
17
7.9
18
8.0
19
8.1
20
Mann-Whitney test
P  <  0.01 levels
n1
 
n2
 
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 
 4
   
10
                     
 
 5
 
 6
11
17
                   
 
 6
 
 7
12
18
26
                 
 
 7
 
 7
13
20
27
36
               
 
 8
3
 8
14
21
29
38
49
             
 
 9
3
 8
15
22
31
40
51
63
           
 
10
3
 9
15
23
32
42
53
65
 78
         
 
11
4
 9
16
24
34
44
55
68
 81
 96
       
 
12
4
10
17
26
35
46
58
71
 85
 99
115
     
 
13
4
10
18
27
37
48
60
73
 88
103
119
137
   
 
14
4
11
19
28
38
50
63
76
 91
106
123
141
160
 
 
15
4
11
20
29
40
52
65
79
 94
110
127
145
164
185
 
16
4
12
21
31
42
54
67
82
 97
114
131
150
169
 
 
17
5
12
21
32
43
56
70
84
100
117
135
154
   
 
18
5
13
22
33
45
58
72
87
103
121
139
     
 
19
5
13
23
34
46
60
74
90
107
124
       
 
20
5
14
24
35
48
62
77
93
110
         
 
21
6
14
25
37
50
64
79
95
           
 
22
6
15
26
38
51
66
82
             
 
23
6
15
27
39
53
68
               
 
24
6
16
28
40
55
                 
 
25
6
16
28
42
                   
 
26
7
17
29
                     
 
27
7
17
                       
 
28
7
                         
The values are the minimal differences that are statistically significant with a p-value <0.01. The upper row gives the size of Group 1, the left column the size of Group 2
Mann-Whitney test
P  <  0.05 levels
n1
 
n2
 
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 
 5
     
15
                   
 
 6
   
10
16
23
                 
 
 7
   
10
17
24
32
               
 
 8
   
11
17
25
34
43
             
 
 9
 
6
11
18
26
35
45
56
           
 
10
 
6
12
19
27
37
47
58
71
         
 
11
 
6
12
20
28
38
49
61
74
 87
       
 
12
 
7
13
21
30
40
51
63
76
 90
106
     
 
13
 
7
14
22
31
41
53
65
79
 93
109
125
   
 
14
 
7
14
22
32
43
54
67
81
 96
112
129
147
 
 
15
 
8
15
23
33
44
56
70
84
 99
115
133
151
171
 
16
 
8
15
24
34
46
58
72
86
102
119
137
155
 
 
17
 
8
16
25
36
47
60
74
89
105
122
140
   
 
18
 
8
16
26
37
49
62
76
92
108
125
     
 
19
3
9
17
27
38
50
64
78
94
111
       
 
20
3
9
18
28
39
52
66
81
97
         
 
21
3
9
18
29
40
53
68
83
           
 
22
3
10
19
29
42
55
70
             
 
23
3
10
19
30
43
57
               
 
24
3
10
20
31
44
                 
 
25
3
11
20
32
                   
 
26
3
11
21
                     
 
27
4
11
                       
 
28
4
                         
The values are the minimal differences that are statistically significant with a p-value <0.01. The upper row gives the size of Group 1, the left column the size of Group 2