2 · Diferencias adicionales entre ciencia y tecnociencia.

Hasta ahora nos hemos atenido a los rasgos distintivos expuestos en nuestro análisis del concepto de macrociencia, comprobando que las diferencias entre macrociencia y tecnociencia son significativas. Ello resultará todavía más claro si, dejando de lado nuestro punto de partida, profundizamos más en la caracterización de la tecnociencia. En este apartado ampliaremos el listado de notas diferenciales.

h) Tecnociencia y medioambiente.

Algunas consecuencias de la emergencia de la tecnociencia todavía no han sido mencionadas. Una de ellas es su tremendo impacto sobre el medio-ambiente, particularmente notable en el caso de algunas tecnociencias, no en todas. Cabe decir que el medio-ambiente, incluido el medio-ambiente social, es el sujeto paciente de las acciones tecnocientíficas. La energía nuclear, con las bombas atómicas, los reactores y los residuos nucleares, constituye un gran ejemplo, pero no el único. Por lo que respecta al impacto ecológico de algunos avances tecnocientíficos, hay que mencionar los plásticos, los alimentos transgénicos, la ingeniería genética, la basura atmosférica generada por los satélites artificiales obsoletos y otros muchos ejemplos que iremos comentando a lo largo de esta obra. No basta tener en cuenta los resultados inmediatos de la investigación en lo que se refiere a los logros científicos y las innovaciones tecnológicas. Es preciso considerar también las consecuencias medio-ambientales de dichas acciones, así como sus posibles riesgos.

Algunos grandes impactos sobre la biosfera han generado una considerable oposición a la actividad tecnocientífica, en la medida en que esta tiene grandes efectos contaminantes en el medio ambiente natural. Dicha contaminación no surge con la tecnociencia, porque la industrialización ya había generado tremendos daños medioambientales, tanto por la explotación de las materias primas como por los residuos generados por la producción industrial (polución del aire, recalentamiento del planeta, desechos industriales, etc.). Sin embargo, algunas tecnociencias (nuevos materiales, alimentos transgénicos, etc.) transforman de tal manera el medio ambiente que tienen impactos sobre grandes zonas del planeta o sobre el conjunto del ecosistema[22]. La aparición y consolidación de los movimientos ecologistas, muchos de cuyos activistas tienen un alto grado de formación científica, es una de las consecuencias de la transformación de la ciencia en tecnociencia. A partir de la crisis de la macrociencia en los años 60, ha surgido un nuevo agente relevante para la actividad tecnocientífica: el movimiento ecologista, cuya fuerza es creciente en los países tecnológicamente más avanzados. Dicha corriente adopta múltiples formas y modos de organización, según los países y los problemas abordados. Por lo general, se trata de organizaciones no gubernamentales (ONGs), denominación que expresa un claro distanciamiento con respecto a las instituciones políticas que han promovido la macrociencia y la tecnociencia.

Nos interesan en particular aquellos movimientos ecologistas que han adoptado algunos aspectos de la tecnociencia a la hora de actuar, por ejemplo Green Peace. Desde nuestro punto de vista, esta organización es un agente tecnocientífico más, aunque interviene desde fuera del sistema SCyT. La formación científica de sus miembros y dirigentes es muy alta. Además, muchas de sus acciones son cuidadosamente diseñadas, de modo que tengan una repercusión considerable en los medios de comunicación, y más concretamente en televisión. Greenpeace utiliza algunas de las nuevas tecnologías de la información y la comunicación (televisión, Internet, etc.) con el fin de incrementar el impacto social y político de sus acciones. Es capaz de negociar con empresarios y políticos y va siendo admitida como un interlocutor válido. Situada en la periferia del sistema SCyT, sus acciones tienen gran incidencia en el núcleo del mismo, en buena medida porque algunos científicos y tecnólogos, junto a una parte significativa de la sociedad, comparten sus ideas y apoyan moralmente sus acciones. Greenpeace ha encontrado su fuente de financiación en la sociedad, lo cual le permite disponer de unos medios tecnológicos mínimos para actuar. Sus acciones están pensadas para ser contempladas en un escenario tecnológico, por lo que incorpora notables técnicas de diseño. Siendo un movimiento crítico de la tecnociencia, ha incorporado el conocimiento científico y la tecnología a su práctica. Por ello afirmamos que se trata de un agente tecnocientífico más, aunque opere desde el contrapoder.

Este tipo de organizaciones proliferan en los últimos años, por ejemplo en la oposición a los alimentos transgénicos, y logran un creciente apoyo social. En algunos países europeos (el caso más notable es Alemania) se han constituido como partidos políticos y participan en gobiernos democráticos, lo que les permite incidir en la toma de decisiones en política científica. Asimismo han logrado la aprobación de diversas leyes, normativas y regulaciones que, aunque muchas veces no se cumplan, constituyen un punto de partida para acciones legales ulteriores. En la década de los 90, las cuestiones medioambientales han comenzado a estar en las agendas del poder político: el Vicepresidente Al Gore afirmó que «debemos hacer que la salvación del medio ambiente sea el principio organizador central de la civilización» y propugnó un Plan Marshall para el medio ambiente, con una financiación de cien millones de dólares. La oposición del Congreso le impidió poner en marcha la iniciativa, al menos en los términos en los que había sido diseñada inicialmente, pero resulta significativo que el máximo dirigente de la política científico estadounidense llegara a hacer estas propuestas, aunque luego no cristalizaran.

En conjunto, el avance del movimiento ecologista durante el último cuarto de siglo XX ha sido muy significativo, constituyendo uno de los movimientos sociales de mayor interés a la hora de enfrentarse con los riesgos y consecuencias negativas de la actividad tecnocientífica. Desastres como los de las centrales nucleares de Harrison y Chernobyl, por no mencionar la oposición al depósito incontrolado de residuos, o a las pruebas nucleares, son otros tantos casos de estudio para la historia de la tecnociencia. Los estudios de ciencia, tecnología y sociedad no deben ocuparse únicamente de los aciertos y los éxitos, sino también de los errores y los fracasos de la tecnociencia. En relación a la iniciativa medioambiental de Gore, merecería la pena estudiar en detalle los debates que suscitó en el Congreso y en los despachos de política científica. Se comprobaría que el Gobierno norteamericano, que fue el principal agente impulsor de la macrociencia en la época de la segunda guerra mundial, ha dejado de serlo a finales del siglo XX, dado el enorme poder que las empresas tecnocientíficas privadas poseen.

Desde una perspectiva axiológica, diremos que la macrociencia y la tecnociencia del siglo XX han provocado la emergencia de un nuevo sistema de valores, los valores ecológicos. Se trata de un sistema de valores reactivo a la tecnociencia, pero que poco a poco va adquiriendo un cierto peso en medios jurídicos, políticos y sociales, llegando incluso a ser interiorizados por algunas empresas tecnocientíficas. Inicialmente, sus defensores han interpretado esa ampliación de la esfera de los valores como una extensión de la ética, y por ello se habla de ética medioambiental. A nuestro modo de ver, no conviene identificar los valores éticos y los ecológicos, sin perjuicio de que puedan estar interrelacionados. Tradicionalmente, se ha tendido a identificar la esfera de los valores con la ética. Una de las tesis de partida en este libro, ya expuesta en publicaciones anteriores[23], afirma la especificidad de los valores ecológicos, frente a su habitual subordinación a los valores morales. Los valores ecológicos no están insertos, hoy por hoy, en el núcleo axiológico de la tecnociencia, pero su presencia social es creciente y poco a poco van siendo interiorizados por muchos tecnocientíficos. Muchas de las actuales controversias sobre las tecnociencias tienen una componente ecológica, por lo que cabe afirmar que, aunque solo sea embrionariamente, el sujeto plural de la tecnociencia tiende a asumir estos nuevos valores ecológicos. Si al conjunto de agentes que acabamos de enumerar como componentes del sujeto de la tecnociencia le añadimos un ecologista con buena formación científica y técnica, por ejemplo un representante de Greenpeace, mejoraremos nuestro análisis de la estructura de la actividad tecnocientífica.

En resumen: la actividad tecnocientífica incluye otros sistemas de valores que, aunque no la guían, sí pretenden controlar y prevenir sus consecuencias y riesgos, sirviendo de contrapeso a los valores puramente económicos, militares, políticos, científicos y técnicos. Los valores ecológicos son un primer ejemplo.

i) Tecnociencia y sociedad.

También cambia profundamente la relación de la tecnociencia con el público y la sociedad. En el caso de la ciencia, la relación entre las comunidades científicas y el público se establecía ante todo a través del contexto de educación y difusión. Con la tecnología se centraba en el contexto de aplicación, al considerar a los ciudadanos como usuarios potenciales de las innovaciones tecnológicas, una vez comercializadas estas en el mercado. La paulatina irrupción y consolidación de la tecnociencia ha cambiado radicalmente esa relación con el público, al haberse producido una crisis de confianza de los ciudadanos con respecto a la investigación tecnocientífica y, en particular, respecto a los informes o evaluaciones de los expertos.

La oposición en los EEUU a la guerra del Vietnam y a la investigación científica con fines militares fue el primer ejemplo de esta pérdida de credibilidad, que cristalizó en el movimiento de mayo de 1968. Las protestas en los campus universitarios norteamericanos no solo entonaban «no más investigación para la guerra», sino también atacaban a las «factorías de conocimiento» que la impulsaban[24]. Otro tanto ocurrió en relación con la energía nuclear, que fue encontrando una oposición creciente en la sociedad, y no solo por el recuerdo de Hiroshima y Nagasaki, sino también por el problema de los residuos nucleares producidos por los laboratorios o por los riesgos de accidentes en los reactores nucleares, algunos de los cuales formaban parte de los macrolaboratorios científicos y estaban ubicados en los campus universitarios. Así como la ciencia había servido para defender la democracia en los años 40, algunas investigaciones eran consideradas ahora como un peligro para la democracia, al estar al servicio exclusivo de organizaciones militares. La militarización parcial de la macrociencia fue criticada desde múltiples perspectivas, calando las críticas en la sociedad y llegando a algunos científicos y dirigentes académicos. La Universidad de Stanford cerró el Stanford Research Institute, que trabajaba mayormente para el Departamento de Defensa. El Instrumentaron Laboratory del MIT cambió por completo sus líneas de investigación, orientándolas a la aviación civil. Solo en el ámbito de la física, los proyectos financiados por organismos militares cayeron del 32 al 19% entre 1971 y 1975, mientras que el Departamento de Defensa, que financiaba un 20,1% del total de la inversión gubernamental básica en 1963, solo tenía a su cargo un 9,3% en 1975. Los efectos de la crisis de la megaciencia militarizada fueron muy reales en los EEUU.

Estas protestas tuvieron repercusión en un asunto que sería central en el debate de finales de los años 60: la exigencia de un mayor control social y democrático de la investigación científica. Con ello se incidía en uno de los pilares del contrato social de la ciencia establecido a partir del informe Bush, según el cual se dejaban amplias cotas de libertad a la hora de elegir sus objetivos de investigación. Incluso en círculos militares comenzó a ponerse en duda la utilidad de la investigación básica para fabricar nuevas armas. La célebre enmienda Mansfield (1970), que fue aprobada por el Congreso y el Senado, no solo exigía a los científicos probar previamente que sus investigaciones tendrían interés real para las instituciones militares que les financiaban, sino que también instituía unos mecanismos mucho más rigurosos de control del gasto, e incluso de los objetivos de la investigación[25]. Esta tendencia no solo se mostró en los EEUU, sino también en otros países, como Gran Bretaña y Francia. En conjunto, cabe afirmar que en la década de los 60 se pusieron en cuestión algunos de los postulados principales del sistema SCyT que había surgido tras la Segunda Guerra Mundial. Con ello emergía un nuevo agente del sistema, la propia sociedad, y lo hacía de manera desconfiada y crítica. La reorientación de la investigación hacia las empresas privadas en los años 80 fue el modo de esquivar esa oposición social a determinadas modalidades de ciencia, puesto que las dificultades en el sector público comenzaron a ser mayores.

Desde el punto de vista axiológico, este es el momento en que los valores sociales irrumpen con fuerza en la actividad científica, introduciendo nuevos criterios de valoración de la tecnociencia. La crisis de la década 1966-76 fue producto de la irrupción de nuevos sistemas de valores, como los sociales, los ecológicos y los jurídicos, que hasta entonces habían tenido muy poco peso relativo en medios científicos.

Prescindamos de lo que ocurrió en la época de la crisis de la megaciencia militarizada, a la espera de estudios más detallados, y pasemos a considerar la relación entre la sociedad y la tecnociencia hoy en día. Aplicando la distinción que solemos usar entre los cuatro contextos de la actividad tecnocientífica (educación, investigación, evaluación y aplicación[26]), cabe decir que la relación de la ciudadanía con la tecnociencia es bastante peor en los cuatro contextos: muchos jóvenes cuestionan más o menos abiertamente la educación tecnocientífica, sectores importantes de la sociedad demandan un control social de la investigación tecnocientífica, se desconfía de los informes y evaluaciones de los expertos en ciencia y tecnología y, por último, se contestan abiertamente algunas de las principales innovaciones tecnocientíficas. En el fondo, se está expresando un cierto rechazo al nuevo y creciente poder de los tecnocientíficos. El control social y la democratización de la ciencia (en nuestro caso de la tecnociencia) son dos de los lemas que aglutinan esas fuerzas sociales que antaño miraban a la ciencia con admiración, y hoy contemplan a la tecnociencia con dudas crecientes, cuando no con un rechazo explícito[27]. Ello provoca que las comunidades tecnocientíficas, cada vez más estrechamente vinculadas a poderes económicos, militares y políticos, se preocupen por la imagen pública de la ciencia y la tecnología, como muestran numerosos programas de difusión y divulgación de la ciencia y la tecnología en los EEUU y en Europa. La tecnociencia se ha convertido en un poder social muy importante y no basta con alfabetizar tecnocientíficamente a los jóvenes, como antaño. Es preciso hacer publicidad de la ciencia para mejorar la relación entre la tecnociencia y el público. Ello es coherente con la impronta empresarial y de mercadotecnia que marca a la ciencia y la tecnología en nuestra época. En resumen, la admiración pública por la ciencia se ha convertido en preocupación social por la tecnociencia, con lo que la relación con el público y la sociedad ha cambiado radicalmente. En muchos casos, esa preocupación tiende a convertirse en rechazo, sobre todo en aquellos países tecnocientíficamente dependientes, es decir, que no cuentan con recursos humanos, financieros ni organizativos como para desarrollar sus propias políticas científicas. El abismo entre el Primer y el Tercer Mundo tiene una indudable componente tecnocientífica. No es extraño que sociedades enteras rechacen mayoritariamente la expansión del poder tecnocientífico a sus países, sobre todo cuando ello implica colonialización tecnológica.

Conviene recordar que la tecnociencia no solo está orientada hacia el control y dominio de la naturaleza, como era el caso en las ciencias baconianas, sino que se proyecta ante todo al control y dominio de las sociedades, como ya hemos señalado anteriormente. Esta es la razón de fondo por la que la relación entre la tecnociencia y la sociedad es conflictiva. En algunos casos, esas transformaciones son bien recibidas por la sociedad. Pero en la mayoría de las ocasiones surgen reticencias, cuando no rechazos. Algunos sectores sociales podrán apoyar determinados programas tecnocientíficos, en la medida en que esperan obtener beneficios de ellos. Tal es el caso de los grandes programas de investigaciones biomédicas (cáncer, sida) o medioambientales (productos anticontaminantes, bio-remediación, etc.). Pero otras muchas líneas de investigación e innovación suscitan dudas y desconfianza, cuando no una abierta repulsa. De ahí que las empresas tecnocientíficas tengan que incluir acciones de publicidad y divulgación positiva entre sus líneas estratégicas. Estamos nuevamente ante conflictos de valores, cuya resolución no es sencilla. Los estudios de percepción social de la ciencia, cualitativos o cuantitativos, forman parte de la actividad tecnocientífica, a diferencia de la ciencia moderna, que raras veces prestó atención a estos problemas. Saber presentar la tecnociencia a la sociedad en general, y no solo a las capas altas de misma, como ocurría en la ciencia moderna, es un requisito más de la actividad tecnocientífica, precisamente porque buena parte de ella está orientada a la transformación de las sociedades.

j) Tecnociencia y política internacional.

La macrociencia surgió en el contexto de la segunda guerra mundial y, como veremos en el capítulo 4, fue una iniciativa netamente nacional, orientada al incremento de la influencia militar, industrial, política y comercial norteamericana. Su desarrollo en Europa en la primera época de la postguerra fue tutelado por los EEUU, por lo que las escasa iniciativas de macrociencia europea pueden ser consideradas como una expansión de la macrociencia norteamericana. Sin embargo, la consolidación de la URSS como una potencia mundial, cada vez más enfrentada a los EEUU, generó una fuerte confrontación científico-tecnológica entre ambas. En la época de la Guerra Fría no había transferencia alguna de conocimiento científico entre ambos bloques, a no ser en ámbitos poco importantes de la investigación y a través de los canales académicos tradicionales. Hasta los años 60, la separación entre los dos sistemas de ciencia y tecnología fue estricta, considerándose un delito de espionaje o de alta traición la comunicación de conocimiento que tuviera importancia estratégica. Se rompía así una venerable tradición internacionalista de la ciencia moderna, puesto que la macrociencia estaba dividida en dos grandes bloques, prácticamente incomunicados entre sí. Los científicos e ingenieros tuvieron que aceptar esta situación, tanto en un lado como en otro. Aunque en la época de la ciencia moderna y de la tecnología industrial siempre había habido algunos ámbitos secretos en la investigación, una situación como la de los años 50 y 60 no tiene precedentes en la historia de la ciencia. Por tanto, estamos ante otra diferencia entre ciencia y tecnociencia, que conviene comentar brevemente.

En el bloque occidental, la dependencia científica y tecnológica de los antiguos aliados respecto a los EEUU fue estricta durante esos años, al igual que en el bloque oriental. Frente a la antigua rivalidad entre la ciencia inglesa y la ciencia continental, o entre la ciencia alemana y la francesa, por mencionar dos ejemplos del siglo XVIII y XIX, la época de la postguerra generó una reorganización de la ciencia internacional, aglutinada en dos bloques estrictamente jerarquizados. Aparte, prácticamente excluido de los avances científicos y tecnológicos, quedaba el Tercer Mundo. La estructura geostratégica del mundo tuvo un reflejo directo en los sistemas SCyT. Los valores internacionalistas declinaron rápidamente ante la confrontación política, militar, diplomática e industrial que caracterizó a la Guerra Fría. Epítetos como «ciencia capitalista» y «ciencia comunista» eran habituales en aquellos tiempos.

La segunda guerra mundial fue aprovechada por los EEUU para captar a buena parte de los científicos europeos que huyeron de la persecución nazi. Durante la postguerra, esa emigración continuó, puesto que Norteamérica era el único país occidental que posibilitaba el desarrollo de aquellas investigaciones que requerían grandes equipamientos y fuerte financiación. Este fue uno de los beneficios derivados de la decisión de mantener la alianza entre políticos, militares, industriales y científicos después de la guerra, en lugar de desmantelar el dispositivo que se había creado durante la contienda. La consolidación del sistema SCyT estadounidense en los años 50 no solo tuvo efectos en la ciencia norteamericana, sino también a nivel internacional, al situar a dicho sistema de ciencia y tecnología en una postura de liderazgo internacional claro, con toda una serie de consecuencias derivadas: captación de cerebros, formación de los futuros líderes de la ciencia europea, canalización de la cooperación a través de organizaciones de interés estratégico (como la OTAN), etc. La transferencia de tecnología, en particular militar, fue usada como una moneda de cambio para lograr objetivos estratégicos, políticos, económicos y comerciales. Asimismo se transfería parte del conocimiento a cambio de participar en los costes de financiación de los macroproyectos de investigación, como veremos más adelante en el caso del telescopio espacial Hubble. En resumen, el poder de la ciencia y la tecnología se mostraba también como instrumento para la diplomacia exterior.

Sin embargo, hasta los años 60 la política científica estadounidense no había sido sistematizada en sus aspectos internacionales. La incorporación de los temas de ciencia y tecnología a la política internacional, obra de Kissinger en la época de Nixon, la creación de la Tricontinental (1973) a iniciativa de Rockefeller y la tentativa de Carter de fundar una Agencia de Cooperación Científica y Tecnológica, orientada al Tercer Mundo, fueron pasos importantes en este sentido. La última fracasó, en buena medida por las reticencias de las grandes corporaciones empresariales norteamericanas. Pero los acuerdos de cooperación científico-tecnológica con otros países comenzaron a formar parte de la política internacional de los EEUU. Los convenios que firmó Kissinger con la URSS y la administración Reagan con China, aunque fueron de ámbito limitado, mostraron que la cooperación científico-tecnológica podía tener una importante función a la hora de terminar con la Guerra Fría. Ambas iniciativas fueron hechas con vistas al futuro, pensando en los enormes mercados que ambos países ofrecían para las empresas norteamericanas.

Las grandes corporaciones industriales y, posteriormente, las empresas de nuevas tecnologías, tuvieron mucho que ver con esta ampliación de la política científica al ámbito internacional, pero durante los años 60 y 70 la iniciativa siempre la tenía el Gobierno. Con la progresiva emergencia de la tecnociencia, la situación cambió. Algunas grandes empresas, por ejemplo en el ámbito de las TIC (IBM, Hewlett-Packard, Microsoft, etc.), desarrollan sus propias políticas internacionales de I+D+i, transfiriendo a otros países del mundo parte de los procesos de producción de nuevas tecnologías, aunque nunca la dirección ni el diseño. Se inicia así la época de la globalización y de las empresas-red[28], coherentemente con las características estructurales de la tecnociencia.

La expansión internacional de la tecnociencia norteamericana requeriría estudios amplios y específicos, sector por sector. Aquí nos limitaremos a señalar que las diferencias entre el internacionalismo de los científicos modernos y la internacionalización de las actuales empresas tecnocientíficas, empezando por las norteamericanas, son muy grandes. Ante todo porque las nuevas tecnologías transforman las sociedades en las que se propagan, por modificar los hábitos de vida y las capacidades de acción de las personas. La expansión de la ciencia europea por todo el mundo se llevó a cabo a través del contexto de educación y difusión. La tecnociencia, en cambio, se propaga desde el contexto de aplicación, precisamente porque es una actividad transformadora del mundo.

Han sido muchos quienes ven en esta expansión de la tecnociencia norteamericana una nueva forma de colonización, centrada en la apropiación y comercialización del conocimiento, no de los recursos naturales necesarios para la industria. Así lo denunció el grupo de los 77, del que formaban parte la mayoría de los países del Segundo y del Tercer Mundo. La tesis es muy plausible. En cualquier caso, debería hablarse de tecnocolonialismo, para distinguirlo del colonialismo europeo de la época científico-industrial.

k) La gestión de la tecnociencia.

Se requiere organizar el trabajo tecnocientífico y gestionar los recursos humanos disponibles, no solo a la hora de investigar, sino en todas las fases y contextos de la actividad tecnocientífica. La autoridad epistémica y el saber técnico ya no bastan. El agente o empresario tecnocientífico ha de saber algo de ciencia y de tecnología, pero, sobre todo, ha de tener conocimientos sobre gestión de recursos humanos y económicos. El marketing y la propaganda son características que distinguen a la tecnociencia, sin perjuicio de que en la ciencia moderna haya habido precedentes importantes de estas habilidades. Muchos dirigentes de equipos investigadores desarrollan la mayor parte de su actividad fuera del laboratorio, buscando recursos para las investigaciones, haciendo relaciones públicas, en una palabra, vendiendo el producto obtenido de la investigación. Esta característica convierte a algunos científicos e ingenieros en empresarios del conocimiento, con la peculiaridad de que fabrican un producto de gran prestigio histórico, el conocimiento, tradicionalmente considerado como un bien en sí. Los modelos de gestión del conocimiento forman una parte importante de la política científica, sea estatal o empresarial.

