© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_13

13. Unpaired Continuous Data with Three or More Groups (One Way Analysis of Variance, Kruskal-Wallis, 30 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

In studies of different treatments often parallel groups receiving different treatments are included. Unlike repeated measures studies (Chaps. 9, 10, 11, 12), they involve independent treatment effects with a zero correlation between the treatments. One way analysis of variance (ANOVA) is appropriate for analysis.

2 Schematic Overview of Type of Data File

A211753_2_En_13_Figa_HTML.gif

3 Primary Scientific Question

Do parallel treatment modalities produce significantly different mean magnitudes of treatment effects.

4 Data Example

Hours of sleep
Group
Age (years)
Gender
Co-morbidity
6,00
0,00
45,00
0,00
1,00
7,10
0,00
45,00
0,00
1,00
8,10
0,00
46,00
0,00
0,00
7,50
0,00
37,00
0,00
0,00
6,40
0,00
48,00
0,00
1,00
7,90
0,00
76,00
1,00
1,00
6,80
0,00
56,00
1,00
1,00
6,60
0,00
54,00
1,00
0,00
7,30
0,00
63,00
1,00
0,00
5,60
0,00
75,00
0,00
0,00
The entire data file is in extras.springer.com, and is entitled “chapter13unpairedcontinuousmultiplegroups”. Start by opening the data file in SPSS.

5 One Way ANOVA

For analysis the module Compare Means is required. It consists of the following statistical models:
  • Means,
  • One-Sample T-Test,
  • Independent-Samples T-Test,
  • Paired-Samples T-Test and
  • One Way ANOVA.
Command:
  • Analyze....Compare Means....One-way Anova....Dependent lists: effect treat.... Factor: enter group....click OK.
ANOVA effect treatment
 
Sum of squares
df
Mean square
F
Sig.
Between groups
37,856
2
18,928
14,110
,000
Within groups
36,219
27
1,341
   
Total
74,075
29
     
A significant difference between the three treatments has been demonstrated with a p-value of 0,0001. Like with the paired data of the previous chapter the conclusion is drawn: a difference exists, but we don’t yet know whether the difference is between treatments 1 and 2, 2 and 3, or 1 and 3. Three subsequent unpaired t-tests are required to find out. Similarly to the tests of Chap. 5, a smaller p-value for rejecting the null-hypothesis is recommended, for example, 0,01 instead of 0,05. This is, because with multiple testing the chance of type 1 errors of finding a difference where there is none is enlarged, and this chance has to be adjusted.
Like the Friedman test can be applied for comparing three or more paired samples as a non-Gaussian alternative to the paired ANOVA test (see Chap. 6), the Kruskal-Wallis test can be used as a non-Gaussian alternative to the above unpaired ANOVA test.

6 Alternative Test: Kruskal-Wallis Test

For analysis the statistical model K Independent Samples in the module Nonparametric Tests is required.
Command:
  • Analyze....Nonparametric....K Independent Samples....Test Variable List: effect treatment....Grouping Variable: group....click Define range....Minimum: enter 0....Maximum: enter 2....Continue....mark: Kruskal-Wallis....click OK.
Test statisticsa,b
 
Effect treatment
Chi-Square
15,171
df
2
Asymp. Sig.
,001
aKruskal Wallis Test
bGrouping Variable: group
The Kruskal-Wallis test is significant with a p-value of no less than 0,001. This means that the three treatments are very significantly different from one another.

7 Conclusion

The analyses show that a significant difference between the three treatments exists. This is an overall result. We don’t know where the difference is. In order to find out whether the difference is between the treatments 1 and 2, 2 and 3, or 1 and 3 additional one by one treatment analyses are required. With one way ANOVA the advice is to perform three additional unpaired t-tests, with nonparametric testing the advice is to perform three Mann-Whitney tests to find out. Again, a subsequent reduction of the p-value or a Bonferroni test is appropriate.

8 Note

More background, theoretical, and mathematical information is available in Statistics applied to clinical studies 5th edition, Chap. 2, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html