© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_32

32. Validating Quantitative Diagnostic Tests (17 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

The usual method for testing the strength of association between the x-data and y-data in a linear regression model, although widely applied for validating quantitative diagnostic tests, is inaccurate. Stricter criteria have to be applied for validation (For background information check Statistics applied to clinical studies 5th edition, Chap. 50, Springer Heidelberg, Germany, from the same authors). A stricter method to test the association between the new-test-data (the x-data) and the control-test-data (y-values) is required. First, from the equation y = a + bx it is tested whether the b-value is significantly different from 1,000, and the a-value is significantly different from 0,000.

2 Schematic Overview of Type of Data File

A211753_2_En_32_Figa_HTML.gif

3 Primary Scientific Question

Are the regression coefficient significantly different from 1,000 and the intercept significantly different from 0,000. If so, then the new test can not be validated.

4 Data Example

In a study of 17 patients the scientific question was: is angiographic volume an accurate method for demonstrating the real cardiac volume. The first ten patients of the data file are given underneath. The entire data file in extras.springer.com, and is entitled “chapter32validatingquantitative”. Start by opening the data in SPSS.
Cast cardiac volume (ml)
Angiographic cardiac volume (ml)
494,00
512,00
395,00
430,00
516,00
520,00
434,00
428,00
476,00
500,00
557,00
600,00
413,00
364,00
442,00
380,00
650,00
658,00
433,00
445,00

5 Validating Quantitative Diagnostic Tests

For analysis the statistical model Linear in the module Regression is required.
Command:
  • Analyze....Regression....Linear....Dependent: cast cardiac volume....Independent (s): angiographic cardiac volume....click OK .
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
39,340
38,704
 
1,016
,326
VAR0000
,917
,083
,943
11,004
,000
aDependent Variable: VAR00002
Four tables are given, but we will use the bottom table entitled “coefficients” only.
  • B = regression coefficient = 0,917 ± 0,083 (std error)
  • A = intercept (otherwise called B0 or Constant) = 39,340 ± 38,704 (std error)
95 % confidence intervals of B
  • should not be different from 1,000.
  • =0,917 ± 1,96 × 0,0813
  • = between 0.751 and 1.08.
95 % confidence intervals of A
  • should not be different from 0,000.
  • =39,340 ± 1,96 × 38,704
  • = between −38,068 and 116,748.
Both the confidence intervals of B and A are adequate for validating this diagnostic test. This diagnostic test is, thus, accurate.

6 Conclusion

Quantitative diagnostic tests can be validated using linear regression. If both the regression coefficient and the intercept are not significantly different from 1,000 and 0,000, then the diagnostic test is valid. Alternative methods are reviewed in the references given below.

7 Note

More background, theoretical and mathematical information about validating quantitative diagnostic test are given in Statistics applied to clinical studies 5th edition, the Chaps. 50 and 51, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html