8. Resultados de la duplicación consecutiva

En la famosa leyenda en la que se habla de la recompensa concedida al inventor del ajedrez puede encontrarse un ejemplo demostrativo del rápido incremento que se obtiene al duplicar repetidamente un número por pequeño que sea. Sin detenerme en este paradigma clásico, me remitiré a otros menos conocidos [3].

Problema

Cada 27 horas, como término medio, el infusorio paramecio se parte en dos. Si todos los infusorios surgidos de esta suerte quedaran vivos, ¿cuánto tiempo sería necesario para que los descendientes de un paramecio llegaran a tener el volumen del Sol?

Los datos necesarios para este cálculo son: la generación Nº 40, si se conservan todas desde la primera, ocupa después de su desdoblamiento, un volumen igual a un metro cúbico. El volumen del Sol es de 1021 m3.

Solución

La tarea consiste en determinar cuántas veces 1 m3 debe multiplicarse por dos para llegar a 1027 m3

1027 = (103)9 ≈ (210)9 =290,

puesto que 210 ≈ 1 000.

De esta forma, la cuadragésima generación debe sufrir 90 nuevas divisiones sucesivas para alcanzar el volumen del Sol. El número total de generaciones, incluyendo la primera, es de

40 + 90= 130.

No ofrece dificultad alguna precisar que esto tiene lugar el día 147.

El microbiólogo Metalnikov observó 8 061 divisiones sucesivas del paramecio. Que calcule el propio lector el colosal volumen que tendría la última generación si no hubiera muerto ni uno solo de estos infusorios…

La cuestión examinada en este problema puede ser presentada, como si dijéramos, desde el lado opuesto.

Imaginémonos que se ha dividido el Sol en dos mitades, que una de estas mitades también se ha dividido en dos, etc. ¿Cuántas operaciones semejantes serían precisas para que resultara el tamaño de un infusorio?

Aunque el lector conoce ya la respuesta, 130, no por eso deja de asombrar lo reducido de este número.

A mí me fue planteado este problema en la siguiente forma:

Una hoja de papel es dividida en dos, y una de las mitades obtenidas es, a su vez, dividida por la mitad, etc. ¿Cuántas divisiones serían precisas para llegar a la dimensión del átomo?

Supongamos que la hoja de papel pesa 1 gramo y que tomamos 1/(1024) de gramo como peso del átomo. Como quiera que 1024 puede sustituirse por 280, de valor aproximado, se hace evidente que, se necesitan tan sólo unos 80 desdoblamientos, y no millones, como se contesta con frecuencia cuando se da a conocer este problema.

Álgebra recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml