10. La aritmética en el desayuno

Ante nosotros hay una serie de operaciones con números, representados por la vajilla y los cubiertos de una mesa (fig. 11): El tenedor, la cuchara, el cuchillo, la jarra, la tetera, el plato, son signos diferentes, cada uno representa una cifra determinada.

Observando la vajilla y los cubiertos, cabe preguntar: ¿Qué número representa cada utensilio?

Figura 11. ¿A qué números corresponden estos símbolos aritméticos?

A primera vista, el problema parece ser muy difícil: como si se tratara de descifrar jeroglíficos, tal y como lo hizo hace algún tiempo Champollion [9]. Pero este problema es mucho más sencillo: ustedes saben que los números, aunque estén representados por cuchillos, cucharas, tenedores, etc., están escritos conforme al sistema numérico decimal, es decir, que sabemos que el elemento colocado en segundo lugar (leyendo desde la derecha), corresponde a las decenas, así como el objeto que está a su derecha corresponde a las unidades, y el que está a su izquierda corresponde a las centenas. Además, ustedes saben que la disposición de todos estos objetos tiene un determinado sentido, acorde con las operaciones aritméticas realizadas con los números que representan. Todo esto facilita en gran medida, la resolución del problema presentado.

¿Con qué números se realizan las operaciones aritméticas, indicadas acá?

Veamos cómo se pueden encontrar los valores de las piezas mostradas acá. Considerando los tres primeros renglones de nuestro dibujo, verán que, cuchara multiplicada por cuchara, da cuchillo; y de los renglones 3, 4 y 5, vemos que cuchillo menos cuchara da cuchara es decir, cuchara + cuchara = cuchillo. ¿Qué cifra da el mismo resultado al multiplicarse por sí misma que al duplicarse? Solo puede ser el 2, porque 2 x 2 = 2 + 2. Por lo tanto, deducimos que la cuchara vale 2 y, por lo tanto, cuchillo vale 4.

Sigamos adelante, ¿Qué cifra representa el tenedor? Lo averiguaremos por las primeras 3 líneas, donde el tenedor aparece multiplicando, y por los renglones III, IV y V, donde aparece el tenedor restando. En la resta vemos que, al restar tenedor de cuchara, en el orden de las decenas, obtenemos un tenedor, es decir, al efectuar la resta 2 - tenedor, obtenemos un tenedor. Solo se pueden presentar dos casos: o el tenedor vale 1, y por lo tanto, 2-1=1, o el tenedor vale 6, y entonces restando 6 de 12 (una unidad de orden superior se representa por una taza), obtenemos 6. ¿Cuál debemos elegir: 1 ó 6?

Probemos el 6 para el tenedor en otras operaciones. Dirijamos la atención a la multiplicación de los números que se hallan en los renglones I y II. Si el tenedor vale 6, entonces en el segundo renglón está el número 62 (ya sabemos que la cuchara vale 2). No es difícil comprender que en tal caso, en el primer renglón deberá estar el número 12, y la jarra representará la cifra 1. Si la jarra representara la cifra 2 o cualquier otra cifra mayor, el producto de los números de los renglones I y II sería un número de cuatro cifras, y no de tres, como se indica en el problema. Por lo tanto, si el tenedor vale 6, en el primer renglón se encuentra el número 12, y en el renglón II, el 62. Por lo tanto, su producto es 12 x 62 = 744.

Pero esto es imposible, porque la cifra de las decenas de este producto es una cuchara, es decir, un 2, y no el 4 que obtuvimos. Esto quiere decir, que el tenedor no vale 6 como se suponía, y por lo tanto debe valer 1.

Luego de hallar, tras una extensa búsqueda, que el tenedor representa el 1, en adelante avanzaremos con mayor rapidez y destreza. De la resta, en los renglones III y IV, vemos que taza puede ser 6, o bien 8. Pero el 8 no puede ser, porque implicaría que la copa fuera 4, y sabemos que el cuchillo representa el 4. Por lo tanto, la taza representa el 6 y la copa el 3.

¿Qué cifra representa la jarra del renglón I? Esto se puede averiguar fácilmente, dado que se conoce el producto (III renglón, 624) y uno de los factores (II renglón, 12). Dividiendo 624 entre 12, obtenemos 52. Por lo tanto, la jarra vale 5.

El valor del plato se determina fácilmente: en el VII renglón, plato = tenedor + taza = copa + cuchillo, es decir que, plato = 1 + 6 = 3 + 4 = 7. El plato vale 7.

Ahora, sólo falta descifrar el valor numérico de la tetera y de la azucarera en el VII renglón. Puesto que para las cifras 1, 2, 3, 1, 5, 6 y 7, ya se han encontrado los objetos que los representan, solo queda por elegir entre 8, 9 y 0. Substituyendo los objetos por las cifras correspondientes en la división, mostrada en los tres últimos renglones, obtenemos la disposición siguiente (con las letras t y a se designan, respectivamente, la tetera y la azucarera):

El número 712, como vemos, es el producto de los dos números desconocidos, ta y t que no pueden ser cero, ni terminados en cero: es decir, ni t, ni a son cero. Entonces, quedan ya sólo dos alternativas: t = 8 y a = 9 o bien, t = 9 y a = 8. Pero multiplicando 98 x 9 = 882, no obtenemos 712; por consiguiente, la tetera representa al 8, y la azucarera al 9 (efectivamente: 89 x 8 = 712).

Así, por medio de sencillos cálculos aritméticos desciframos la inscripción jeroglífica de los cubiertos y la vajilla de una mesa:

tenedor 1

cuchara 2

copa 3

cuchillo 4

jarra 5

taza 6

plato 7

tetera 8

azucarera 9

Y toda la serie de operaciones aritméticas, representada por este original servicio de mesa, adquiere, sentido:

Aritmética recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml