© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_48

48. Ordinal Regression for Data with Underpresented Outcome Categories (450 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Clinical studies often have categories as outcome, like various levels of health or disease. Multinomial regression is suitable for analysis (see Chap. 44). However, if one or two outcome categories in a study are severely underpresented, multinomial regression is flawed, and ordinal regression including specific link functions may provide a better fit for the data. Strictly, ordinal data are, like nominal data, discrete data, however, with a stepping pattern, like severity scores, intelligence levels, physical strength scores. They are usually assessed with frequency tables and bar charts. Unlike scale data, that also have a stepping pattern, they do not necessarily have to have steps with equal intervals. This causes some categories to be underpresented compared to others.

2 Schematic Overview of the Type of Data File

A211753_2_En_48_Figa_HTML.gif

3 Primary Scientific Question

This chapter is to assess how ordinal regression performs in studies where clinical scores have inconsistent frequencies.

4 Data Example

This chapter assesses the effect of the levels of satisfaction with the doctor on the levels of quality of life (qol). In 450 patients with coronary artery disease the satisfaction level of patients with their doctor was assumed to be an important predictor of patient qol (quality of life).
Qol (outcome)
Treatment
Counseling
Sat doctor
4
3
1
4
2
4
0
1
5
2
1
4
4
3
0
4
2
2
1
1
1
2
0
4
4
4
0
1
4
3
0
1
4
4
1
4
3
2
1
4
qol = quality of life score (1 = very low, 5 = vey high)
treatment = treatment modality (1 = cardiac fitness, 2 = physiotherapy, 3 = wellness, 4 = hydrotherapy, 5 = nothing)
counseling = counseling given (0 = no, 1 = yes)
sat doctor = satisfaction with doctor (1 = very low, 5 = very high)
The above table gives the first 10 patients of a 450 patients study of the effects of doctors’ satisfaction level and qol. The entire data file is in extras.springer.com and is entitled “chapter48ordinalregression”. Start by opening the data file in SPSS.

5 Table Qol Score Frequencies

Command:
  • Analyze….Descriptive Statistics....Frequencies....Variable(s): enter “qol score”....click OK.
Qol score
 
Frequency
Percent
Valid percent
Cumulative percent
Valid
Very low
86
19,1
19,1
19,1
Low
73
16,2
16,2
35,3
Medium
71
15,8
15,8
51,1
High
109
24,2
24,2
75,3
Very high
111
24,7
24,7
100,0
Total
450
100,0
100,0
 
The above table shows that the frequencies of the qol scores are pretty heterogeneous with 111 patients very high scores and only 71 patients medium scores. This could mean that multinomial regression is somewhat flawed and that ordinal regression including specific link functions may provide a better fit for the data.

6 Multinomial Regression

For analysis the statistical model Multinomial Logistic Regression in the module Regression is required.
Command:
  • Analyze....Regression....Multinomial Regression....Dependent: enter qol.... Factor(s): enter treatment, counseling, sat (satisfaction) with doctor....click OK.
The next page table is in the output sheets. It shows that the effects of several factors on different qol scores are very significant, like the effect of counseling on very low qol, and the effects of satisfaction with doctor levels 1 and 2 on very low qol. However, other effects were insignificant, like the effects of treatments on very low qol, and the effects of satisfaction with doctor levels 3 and 4 on very low qol. In order to obtain a more general overview of what is going-on an ordinal regression will be performed.

7 Ordinal Regression

For analysis the statistical model Ordinal Regression in the module Regression is required.
Command:
  • Analyze....Regression....Ordinal Regression....Dependent: enter qol....Factor(s): enter “treatment”, “counseling”, “sat with doctor”....click Options....Link: click Complementary Log-log....click Continue....click OK.
Parameter Estimates
Qol scorea
B
Std. error
Wald
df
Sig.
Exp(B)
95 % confidence interval for Exp (B)
Lower bound
Upper bound
Very low
Intercept
−1,795
,488
13,528
1
,000
     
[treatments]
−,337
,420
,644
1
,422
,714
,314
1,626
[treatment = 2]
,573
,442
1,678
1
,195
1,773
,745
4,216
[treatment = 3]
,265
,428
,385
1
,535
1,304
,564
3,015
[treatment = 4]
0b
.
.
0
.
.
.
.
[counseling = 0]
1,457
,328
19,682
1
,000
4,292
2,255
8,170
[counseling = 1]
0b
.
.
0
.
.
.
.
[satdoctor = 1]
2,035
,695
8,579
1
,003
7,653
1,961
29,871
[satdoctor = 2]
1,344
,494
7/413
1
,006
3,834
1/457
10,089
[satdoctor = 3]
,440
,468
,887
1
,346
1,553
,621
3,885
[satdoctor = 4]
,078
,465
,028
1
,867
1,081
,435
2,687
[satdoctor = 5]
0b
.
.
0
.
.
.
.
Low
Intercept
−2,067
,555
13,879
1
,000
     
[treatment = 1]
−,123
,423
,084
1
,771
,884
,386
2,025
[treatment = 2]
,583
,449
1,684
1
,194
1,791
,743
4,320
[treatment = 3]
−,037
,462
,006
1
,936
,964
,389
2,385
[treatment = 4]
0b
.
.
0
.
.
.
.
[counseling = 0]
,846
,323
6,858
1
,009
2,331
1,237
4,392
[counseling = 1]
0b
.
.
0
.
.
.
.
[satdoctor = 1]
2,735
,738
13,738
1
,000
15,405
3,628
65,418
[satdoctor = 2]
1,614
,581
7,709
1
,005
5,023
1,607
15,698
[satdoctor = 3]
1,285
,538
5,704
1
,017
3,614
1,259
10,375
[satdoctor = 4]
,711
,546
1,697
1
,193
2,036
,699
5,933
[satdoctor = 5]
0b
.
.
0
.
.
.
.
Medium
Intercept
−1,724
,595
8,392
1
,004
     
[treatment = 1]
−,714
,423
2,858
1
,091
,490
,214
1,121
[treatment = 2]
,094
,438
,046
1
,830
1,099
,465
2,594
[treatment = 3]
−,420
,459
,838
1
,360
,657
,267
1,615
[treatment = 4]
0b
.
.
0
.
.
.
.
[counseling = 0]
,029
,323
,008
1
,929
1,029
,546
1,940
[counseling = 1]
0b
.
.
0
.
.
.
.
[satdoctor = 1]
3,102
,790
15/425
1
,000
22,244
4,730
104,594
[satdoctor = 2]
2,423
,632
14,714
1
,000
11,275
3,270
38,875
[satdoctor = 3]
1/461
,621
5,534
1
,019
4,309
1,276
14,549
[satdoctor = 4]
1,098
,619
3,149
1
,076
2,997
,892
10,073
[satdoctor = 5]
0b
.
.
0
.
.
.
.
High
Intercept
−,333
,391
,724
1
,395
     
[treatment = 1]
−,593
,371
2,562
1
,109
,552
,267
1,142
[treatment = 2]
−,150
,408
,135
1
,713
,860
,386
1,916
[treatment = 3]
,126
,376
,113
1
,737
1,135
,543
2,371
[treatment = 4]
0b
.
.
0
.
.
.
.
[counseling = 0]
−,279
,284
,965
1
,326
,756
,433
1,320
[counseling = 1]
0b
.
.
0
.
.
.
.
[satdoctor = 1]
1,650
,666
6,146
1
,013
5,208
1,413
19,196
[satdoctor = 2]
1,263
,451
7,840
1
,005
3,534
1,460
8,554
[satdoctor = 3]
,393
,429
,842
1
,359
1,482
,640
3/432
[satdoctor = 4]
,461
,399
1,337
1
,248
1,586
,726
3,466
[satdoctor = 5]
0b
.
.
0
.
.
.
.
aThe reference category is: very high
bThis parameter is set to zero because it is redundant
Model fitting information
Model
−2 Log likelihood
Chi-square
df
Sig.
Intercept only
578,352
     
Final
537,075
41,277
8
,000
Link function: Complementary Log-log
Parameter estimates
   
Estimate
Std. error
Wald
df
Sig.
95 % confidence interval
Lower bound
Upper bound
Threshold
[qol = 1]
−2,207
,216
103,925
1
,000
−2,631
−1,783
[qol = 2]
−1,473
,203
52,727
1
,000
−1,871
−1,075
[qol = 3]
−,959
,197
23,724
1
,000
−1,345
−,573
[qol = 4]
−,249
,191
1,712
1
,191
−,623
,124
Location
[treatments]
,130
,151
,740
1
,390
−,167
,427
[treatment = 2]
−,173
,153
1,274
1
,259
−.473
,127
[treatment = 3]
−,026
,155
,029
1
,864
−,330
,277
[treatment = 4]
0a
.
.
0
.
.
.
[counseling = 0]
−.289
,112
6,707
1
,010
−,508
−,070
[counseling = 1]
0a
.
.
0
.
.
.
[satdoctor = 1]
−,947
,222
18,214
1
,000
−1,382
−,512
[satdoctor = 2]
−,702
,193
13,174
1
,000
−1,081
−,323
[satdoctor = 3]
−,474
,195
5,935
1
,015
−,855
−,093
[satdoctor = 4]
−,264
,195
1,831
1
,176
−,646
,118
[satdoctor = 5]
0a
.
.
0
.
.
.
Link function: Complementary Log-log
aThis parameter is set to zero because it is redundant
The above tables are in the output sheets of the ordinal regression. The model fitting information table tells that the ordinal model provides an excellent overall fit for the data. The parameter estimates table gives an overall function of all predictors on the outcome categories. Treatment is not a significant factor, but counseling, and the satisfaction with doctor levels 1–3 are very significant predictors of the quality of life of these 450 patients. The negative values of the estimates can be interpreted as follows: the less counseling, the less effect on quality of life, and the less satisfaction with doctor, the less quality of life.

8 Conclusion

Clinical studies often have categories as outcome, like various levels of health or disease. Multinomial regression is suitable for analysis, but, if one or two outcome categories in a study are severely underpresented, ordinal regression including specific link functions may better fit the data. The current chapter also shows that, unlike multinomial regression, ordinal regression tests the outcome categories as an overall function.

9 Note

More background, theoretical and mathematical information of ordinal regression and ordinal data is given in Machine learning in medicine a complete overview, Chaps. 11 and 37, Springer Heidelberg Germany, 2015, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html