Any intelligent fool can make things bigger and more complex … It takes a touch of genius and a lot of courage to move in the opposite direction.
Albert Einstein
 
Let’s move on about 40 years from John Gurdon’s work, and a decade on from Dolly. There is so much coverage in the press about cloned mammals that we might think this procedure has become routine and easy. The reality is that it is still highly time-consuming and laborious to create clones by nuclear transfer, and consequently it’s generally a very costly process. Much of the problem lies in the fact that the process relies on manually transferring somatic nuclei into eggs. Unlike the amphibians that John Gurdon worked on, there’s the additional problem that mammals don’t produce very many eggs at once. Mammalian eggs also have to be extracted carefully from the body, they aren’t just ejected into a tank like toad eggs. Mammalian eggs have to be cultured incredibly delicately to keep them healthy and alive. Researchers need to remove the nucleus manually from an egg, inject in a nucleus from an adult cell (without damaging anything), then keep culturing the cells really, really carefully until they can be implanted into the uterus of another female. This is incredibly intensive and painstaking work and we can only do it one cell at a time.
For many years, scientists had a dream of how they would carry out cloning in an ideal world. They would take really accessible cells from the adult mammal they wanted to clone. A small sample of cells scraped from the skin would be a pleasantly easy option. Then they would treat these cells in the laboratory, adding specific genes, or proteins, or chemicals. This treatment would change the way the nuclei of these cells behaved. Instead of acting like the nucleus of a skin cell, they would act the same way as nuclei from newly fertilised eggs. The treatment would therefore have the same ultimate effect as transferring the nuclei from adult cells into fertilised eggs, from which their own nuclei had been removed. The beauty of such a hypothetical scheme is that we’d have bypassed most of the really difficult and time-consuming steps that require such a high level of technical skill in manipulating tiny cells. This would make it an easily accessible technique and one that could be carried out on lots of cells simultaneously, rather than just one nuclear transfer at a time.
Okay, we’d still have to find a way of putting them into a surrogate mother, but we only have to go down the surrogate mother route if we want to generate a complete individual. Sometimes this is exactly what we want – to re-create a prize bull or prize stallion, for example, but this is not what most sane people want to do with humans. Indeed cloning humans (reproductive cloning) is banned in pretty much every country which has the scientists and the infrastructure to undertake such a task. But actually for most purposes we don’t need to go as far as this stage for cloning to be useful for humans. What we need are cells that have the potential to turn into lots of other cell types. These are the cells that are known as stem cells, and they are metaphorically near the top of Waddington’s epigenetic landscape. The reason we need such cells lies in the nature of the diseases that are major problems in the developed world.
In the rich parts of our planet the diseases that kill most of us are chronic. They take a long time to develop and often they take a long time to kill us when they do. Take heart disease, for example – if someone survives the initial heart attack they don’t necessarily ever go back to having a totally healthy heart again. During the attack some of the heart muscle cells (cardiomyocytes) may become starved of oxygen and die. We might imagine this would be no problem, as surely the heart can create replacement cells? After all, if we donate blood, our bone marrow can make more red blood cells. Similarly, we have to do an awful lot of damage to the liver before it stops being able to regenerate and repair itself. But the heart is different. Cardiomyocytes are referred to as ‘terminally differentiated’ – they have gone right to the bottom of Waddington’s hill and are stuck in a particular trough. Unlike bone marrow or liver, the heart doesn’t have an accessible reservoir of less specialised cells (cardiac stem cells) that could turn into new cardiomyocytes. So, the long-term problem that follows a heart attack is that our bodies can’t make new cardiac muscle cells. The body does the only thing it can and replaces the dead cardiomyocytes with connective tissue, and the heart never beats in quite the same way it did before.
Similar things happen in so many diseases – the insulin-secreting cells that are lost when teenagers develop type 1 diabetes, the brain cells that are lost in Alzheimer’s disease, the cartilage producing cells that disappear during osteoarthritis – the list goes on and on. It would be great if we could replace these with new cells, identical to our own. This way we wouldn’t have to deal with all the rejection issues that make organ transplants such a challenge, or with the lack of availability of donors. Using stem cells in this way is referred to as therapeutic cloning; creating cells identical to a specific individual in order to treat a disease.
For over 40 years we’ve known that in theory this could be possible. John Gurdon’s work and all that followed after him showed that adult cells contain the blueprints for all the cells of the body if we can only find the correct way of accessing them. John Gurdon had taken nuclei from adult toads, put them into toad eggs and been able to push those nuclei all the way back up Waddington’s landscape and create new animals. The adult nuclei had been – and this word is critical – reprogrammed. Ian Wilmut and Keith Campbell had done pretty much the same thing with sheep. The important common feature to recognise here is that in each case the reprogramming only worked when the adult nucleus was placed inside an unfertilised egg. It was the egg that was really important. We can’t clone an animal by taking an adult nucleus and putting it into some other cell type.
Why not?
We need a little cell biology here. The nucleus contains the vast majority of the DNA/genes that encode us – our blueprint. There’s a miniscule fraction of DNA that isn’t in the nucleus, it’s in tiny structures called mitochondria, but we don’t need to worry about that here. When we’re first taught about cells in school it’s almost as if the nucleus is all powerful and the rest of the cell – the cytoplasm – is a bag of liquid that doesn’t really do much. Nothing could be further from the truth, and this is especially the case for the egg, because the toads and Dolly have taught us that the cytoplasm of the egg is absolutely key. Something, or some things, in that egg cytoplasm actively reprogrammed the adult nucleus that the experimenters injected into it. These unknown factors moved a nucleus from the bottom of one of Waddington’s troughs right back to the top of the landscape.
Nobody really understood how the cytoplasm of eggs could convert adult nuclei into ones like zygotes. There was pretty much an assumption that whatever it was must be incredibly complicated and difficult to unravel. Often in science really big questions have smaller, more manageable questions inside them. So a number of labs tackled a conceptually simpler, but technically still hugely challenging issue.
Endless potential
Remember that ball at the top of Waddington’s landscape. In cellular terms it’s the zygote and it’s referred to as totipotent, that is, it has the potential to form every cell in the body, including the placenta. Of course, zygotes by definition are rather limited in number and most scientists working in very early development use cells from a bit later, the famous embryonic stem (ES) cells. These are created as a result of normal developmental pathways. The zygote divides a few times to create a bundle of cells called the blastocyst. Although the blastocyst typically has less than 150 cells it’s already an early embryo with two distinct compartments. There’s an outer layer called the trophectoderm, which will eventually form the placenta and other extra-embryonic tissues, and an inner cell mass (ICM).
Figure 2.1 shows what the blastocyst looks like. The drawing is in two dimensions but in reality the blastocyst is a three-dimensional structure, so the actual shape is that of a tennis ball that’s had a golf ball glued inside it.
The cells of the ICM can be grown in the lab in culture dishes. They’re fiddly to maintain and require specialised culture conditions and careful handling, but do it right and they reward us by dividing a limitless number of times and staying the same as the parent cell. These are the ES cells and as their full name suggests, they can form every cell of the embryo and ultimately of the mature animal. They aren’t totipotent – they can’t make placenta – so they are called pluripotent because they make pretty much anything else.
image
Figure 2.1 A diagram of the mammalian blastocyst. The cells of the trophectoderm will give rise to the placenta. During normal development, the cells of the Inner Cell Mass (ICM) will give rise to the tissues of the embryo. Under laboratory conditions, the cells of the ICM can be grown in culture as pluripotent embryonic stem (ES) cells.
These ES cells have been invaluable for understanding what’s important for keeping cells in a pluripotent state. Over the years a number of leading scientists including Azim Surani in Cambridge, Austin Smith in Edinburgh, Rudolf Jaenisch in Boston and Shinya Yamanaka in Kyoto have devoted huge amounts of time to identifying the genes and proteins expressed (switched on) in ES cells. They particularly tried to identify genes that keep the ES cells in a pluripotent state. These genes are extraordinarily important because ES cells seem to be very prone to turn into other cell types in culture if you don’t keep the conditions just right. Just a small change in culture conditions, for example, and a culture dish full of one-time ES cells can differentiate into cardiomyocytes and do what heart cells do best: they beat along in time with one another. A slightly different change in conditions – altering the delicate balance of chemicals in the culture fluid, for example, can divert the ES cells away from the cardiac route and start the development of cells that give rise to the neurons in our brains.
Scientists working on ES cells identified a whole slew of genes that were important for keeping the cells pluripotent. The functions of the various genes they identified weren’t necessarily identical. Some were important for self-renewal, i.e. one ES dividing to form two ES cells, whereas others were required to stop the cells from differentiating1.
So, by the early years of the 21st century scientists had found a way of maintaining pluripotent ES cells in culture dishes and they knew quite a lot about their biology. They had also worked out how to change the culture conditions so that the ES cells would differentiate into various cell types including liver cells, heart cells, neurons etc. But how does this help with the dream we laid out earlier? Could the labs use this information to create new ways of driving cells backwards, to the top of Waddington’s landscape? Would it be possible to take a fully differentiated cell and treat it in a lab so that it would become just like an ES cell, with all the potential that implies? Whilst scientists had good reason to believe this would be theoretically possible, that’s a long way from actually being able to do it. But it was a wonderfully tantalising prospect for scientists interested in using stem cells to treat human diseases.
By the middle of the first decade of this century, over twenty genes had been identified that seemed to be critical to ES cells. It wasn’t necessarily clear how they worked together and there was every reason to think that there was still plenty we didn’t understand about the biology of ES cells. It was assumed that it would be almost inconceivably difficult to take a mature cell and essentially recreate the vastly complex intracellular conditions that are found in an ES cell.
The triumph of optimism
Sometimes the greatest scientific breakthroughs happen because someone ignores the prevailing pessimism. In this case, the optimist who decided to test what everyone else had assumed was impossible was the aforementioned Shinya Yamanaka, with his postdoctoral research associate Kazutoshi Takahashi.
Professor Yamanaka is one of the youngest luminaries in the stem cell and pluripotency field. He was born in Osaka in the early 1960s and rather unusually he has held successful academic positions in high profile institutions in both Japan and the USA. He originally trained as a clinician and became an orthopaedic surgeon. Specialists in this discipline are sometimes dismissed by other surgeons as ‘the hammer and chisel brigade’. This is unfair, but it is true that orthopaedic surgical practice is about as far away from elegant molecular biology and stem cell science as it’s possible to get.
Perhaps more than any of the other researchers working in the stem cell field, Professor Yamanaka had been driven by a desire to find a way of creating pluripotent cells from differentiated cells in a lab. He started this stage of his work with a list of 24 genes which were vitally important in ES cells. These were all genes called ‘pluripotency genes’ – they have to be switched on if ES cells are to remain pluripotent. If you use various experimental techniques to switch these genes off, the ES cells start to differentiate, just like those beating heart cells in the culture dish, and they never revert to being ES cells again. Indeed, that is partly what happens quite naturally during mammalian development, when cells differentiate and become specialised – they switch off these pluripotency genes.
Shinya Yamanaka decided to test if combinations of these genes would drive differentiated cells backwards to a more primitive developmental stage. It seemed a long shot and there was always the worry that if the results were negative – i.e. if none of the cells went ‘backwards’ – he wouldn’t know if it was because it just wasn’t possible or if he just hadn’t got the experimental conditions right. This was a risk for an established scientist like Yamanaka, but it was an even bigger gamble for a relatively junior associate like Takahashi, because of the way that the scientific career ladder works.
When faced with the exposure of damaging personal love letters, the Duke of Wellington famously responded, ‘Publish and be damned!’ The mantra for scientists is almost the same but differs in one critical respect. For us, it’s ‘publish or be damned’ – if you don’t publish papers, you can’t get research funding and you can’t get jobs in universities. And it is rare indeed to get a paper into a good journal if the message of your years of effort boils down to, ‘I tried and I tried but it didn’t work.’ So to take on a project with relatively little likelihood of positive results is a huge leap of faith and we have to admire Takahashi’s courage, in particular.
Yamanaka and Takahashi chose their 24 genes and decided
to test them in a cell type known as MEFs – mouse embryonic fibroblasts. Fibroblasts are the main cells in connective tissue and are found in all sorts of organs including skin. They’re really easy to extract and they grow very easily in culture, so are a great source of cells for experiments. Because the ones known as MEFs are from embryos the hope was that they would still retain a bit of capacity to revert to very early cell types under the right conditions.