Por lo general, la tecnociencia produce una considerable jerarquización en el interior de los equipos tecnocientíficos, puesto que no solo se requiere investigación, sino también desarrollo e innovación. El objetivo último es la innovación, no el avance en el conocimiento. Esto último es deseable, pero instrumentalmente. Además, hay un alto grado de opacidad en relación a los objetivos concretos de la actividad investigadora, buena parte de la cual es confidencial o secreta. Un científico que trabaja en una empresa tecnocientífica puede ignorar por completo el sentido último de las investigaciones que realiza. Adscrito a una cadena de producción de conocimiento, solo conoce una pequeña parcela del proyecto de investigación en el que colabora, sobre todo en el caso de los macroproyectos. Frente al científico clásico, que afrontaba unos problemas que conocía e intentaba resolver, el tecnocientífico desarrolla un trabajo investigador a cambio de una retribución económica, convirtiéndose en un asalariado más. Consecuencia de ello son los conflictos laborales y personales dentro de las empresas tecnocientíficas, que suelen adoptar el disfraz de divergencias conceptuales o técnicas. Gestionar recursos humanos es una necesidad para cualquier empresa tecnocientífica de tamaño medio. Por otra parte, los valores sindicales (estabilidad en el puesto de trabajo, nivel salarial, posibilidad de una carrera como científico, etc.) se insertan en el seno de la actividad tecnocientífica, sobre todo si esta tiene financiación pública. De nuevo estamos ante conflictos estructurales, derivados del nuevo modo de producción de conocimiento. Las pugnas por una plaza fija en las universidades y centros de investigación suelen ser manifestaciones canónicas de este tipo de conflictos, de gran interés para la sociología de la tecnociencia.

Las complejas cadenas de control y evaluación de la producción de conocimiento generan una enorme burocracia, hasta el punto de que buena parte del tiempo se gasta redactando proyectos, informes y propuestas, cada vez más complejos técnicamente. Surgen expertos en este tipo de acciones y nuevas habilidades retóricas para redactar este tipo de documentos. Aparte de los expertos en investigación, desarrollo e innovación, las empresas tecnocientíficas requieren expertos en labores administrativas. Un buen gerente puede ser tan importante o más que un buen investigador. Es otro de los aspectos de la empresarialización de la tecnociencia, que muchas veces impacienta a los científicos clásicos. En conjunto, dichas empresas se caracterizan por una alta división del trabajo, puesto que se requieren habilidades muy distintas para que la empresa progrese. El objetivo principal es el progreso y el buen funcionamiento de la empresa TyC, lo cual requiere saber aplicar políticas económicas de crecimiento, estabilización y reconversión, según los casos. Todo ello era impensable en la ciencia clásica, guiada por el ideal del crecimiento acumulativo. Las empresas tecnocientíficas duran menos que las instituciones científicas, debido al gran ritmo de cambio e innovación que impone la tecnociencia. Ello ocurre sin que cambien los paradigmas del conocimiento. La dinámica de la tecnociencia es mucho más compleja que la de la ciencia y tiene que ser analizada desde múltiples perspectivas. Los análisis puramente epistémicos, que solamente se fijan en el ritmo de avance del conocimiento, resulta insuficientes. La economía de la ciencia se convierte en una rama fundamental de los estudios de ciencia y tecnología, consecuentemente con el hecho de que la producción de tecnociencia deviene un sector económico nuevo.

El sector económico CyT está teniendo un gran desarrollo en los últimos años, y no solo en las instituciones estatales, sino también en el sector privado. Algunos proyectos tecnocientíficos son financiados por entidades de capital-riesgo y no faltan algunas grandes empresas tecnocientíficas que recurren a la Bolsa como vía para obtener financiación. Hoy en día, el 70% de la inversión en I+D+i en los EEUU proviene de la iniciativa privada, quedando solo un 30% a cargo del Estado y las instituciones públicas. Ello implica un cambio radical en la estructura económica de la tecnociencia, así como en los criterios de evaluación de las instituciones y empresas tecnocientíficas. La ciencia moderna fue financiada por los Estados y por algunos mecenas. La tecnociencia contemporánea, en cambio, tiende a buscar financiación en los mercados de capitales, como cualquier otra gran empresa. La financiación pública sigue existiendo, pero su papel es el catalizar las iniciativas. La creación de empresas incubadoras es cada vez más frecuente en la tecnociencia, contrariamente al modelo institucional que caracterizó a la ciencia moderna.

Sin entrar en mayores detalles, podemos concluir que tanto desde el punto de vista financiero como desde la perspectiva laboral, la ciencia y la tecnociencia se diferencian radicalmente, y no solo por el tamaño, sino ante todo por su diferente estructura económica y de trabajo.

l) Tecnociencia y derecho.

La actividad tecnocientífica está regulada jurídicamente en varias de sus fases y, al desarrollarse en un mercado competitivo, da lugar a numerosos problemas y pleitos jurídicos. Uno de los más característicos es el de la propiedad del conocimiento, que se concreta a la hora de patentar las innovaciones. Los términos jurídicos mediante los cuales se registre una patente en las oficinas estatales correspondientes tienen una enorme importancia para el desarrollo ulterior de los proyectos y para el logro de beneficios, motivo por el cual los investigadores que han logrado resultados patentables han de contactar con expertos en leyes que definan adecuadamente la propiedad del conocimiento. No hay que olvidar que, tanto en el caso de la macrociencia como en el de la tecnociencia, los proyectos de investigación requieren la colaboración de varios agentes, por ejemplo académicos, industriales, militares o institucionales. Fijar el reparto de la propiedad del conocimiento adquirido es una cuestión ante todo jurídica. Abundan los casos en los que los mayores éxitos de un proyecto dependieron del acierto a la hora de registrar y comercializar las patentes[29].

Por tanto, las empresas tecnocientíficas han de contar con la colaboración de expertos en leyes, lo que no tiene precedentes en la ciencia moderna, donde los conflictos solían ser dirimidos por comisiones de arbitraje integradas por científicos de gran prestigio. Dichas prácticas de resolución de conflictos siguen existiendo, pero en muchos casos se apela a instancias de otro tipo. Los conflictos entre empresas tecnocientíficas rivales, por ejemplo, frecuentemente acaban en tribunales. Otro tanto cabe decir de la privatización del conocimiento, como apuntamos anteriormente. La inscripción, mantenimento y gestión de las patentes, al igual que los problemas de propiedad intelectual, devienen problemas básicos para la gestión de las empresas tecnocientíficas. También se plantean problemas laborales y de contratación en el seno de las mismas, que han de ser resueltos conforme a las legislaciones correspondientes. Ello sin olvidar que algunas empresas privadas de I+D optan por instalarse en países con muy débil poder estatal, precisamente para rehuir estos problemas jurídicos, incluidos los impuestos fiscales. Todo esto era impensable en la época de la ciencia y la tecnología moderna, por lo que estamos ante un nuevo rasgo distintivo de la tecnociencia. Algunas universidades y centros de investigación, y por supuesto las empresas de I+D, han basado sus ingresos económicos durante años en la explotación de unas pocas patentes, lo cual ha permitido financiar las investigaciones ulteriores y hacer rentable la actividad investigadora, incluida la investigación básica.

Por otra parte, la investigación financiada públicamente ha de ajustarse a una serie de normas jurídicas, tanto a la hora de presentar los proyectos como al llevarlos a cabo y justificar el gasto. Los investigadores principales han de comprometerse cada vez con mayor frecuencia a respetar una serie de principios éticos y medio-ambientales, aparte de las regulaciones propiamente jurídicas. En conjunto, la tecnociencia está ante una serie de constraints (constricciones, ligaduras) que son muy diferentes a las de la ciencia moderna. Las restricciones jurídicas de la investigación tecnocientífica son muy efectivas en los países democráticos, razón por la cual algunas empresas tecnocientíficas optan por la extraterritorialidad, ubicando sus sedes centrales, e incluso sus laboratorios, en países con menor control político y jurídico. Al igual que otros muchos grandes financieros, quienes detentan el capital intelectual recurren a procedimientos de dudosa legitimidad para esquivar ese tipo de controles. Por tanto, también en este aspecto las empresas tecnocientíficas tienden a comportarse ante todo como empresas, contrariamente a la ciencia moderna o al acendrado patriotismo y espíritu democrático de muchos científicos en la época de la emergencia de la tecnociencia.

m) Tecnociencia y valores.

Desde un punto de vista axiológico, la situación que estamos describiendo puede resumirse diciendo que, aparte de los valores epistémicos, técnicos y económicos (y en su caso militares, cuando hablamos de descubrimientos o invenciones con importancia estratégica), en la actividad tecnocientífica están presentes otros varios subsistemas de valores: ecológicos, políticos, sociales, jurídicos, etc. Algunos de esos valores van siendo interiorizados por los tecnocientíficos, aunque a regañadientes. Muchos de ellos añoran la época de la autonomía axiológica, cuando primaban claramente sus valores específicos. Por ello, como ya hemos apuntado anteriormente, en el seno de la tecnociencia no solo intervienen una pluralidad de subsistemas de valores, sino que además existe un conflicto estructural de valores que no se producía en la época de la ciencia y la tecnología industrial, o al menos en un grado mucho menor. Diremos pues que la tecnociencia se caracteriza por la existencia de conflictos de valores, los cuales pueden adoptar modalidades diversas según los países, los momentos y las disciplinas. No hay que olvidar que la tecnociencia se sigue mostrando altamente eficaz a la hora de transformar el mundo, o de dominar la naturaleza, si se prefiere. El problema consiste en que este segundo objetivo de la ciencia baconiana encuentra importantes contrapesos en esos otros subsistemas de valores que, aunque no hayan sido asumidos por las comunidades tecnocientíficas, tienen un predicamento cada vez mayor en la sociedad.

Puede llamar la atención que hasta ahora no hayamos hablado de los valores morales. En la medida en que la tecnociencia es una actividad humana, cuestiones como la honestidad, la veracidad o la confianza se suscitan una y otra vez. Siendo, además, una actividad que transforma el mundo, surgen problemas éticos en función de los objetos transformados. Y puesto que las acciones técnicas son intencionales, la mayor o menor moralidad de dichas intenciones da lugar a aspectos éticos significativos. Por tanto, los valores morales tienen también un papel en la tecnociencia, sobre todo en algunas disciplinas y momentos. Sin embargo, desde la perspectiva axiológica que hemos adoptado, hay otros sistemas de valores mucho más significativos que los morales, sin perjuicio de que estos puedan primar y ser determinantes a la hora de tomar determinadas decisiones. Otro tanto cabe decir de otros sistemas de valores, como los religiosos y los estéticos. Veremos en el capítulo 5 que el pluralismo axiológico exige tener en cuenta numerosos valores, algunos de los cuales priman en unos momentos, pero no siempre. No hay omnipresencia de un único sistema de valores, ni siquiera de uno que resulte determinante por doquier.

n) Tecnociencia e informática.

La ciencia moderna se apoyó ante todo en las matemáticas, mientras que la tecnociencia requiere un formalismo adicional, la informática. El cambio es importante, porque la informática permite representar y simular diversos tipos de acciones, y ello de manera recursiva. La capacidad operatoria de las matemáticas es grande, pero la de la informática es mucho mayor. El tremendo auge de la informática y de las tecnociencias que se derivan de ella (cibernética, robótica, inteligencia artificial, telemática, etc.) no es un detalle incidental, sino que ilustra otro rasgo distintivo de la tecnociencia del siglo XX. Los dos principales pivotes metodológicos de la ciencia moderna fueron las matemáticas y el método experimental. La informática y las simulaciones constituyen las dos grandes novedades metodológicas del siglo XX, cuya irrupción, desarrollo y consolidación marcan el paso de la ciencia a la tecnociencia desde el punto de vista de los lenguajes formales y la metodología.

Los modelos matemáticos permiten analizar y descubrir nuevas relaciones entre los objetos estudiados. Otro tanto ocurre con la informática, con la diferencia que esta se aplica a sistemas muy diversos, y en particular a los propios sistemas tecnológicos, que pueden ser simulados informáticamente. Como indica Aracil:

El computador tiene la virtualidad de poder ser programado de modo que su comportamiento sea el que establece el programa. Cambiando este, tenemos un nuevo comportamiento. De este modo, el computador puede imitar o simular el comportamiento de cualquier máquina; sus posibilidades, en este orden de cosas, son inmensas.[30].

Dada una máquina cualquiera, llamaremos infomáquina a su simulación informática, caso de ser posible. En principio, prácticamente todos los artefactos mecánicos tienen sus correspondientes infomáquinas. Otro tanto ocurre con las máquinas termodinámicas y, lo que es más importante, con un nuevo tipo de artefactos que surgieron en el siglo XIX, uno de cuyos ejemplos es el regulador de Watt. Fue Maxwell quien se ocupó de teorizar dichos reguladores centrífugos y mostró la importancia de sus válvulas, cuya apertura o cierre gradual permitían mantener la velocidad de la máquina de vapor aproximadamente constante. Por tanto, algunas de sus piezas no habían sido diseñadas para generar energía, sino para introducir información en la propia máquina, de modo que esta pudiera funcionar automáticamente. El regulador de Watt lo hacía mecánicamente, pero pronto se comprobó que la electricidad era el instrumento ideal para transmitir información. Este tipo de dispositivos, cuya función consiste en introducir información sobre el estado de las máquinas, fueron imprescindibles para las redes de distribución de energía eléctrica y las redes telefónicas en el siglo XIX, así como para las tecnologías de control automático que dieron lugar ulteriormente a la robótica[31]. Los servomecanismos también incorporan estos bucles de realimentación de información, que son habituales en las herramientas informáticas:

Se conoce por realimentación (feed back) el proceso en virtud del cual al realizar una acción global, sucesión de acciones parciales, con el fin de alcanzar un determinado objetivo, se realimenta continuamente información sobre los efectos de las acciones previas, de modo que las acciones sucesivas tengan presentes los resultados de aquellas acciones pasadas. […] El mecanismo de realimentación consiste en una cadena sucesiva de acción - resultado (estado) - realimentación de información - análisis de la discrepancia con el objetivo - nueva acción, en su caso, y así sucesivamente[32].

Las máquinas informáticas pueden llevar a cabo estos bucles sin ningún problema, debido a que están basadas en la continua realimentación de la información por medio de lenguajes de programación. Ello permite iterar las acciones modificando las condiciones iniciales y de contorno, con lo cual se accede a una nueva modalidad de experimentación, basada en las simulaciones informáticas. En términos filosóficos, la informática amplía enormemente el campo de las acciones posibles, que es muy distinto al de los mundos posibles. Modificando los parámetros y la programación, es posible simular muchas más acciones y procesos que con los modelos matemáticos. Por ejemplo, se pueden representar las posibles ondas de expansión de una bomba, el movimiento de varios aviones en un espacio aéreo, las posibles trayectorias de un misil, los efectos destructivos de un depredador sobre un banco de peces, la evolución previsible de una cosecha, la situación de las capas altas de la atmósfera, la evolución de una economía en función de unos datos macroeconómicos u otros, los resultados de explotación de una empresa, etc. La informática posibilita un nuevo tipo de experimentación y predicción, que no es determinista sino probabilitaria. Todo ello es imprescindible a la hora de calcular los efectos, las consecuencias y los riesgos de las acciones tecnocientíficas, tanto porque no se dispone de otros instrumentos de análisis como, sobre todo, porque la realimentación de los datos permite llevar a cabo múltiples experimentos de una manera virtual. Antes de operar y experimentar materialmente, las simulaciones informáticas permiten analizar múltiples escenarios o estados posibles, lo cual implica un enorme ahorro de costes económicos, ecológicos y de tiempo. De ahí que la informática sea el instrumento principal para investigar el dominio de las acciones posibles, incluidas las acciones de las múltiples infomáquinas que reproducen el comportamiento de las máquinas reales. Por otra parte, puesto que las máquinas son un tipo de sistemas, la informática permite asimismo investigar la evolución de otros tipos de sistemas (físicos, químicos, biológicos, económicos, sociales, urbanos, etc., incluidos los sistemas SCyT de política científico-tecnológica). Como señala Aracil, «se puede hacer de ella una réplica potencial de cualquier sistema que tratemos de estudiar»[33]. Puesto que en esta obra hemos optado por una ontología sistémica a la hora de estudiar la tecnociencia, es lógico que atribuyamos una gran importancia metodológica a la informática, al ser el instrumento formal más adecuado para estudiar los diversos sistemas, tanto desde una perspectiva estática como dinámica.

La emergencia de la informática en la segunda mitad del siglo XX tiene una gran importancia filosófica y científica, entre otras razones porque permite representar sistemas complejos, que no son tratables mediante los recursos de la matemática clásica. Von Neumann diseñó el ENIAC y el EDVAC con el fin de resolver problemas no lineales que, siendo muy importantes para la física, no eran abordables mediante el Cálculo Diferencial e Integral, ni tampoco mediante los procedimientos del Álgebra. Por otra parte, la informática ha permitido el desarrollo de la cibernética (N. Wiener) y ha generado modelos muy importantes para la simulación en dinámica de sistemas (Prigogine). Como indica Javier Aracil, por sistema se entiende «una entidad compleja, formada por partes en interacción adecuadamente coordinadas»[34]. Ahora bien, «esas partes no tienen sentido más que en la medida en que se integran en la unidad de orden superior que es el propio sistema»[35]. Pues bien, «por comprender el funcionamiento de un sistema se entiende, habitualmente, el conocer cómo las partes de las que está formado se influyen entre sí, de modo que de la adecuada coordinación de estas influencias se desprenda el funcionamiento global del sistema»[36]. Ello es posible gracias a la construcción de modelos y simulaciones informáticas. Una vez analizado el comportamiento de un sistema, la informática puede construir otro sistema artificial (denominado modelo) que tenga las mismas componentes del sistema estudiado y se comporte análogamente:

el estudio de un sistema concreto, mediante la dinámica de sistemas, conduce a la construcción de un modelo que es susceptible de ser programado en un computador; de este modo, en este último se tiene una réplica o copia del sistema concreto objeto de estudio: con ayuda del computador se obtiene la evolución a lo largo del tiempo de las magnitudes consideradas relevantes del sistema estudiado[37].

Puesto que la ciencia se ha ido ocupando de estudiar sistemas cada vez más complejos, la informática se ha convertido en indispensable para la investigación científica. En el apartado 2.3 mencionaremos múltiples ejemplos de esta omnipresencia de la informática en la tecnociencia actual. Hablando en términos generales, cabe afirmar que las diversas herramientas informáticas generan una nueva representación del conocimiento, por una parte, y también del cambio y la evolución de los sistemas físicos, biológicos, etc., cosa que no era posible con la matemática tradicional, centrada en lo continuo, no en lo discreto. Con mayor o menor precisión y adecuación, la informática permite representar sistemas de gran complejidad (físicos, químicos, biológicos, sociales, económicos, etc.), ampliándose así el campo de la investigación científica. Otro tanto cabe decir de los sistemas tecnológicos, que han sido radicalmente transformados por la irrupción de la informática, sobre todo en lo que respecta al control de su funcionamiento. La automatización del funcionamiento de las máquinas es el gran logro de la informática, habiéndose incorporado a los más diversos sectores económicos y sociales. Pues bien, otro tanto ocurre en el caso de la actividad científica, la mayor parte de la cual está hoy en día automatizada, y por ende controlada por artefactos automáticos.

La mediación informática es uno de los principales requisitos de la emergencia de la tecnociencia. Frente a las ciencias matematizadas (en mayor o menor grado) de la época moderna, la gran mayoría de las tecnociencias están informatizadas, y por ende mediatizadas por la tecnología en las propias representaciones del conocimiento científico, así como en las operaciones que se llevan a cabo con los datos. La tecnociencia se basa en un nuevo formalismo, apto para representar las acciones, no solo los conocimientos. A diferencia de la simple macrociencia, la tecnociencia propiamente dicha requiere la informatización de la actividad científica e ingenieril. La noción de tecnociencia, entendida como infociencia, o ciencia informatizada) es más precisa que la de macrociencia, porque tiene en cuenta factores más relevantes que el simple incremento del tamaño de la ciencia. En el paso de la ciencia a la tecnociencia no solo cambia el tamaño. También, y ante todo, la forma. Y no solo la forma de representar el conocimiento, sino ante todo la forma de accionar científicamente.

o) Tecnociencia y sociedad de la información y el conocimiento.

La macrociencia surgió como un desarrollo de la sociedad y, como vimos, supuso una industrialización del conocimiento científico. La tecnociencia, en cambio, está vinculada a una nueva modalidad de sociedad, que ha empezado a configurarse en las dos últimas décadas del siglo XX: la sociedad de la información y el conocimiento. Hay muchas diferencias entre esta y la sociedad industrial, pero la más importante para nuestro objetivo consiste en el nuevo status económico del conocimiento validado y contrastado, y en particular del conocimiento científico.

La información y el conocimiento pasan a ser una nueva fuente de riqueza y poder. Por ello, el conocimiento científico deviene un bien básico para las grandes empresas y agencias de poder. En lugar de controlar, acumular y manufacturar las materias primas, con el fin de obtener beneficios gracias a ello, la economía informacional se basa en el hallazgo, elaboración y comercialización de yacimientos de conocimiento. La ciencia básica adquiere así una enorme relevancia económica y política, por ser una gran fuente de riqueza y de poder. Los poderes económicos, políticos y militares tienden a apropiarse del conocimiento científico, generando para ello Agencias y Departamentos de investigación, desarrollo e innovación. Las comunidades científicas y tecnológicas son capaces de generar noo-riquezas, por usar la terminología de Sáez Vacas[38]. El desarrollo de la sociedad industrial y las grandes guerras del siglo XX mostraron fehacientemente que dicha modalidad de riqueza es uno de los motores de la economía y de la sociedad. Los poderes de la nueva modalidad de sociedad tienen claro que la producción, gestión y rentabilización del conocimiento validado es indispensable para sus propios intereses, y por ello se introducen en el sector de las noo-riquezas, hasta entonces cultivado básicamente por científicos e ingenieros.

El tránsito de la macrociencia a la tecnociencia se produce con la emergencia de la sociedad de la información y el conocimiento. Se siguen manteniendo los macroproyectos de investigación, que son el motor de la economía informacional, pero también se promueven acciones de explotación de ámbitos más pequeños de la noosfera. El nuevo sistema científico-tecnológico, que se había configurado en torno a unas pocas disciplinas, se generaliza a todos los ámbitos de la ciencia y la tecnología, sean estos pequeños o grandes. La tecnociencia no es cuestión de grandes escalas. Los pequeños proyectos de investigación e innovación pasan a tener gran importancia, siempre que sean diseñados y gestionados conforme al modelo de organización de la actividad que vimos en el caso de la macrociencia. Las pequeñas minas de conocimiento pueden ser igual de rentables que las grandes, e incluso más. La tecnociencia se basa en la explotación sistemática de los yacimientos de conocimiento científico y tecnológico, en la medida en que dichas vetas, sean pequeñas o grandes, tienen un valor considerable en la sociedad de la información.

Desde una perspectiva axiológica, la novedad estriba en lo siguiente: el conocimiento había sido considerado como un bien epistémico. Ningún científico de la época moderna tuvo dudas al respecto. Es preciso buscar el conocimiento, porque este es un bien en sí, independientemente de que sea aplicable o no, o de que rompa con los sistemas previos de saber. Con la llegada de la tecnociencia, la información y el conocimiento siguen siendo bienes epistémicos, pero devienen bienes tecnológicos, económicos, militares y políticos. Dicho de otra manera: el conocimiento científico pasa a ser valorado en función de nuevos sistemas de valores. Consecuentemente, surgen dudas sobre la bondad universal de dicho conocimiento. Un descubrimiento científico con valor estratégico en el ámbito militar, por ejemplo, es un bien indudable para quienes poseen dicho conocimiento, y a la vez un mal para quienes no lo poseen y soportan las consecuencias de su aplicación, una vez desarrollado tecnológicamente e implementado para los campos de batalla. Las bombas de Hiroshima y Nagasaki son un punto de no retorno para quienes ingenuamente creyeron que el conocimiento siempre es un bien. En otras palabras: el conocimiento tecnocientífico ha dejado de ser un bien en sí para ser un bien desde unos puntos de vista y un mal desde otros.