36, 37 y 38
Ninguno de los tres problemas (36, 37 y 38) tiene solución y tanto el artista como yo hemos podido sin riesgo alguno prometer cualquier premio por la solución de los mismos. Para convencerse de ello, recurramos al álgebra. Pagando 5 francos. Supongamos que sea posible y que para hacerlo han hecho falta x monedas de 50 céntimos, y de 20 céntimos y z de 5. Tendremos la ecuación:
50x + 20y + 5z = 500 Dividiendo todos los términos por 5, resulta: 10x + 4y + z = 100
Además, como el número total de monedas, según las condiciones del problema, equivale a 20, se puede formar otra ecuación con los números x, y, z. x + y + z = 20 Restando esta ecuación de la que hemos obtenido antes nos resulta:
9x + 3y = 80 Dividiendo por 3, tenemos: 3x + y = 26 2/3
Pero 3x -tres veces el número de monedas de 50 céntimos- es un número entero. El número de monedas de 20 céntimos -y- es asimismo un número entero. La suma de dos enteros no puede ser nunca un número mixto (26 2/3). Nuestro supuesto de que el problema tenía solución nos lleva, como se ve, al absurdo. El problema, pues, no tiene solución. El lector, siguiendo este procedimiento, se convence de que los otros dos problemas después de la rebaja -abonando 3 y 2 francos- tampoco tienen solución. El primero nos lleva a la ecuación:
3x + y 13 1/3 y el segundo a: 3x + y 6 2/3
Ambos son insolubles, pues deben ser expresados en números enteros. Como ve usted, el artista no arriesgaba nada al ofrecer importantes sumas por la solución de estos problemas: nunca habrá de entregar los premios ofrecidos. Otra cosa sería si se propusiera abonar, por ejemplo, 4 francos a base de las 20 monedas del tipo indicado, en vez de 5, 3 o 2. El problema se resolvería fácilmente por siete procedimientos distintos. He aquí una de las posibles soluciones: 6 monedas de 50 céntimos, 2 de 20 céntimos y 12 de 5 céntimos.