Remember how John Gurdon used donor and acceptor toad strains that had different genetically-encoded markers, so he could tell which nuclei had generated the new animals? Yamanaka did something similar. He used cells from mice which had an extra gene added. This gene is called the neomycin resistance (neoR) gene and it does exactly what it says on the can. Neomycin is an antibiotic-type compound that normally kills mammalian cells. But if the cells have been genetically engineered to express the neoR gene, they will survive. When Yamanaka created the mice he needed for his experiments he inserted the neoR gene in a particular way. This meant that the neoR gene would only get switched on if the cell it was in had become pluripotent. The cell had to be behaving like an ES cell. So if his experiments to push the fibroblasts backwards experimentally into the undifferentiated ES cell state were successful, the cells would keep growing, even when a lethal dose of the antibiotic was added. If the experiments were unsuccessful, all the cells would die.
Professor Yamanaka and Doctor Takahashi inserted the 24 genes they wanted to test into specially designed molecules called vectors. These act like Trojan horses, carrying high concentrations of the ‘extra’ DNA into the fibroblasts. Once in the cell, the genes were switched on and produced their specific proteins. Introducing these vectors can be done relatively easily on a large number of cells at once, using chemical treatments or electrical pulses (no fiddly micro-injections for Yamanaka, no indeed). When Shinya Yamanaka used all 24 genes simultaneously, some of the cells survived the neomycin treatment. It was only a tiny fraction of the cells but it was an encouraging result nonetheless. It meant these cells had switched on the neoR gene. This implied they were behaving like ES cells. But if he used the genes singly, no cells survived. Shinya Yamanaka and Kazutoshi Takahashi then added various sets of 23 genes to the cells. They used the results from these experiments to identify ten genes that were each really critical for creating the neomycin-resistant pluripotent cells. By testing various combinations from these ten genes they finally hit on the smallest number of genes that could act together to turn embryonic fibroblasts into ES-like cells.
The magic number turned out to be four. When the fibroblasts were invaded by vectors carrying genes called Oct4, Sox2, Klf4 and c-Myc something quite extraordinary happened. The cells survived in neomycin, showing they had switched on the neoR gene and were therefore like ES cells. Not only that, but the fibroblasts began to change shape to look like ES cells. Using various experimental systems, the researchers were able to turn these reprogrammed cells into the three major tissue types from which all organs of the mammalian body are formed – ectoderm, mesoderm and endoderm. Normal ES cells can also do this. Fibroblasts never can. Shinya Yamanaka then showed that he could repeat the whole process using fibroblasts from adult mice rather than embryos as his starting material. This showed that his method didn’t rely on some special feature of embryonic cells, but could also be applied to cells from completely differentiated and mature organisms.
Yamanaka called the cells that he created ‘induced pluripotent stem cells’ and the acronym – iPS cells – is now familiar terminology to everyone working in biology. When we consider that this phrase didn’t even exist five years ago, its universal recognition amongst scientists shows just how important a breakthrough this really is.
It’s incredible to think that mammalian cells carry about 20,000 genes, and yet it only takes four to turn a fully differentiated cell into something that is pluripotent. With just four genes Professor Yamanaka was able to push the ball right from the bottom of one of Waddington’s troughs, all the way back up to the top of the landscape.
It wasn’t surprising that Shinya Yamanaka and Kazutoshi Takahashi published their findings in Cell, the world’s most prestigious biological journal2. What was a bit surprising was the reaction. Everyone in 2006 knew this was huge, but they knew it was only huge if it was right. An awful lot of scientists couldn’t really believe that it was. They didn’t for one moment think that Professor Yamanaka and Doctor Takahashi were lying, or had done anything fraudulent. They just thought they had probably got something wrong, because really, it couldn’t be that simple. It was analogous to someone searching for the Holy Grail and finding it the second place they looked, under the peas at the back of the freezer.
The obvious thing of course would be for someone to repeat Yamanaka’s work and see if they could get the same results. It may seem odd to people working outside science, but there wasn’t an avalanche of labs that wanted to do this. It had taken Shinya Yamanaka and Kazutoshi Takahashi two years to run their experiments, which were time-consuming and required meticulous control of all stages. Labs would also be heavily committed to their existing programmes of research and didn’t necessarily want to be diverted. Additionally, the organisations that fund researchers to carry out specific programmes of work are apt to look a bit askance if a lab head suddenly abandons a programme of agreed research to do something entirely different. This would be particularly damaging if the end result was a load of negative data. Effectively, that meant that only an exceptionally well-funded lab, with the best equipment and a very self-confident head, would even think of ‘wasting time’ repeating someone else’s experiments.
Rudolf Jaenisch from The Whitehead Institute in Cambridge, MA is a colossus in the field of creating genetically engineered animals. Originally from Germany, he has worked in the USA for almost the last 30 years. With curly grey hair and a frankly impressive moustache, he is immediately recognisable at conferences. It was perhaps unsurprising that he was the scientist who took the risk of diverting some of the work in his lab to see if Shinya Yamanaka really had achieved the seemingly impossible. After all, Rudolf Jaenisch is on record stating that, ‘I have done many high risk projects through the years, but I believe that if you have an exciting idea, you must live with the chance of failure and pursue the experiment.’
At a conference in Colorado in April 2007 Professor Jaenisch stood up to give his presentation and announced that he had repeated Yamanaka’s experiments. They worked. Yamanaka was right. You could make iPS cells by introducing just four genes into a differentiated cell. The effect on the audience was dramatic. The atmosphere was like one of those great moments in old movies where the jury delivers its verdict and all the hacks dash off to call the editor.
Rudolf Jaenisch was gracious – he freely conceded that he had carried out the experiments because he just knew that Yamanaka couldn’t be right. The field went crazy after that. First, the really big labs involved in stem cell research started using Yamanaka’s technique, refining and improving it so it worked more efficiently. Within a couple of years even labs that had never cultured a single ES cell were generating iPS cells from tissues and donors they were interested in. Papers on iPS cells are now published every week of the year. The technique has been adapted for direct conversion of human fibroblasts into human neuronal cells without having to create iPS cells first3. This is equivalent to rolling a ball halfway up Waddington’s epigenetic landscape and then back down into a different trough.
It’s hard not to wonder if it was frustrating for Shinya Yamanaka that nobody else seemed to take up his work until the American laboratory showed that he was right. He shared the 2009 Lasker Prize with John Gurdon so maybe he’s not really all that concerned. His reputation is now assured.
Follow the money
If all we read is the scientific literature, then the narrative for this story is quite inspiring and fairly straightforward. But there’s another source of information, and that’s the patent landscape, which typically doesn’t emerge from the mist until some time after the papers in the peer-reviewed journals. Once the patent applications in this field started appearing, a somewhat more complicated tale began to unfold. It takes a while for this to happen, because patents remain confidential for the first year to eighteen months after they are submitted to the patent offices. This is to protect the interests of the inventors, as this period of grace gives them time to get on with work on confidential areas without declaring to the world what they’ve invented. The important thing to realise is that both Yamanaka and Jaenisch have filed patents on their research into controlling cell fate. Both of these patent applications have been granted and it is likely that cases will go to court to test who can really get protection for what. And the odd thing, given that Yamanaka published first, is the fact that Jaenisch filed a patent on this field before him.
How could that be? It’s partly because a patent application can be quite speculative. The applicant doesn’t have to have proof of every single thing that they claim. They can use the grace period to try to obtain some proof to support their assertions from the original claim. In US legal terms Shinya Yamanaka’s patent dates from 13 December 2005 and covers the work described a few paragraphs ago – how to take a somatic cell and use the four factors – Oct4, Sox2, Klf4 and c-Myc – to turn it into a pluripotent cell. Rudolf Jaenisch’s patent potentially could have a legal first date of 26 November 2003. It contains a number of technical aspects and it makes claims around expressing a pluripotency gene in a somatic cell. One of the genes it suggests is Oct4. Oct4 had been known for some time to be vital for the pluripotent state, after all, that’s one of the reasons why Yamanaka had included it in his original reprogramming experiments. The legal arguments around these patents are likely to run and run.
But why did these labs, run by fabulous and highly creative scientists, file these patents in the first place? Theoretically, a patent allows the holder access to an exclusive means of doing something. However, in academic circles nobody ever tries to stop an academic scientist in another lab from running a basic science experiment. What the patent is really for is to make sure that the original inventor makes money out of their good idea, instead of other people cashing in on their inventiveness.
The most profitable patents of all in biology tend to be things that can be used to treat disease in people, or that help researchers to develop new treatments faster. And that’s why there is going to be such a battle over the Jaenisch and Yamanaka patents. The courts may decide that every time someone makes iPS cells, money will have to be paid to the researchers and institutions who own the original ideas. If companies sell iPS cells that they make, and have to give a percentage of the income back to the patent holders, the potential returns could be substantial. It’s worth looking at why these cells are viewed as potentially so valuable in monetary terms.
