Appendix Five

 

We want to show that the harmonic series diverges, in other words that

image

 

will add up to infinity. This is done by showing that the harmonic series is larger than the following series, which does add up to infinity:

image

 

Let’s compare terms of the harmonic series in groups of two, four, eight and so on, starting from the third term. They are listed below. Because image is bigger than image must be bigger than image which is image. Likewise, since image and image are all bigger than image, this means that image is bigger than four eighths, which is also image. If we carry on, always considering double the number of terms, we can see that we will be able to add up these terms to make a value larger than image:

 

 

image

 

 

The harmonic series, therefore, is bigger than image + image + image + image + image + …, which is infinity times a half, which is infinity. So the harmonic series is bigger than infinity; in other words, it is infinite.

Alex's Adventures in Numberland
titlepage.xhtml
Alex8217s_Ad-_in_Numberland_split_000.html
Alex8217s_Ad-_in_Numberland_split_001.html
Alex8217s_Ad-_in_Numberland_split_002.html
Alex8217s_Ad-_in_Numberland_split_003.html
Alex8217s_Ad-_in_Numberland_split_004.html
Alex8217s_Ad-_in_Numberland_split_005.html
Alex8217s_Ad-_in_Numberland_split_006.html
Alex8217s_Ad-_in_Numberland_split_007.html
Alex8217s_Ad-_in_Numberland_split_008.html
Alex8217s_Ad-_in_Numberland_split_009.html
Alex8217s_Ad-_in_Numberland_split_010.html
Alex8217s_Ad-_in_Numberland_split_011.html
Alex8217s_Ad-_in_Numberland_split_012.html
Alex8217s_Ad-_in_Numberland_split_013.html
Alex8217s_Ad-_in_Numberland_split_014.html
Alex8217s_Ad-_in_Numberland_split_015.html
Alex8217s_Ad-_in_Numberland_split_016.html
Alex8217s_Ad-_in_Numberland_split_017.html
Alex8217s_Ad-_in_Numberland_split_018.html
Alex8217s_Ad-_in_Numberland_split_019.html
Alex8217s_Ad-_in_Numberland_split_020.html
Alex8217s_Ad-_in_Numberland_split_021.html
Alex8217s_Ad-_in_Numberland_split_022.html
Alex8217s_Ad-_in_Numberland_split_023.html
Alex8217s_Ad-_in_Numberland_split_024.html
Alex8217s_Ad-_in_Numberland_split_025.html
Alex8217s_Ad-_in_Numberland_split_026.html
Alex8217s_Ad-_in_Numberland_split_027.html
Alex8217s_Ad-_in_Numberland_split_028.html
Alex8217s_Ad-_in_Numberland_split_029.html
Alex8217s_Ad-_in_Numberland_split_030.html
Alex8217s_Ad-_in_Numberland_split_031.html
Alex8217s_Ad-_in_Numberland_split_032.html
Alex8217s_Ad-_in_Numberland_split_033.html
Alex8217s_Ad-_in_Numberland_split_034.html
Alex8217s_Ad-_in_Numberland_split_035.html
Alex8217s_Ad-_in_Numberland_split_036.html
Alex8217s_Ad-_in_Numberland_split_037.html
Alex8217s_Ad-_in_Numberland_split_038.html
Alex8217s_Ad-_in_Numberland_split_039.html
Alex8217s_Ad-_in_Numberland_split_040.html
Alex8217s_Ad-_in_Numberland_split_041.html
Alex8217s_Ad-_in_Numberland_split_042.html
Alex8217s_Ad-_in_Numberland_split_043.html
Alex8217s_Ad-_in_Numberland_split_044.html
Alex8217s_Ad-_in_Numberland_split_045.html
Alex8217s_Ad-_in_Numberland_split_046.html
Alex8217s_Ad-_in_Numberland_split_047.html
Alex8217s_Ad-_in_Numberland_split_048.html
Alex8217s_Ad-_in_Numberland_split_049.html
Alex8217s_Ad-_in_Numberland_split_050.html
Alex8217s_Ad-_in_Numberland_split_051.html
Alex8217s_Ad-_in_Numberland_split_052.html
Alex8217s_Ad-_in_Numberland_split_053.html
Alex8217s_Ad-_in_Numberland_split_054.html
Alex8217s_Ad-_in_Numberland_split_055.html
Alex8217s_Ad-_in_Numberland_split_056.html
Alex8217s_Ad-_in_Numberland_split_057.html
Alex8217s_Ad-_in_Numberland_split_058.html
Alex8217s_Ad-_in_Numberland_split_059.html
Alex8217s_Ad-_in_Numberland_split_060.html