Let’s take just one disease, type 1 diabetes. This typically starts in childhood when certain cells in the pancreas (the delightfully named beta cells in the Islets of Langerhans) are destroyed through processes that aren’t yet clear. Once lost, these cells never grow back and as a consequence the patient is no longer able to produce the hormone insulin. Without insulin it’s impossible to control blood sugar levels and the consequences of this are potentially catastrophic. Until we found ways of extracting insulin from pigs and administering it to patients, children and young adults routinely died as a result of diabetes. Even now, when we can administer insulin relatively easily (normally an artificially synthesised human form), there are a lot of drawbacks. Patients have to monitor their blood sugar levels multiple times a day and alter their insulin dose and food intake to try and stay within certain boundaries. It’s hard to do this consistently over many years, especially for a teenager. How many adolescents are motivated by things that might go wrong when they are 40? Long-term type 1 diabetics are prone to a vast range of complications, including loss of vision, poor circulation that can lead to amputations, and kidney disease.
It would be great if, instead of injecting insulin every day, diabetics could just receive new beta cells. The patient could then produce their own insulin once more. The body’s own internal mechanisms are usually really good at controlling blood sugar levels so most of the complications would probably be avoided. The problem is that there are no cells in the body that are able to create beta cells (they are at the bottom of one of Waddington’s troughs) so we would need to use either a pancreas transplant or perhaps change some human ES cells into beta cells and put those into the patient.
There are two big problems in doing this. The first is that donor materials (either ES cells or a whole pancreas) are in short supply so there’s nowhere near enough to supply all the diabetics. But even if there were enough, there’s still the problem that they won’t be the same as the patient’s tissues. The patient’s immune system will recognise them as foreign and try to reject them. The person might be able to come off insulin but would probably need to be on immuno-suppressive drugs all their life. This is not really that much of a trade-off, as these drugs have a range of pretty awful side-effects.
iPS cells suddenly create a new way forwards. Take a small scraping of skin cells from our patient, whom we shall call Freddy. Grow these cells in culture until we have enough to work with (this is pretty easy). Use the four Yamanaka factors to create a large number of iPS cells, treat these in the lab to turn them into beta cells and put them back into the patient. There will be no immune rejection because Freddy will just be receiving Freddy cells. Recently, researchers have shown they can do exactly this in mouse models of diabetes4.
It won’t be that simple of course. There are a whole range of technological hurdles to overcome, not least the fact that one of the four Yamanaka factors, c-Myc, is known to promote cancer. But in the few years since that key publication in Cell, substantial progress has been made in improving the technology so that it is moving ever closer to the clinic. It’s possible to make human iPS cells pretty much as easily as mouse ones and you don’t always need to use c-Myc5. There are ways of creating the cells that take away some of the other worrying safety problems as well. For example, the first methods for creating iPS cells used animal products in the cell culture stages. This is always a worry, because of fears about transmitting weird animal diseases into the human population. But researchers have now found synthetic replacements for these animal products6. The whole field of iPS production is getting better all the time. But we’re not over the line yet.
One of the problems commercially is that we don’t yet know what the regulatory authorities will demand by way of safety and supporting data before they let iPS cells be used in humans. Currently, licensing iPS cells for therapeutic use would involve two different areas of medical regulation. This is because we would be giving a patient cells (cell therapy) which had been genetically modified (gene therapy). Regulators are wary particularly because so many of the gene therapy trials that were launched with such enthusiasm in the 1980s and 1990s either had little benefit for the patient or sometimes even terrible and unforeseen consequences, including induction of lethal cancers7. The number of potentially costly regulatory hurdles iPS cells will have to get over before they can be given to patients is huge. We might think no investor would put any money into something so potentially risky. Yet invest they do, and that’s because if researchers can get this technology right the return on the investment could be huge.
Here’s just one calculation. At a conservative estimate, it costs about $500 per month in the United States to supply insulin and blood sugar monitoring equipment for a diabetic. That’s $6,000 a year, so if a patient lives with diabetes for 40 years that’s $240,000 over their lifetime. Then add in the costs of all the treatments that even well-managed diabetic patients will need for the complications they are likely to suffer because of their illness. It’s fairly easy to see how each patient’s diabetes-related lifetime healthcare costs could be at least a million dollars. And there are at least a million type 1 diabetics in the US alone. This means that at the very least, the US economy spends over a billion dollars every four years, just in treating type 1 diabetes. So even if iPS cells cost a lot to get into the clinic, they have the potential to make an enormous return on investment if they work out cheaper than the lifetime cost of current therapies.
That’s just for diabetes. There are a whole host of other diseases for which iPS cells could provide an answer. Just a few examples include patients with blood clotting disorders, such as haemophilias; Parkinson’s disease; osteo-arthritis and blindness caused by macular degeneration. As science and technology get better at creating artificial structures that can be implanted into our bodies, iPS cells will be used for replacing damaged blood vessels in heart disease, and regenerating tissues destroyed by cancer or its treatment.
The US Department of Defense is providing funding into iPS cells. The military always needs plenty of blood in any combat situation so that it can treat wounded personnel. Red blood cells aren’t like most cells in our bodies. They have no nucleus, which means they can’t divide to form new cells. This makes red blood cells a relatively safe type of iPS cell to start using clinically, as they won’t stay in the body for more than a few weeks. We also don’t reject these cells in the same way that we would a donor kidney, for example, because there are differences in the ways our immune systems recognise these cells. Different people can have compatible red blood cells – it’s the famous ABO blood type system, plus some added complications. It’s been calculated that we could take just 40 donors of specific blood types, and create a bank of iPS cells from those people that would supply all our needs8. Because iPS cells can keep on dividing to create more iPS cells when grown under the right conditions, we could create a never-ending bank of cells. There are well-established methods for taking immature blood stem cells and growing them under specific stimuli so that they will differentiate to form (ultimately) red blood cells. Essentially, it should be possible to create a huge bank of different types of red blood cells, so that we can always have matching blood for patients, be these from the battlefield or a traffic accident.
The generation of iPS cells has been one of those rare events in biology that have not just changed a field, but have almost reinvented it. Shinya Yamanaka is considered by most to be a dead cert to share a Nobel Prize with John Gurdon in the near future, and it would be difficult to over-estimate the technological impact of the work. But even though the achievement is extraordinary, nature already does so much more, so much faster.
When a sperm and an egg fuse, the two nuclei are reprogrammed by the cytoplasm of the egg. The sperm nucleus, in particular, very quickly loses most of the molecular memory of what it was and becomes an almost blank canvas. It’s this reprogramming phenomenon that was exploited by John Gurdon, and by Ian Wilmut and Keith Campbell, when they inserted adult nuclei into the cytoplasm of eggs and created new clones.
When an egg and sperm fuse, the reprogramming process is incredibly efficient and is all over within 36 hours. When Shinya Yamanaka first created iPS cells only a miniscule number, a fraction far less than 1 per cent of the cells in the best experiment, were reprogrammed. It literally took weeks for the first reprogrammed iPS cells to grow. A lot of progress has been made in improving the percentage efficiency and speed of reprogramming adult cells into iPS cells, but it still doesn’t come within spitting range of what happens during normal fertilisation. Why not?
The answer is epigenetics. Differentiated cells are epigenetically modified in specific ways, at a molecular level. This is why skin fibroblasts will normally always remain as skin fibroblasts and not turn into cardiomyocytes, for example. When differentiated cells are reprogrammed to become pluripotent cells – whether by somatic cell nuclear transfer or by the use of the four Yamanaka factors – the differentiation-specific epigenetic signature must be removed so that the nucleus becomes more like that of a newly fertilised zygote.
The cytoplasm of an egg is incredibly efficient at reversing the epigenetic memory on our genes, acting as a giant molecular eraser. This is what it does very rapidly when the egg and sperm nuclei fuse to form a zygote. Artificial reprogramming to create iPS cells is more like watching a six-year-old doing their homework – they are forever rubbing out the wrong bit whilst leaving in the mis-spelt words, and then tearing a hole in the page because they rub too vigorously. Although we are starting to get a handle on some of the processes involved, we are a long way from recreating in the lab what happens naturally.
Until now we have been talking about epigenetics at the phenomenon scale. The time has come to move into the molecules that underlie all the remarkable events we’ve talked about so far, and many more besides.