© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_57

57. Segmented Cox Regression (60 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Cox regression assesses time to events, like death or cure, and the effects of predictors like comorbidity and frailty. If a predictor is not significant, then time-dependent Cox regression may be a relevant approach. It assesses whether the predictor interacts with time. Time dependent Cox has been explained in Chap. 56. The current chapter explains segmented time-dependent Cox regression. This method goes one step further and assesses, whether the interaction with time is different at different periods of the study.

2 Schematic Overview of Type of Data File

A211753_2_En_57_Figa_HTML.gif

3 Primary Scientific Question

Primary question: is frailty a time-dependently changing variable in patients admitted to hospital for exacerbation of chronic obstructive pulmonary disease (COPD).

4 Data Example

A simulated data file of 60 patients admitted to hospital for exacerbation of COPD is given underneath. All of the patients are assessed for frailty scores once a week. The frailty scores run from 0 to 100 (no frail to very frail)
A211753_2_En_57_Figb_HTML.gifA211753_2_En_57_Figc_HTML.gif
The above table gives the first 42 patients of 60 patients assessed for their frailty scores after 1, 2 and 3 weeks of clinical treatment. It can be observed that in the first week frailty scores at discharge were 15–20, in the second week 15–32, and in the third week 14–24. Patients with scores over 32 were never discharged. Frailty scores were probably a major covariate of time to discharge. The entire data file is in extras.springer.com, and is entitled “chapter57segmentedcox”. We will first perform a simple time dependent Cox regression. Start by opening the data file in SPSS.

5 Simple Time Dependent Cox Regression

For analysis the statistical model Cox Time Dependent in the module Survival is required.
Command:
  • Analyze….Survival….Cox w/Time-Dep Cov….Compute Time-Dep Cov….Time (T_); transfer to box Expression for T_Cov….add the sign *….add the frailty variable third week….Model….Time: day of discharge….Status: cured or lost….Define: cured = 1….Continue….T_Cov: transfer to Covariates….click OK.
Variables in the equation
 
B
SE
Wald
df
Sig.
Exp(B)
T_COV_
,000
,001
,243
1
,622
1,000
The above table shows the result: frailty is not a significant predictor of day of discharge. However, patients are generally not discharged from hospital until they are non-frail at a reasonable level, and this level may be obtained at different periods of time. Therefore, a segmented time dependent Cox regression may be more adequate for analyzing these data.

6 Segmented Time Dependent Cox Regression

For analysis the statistical model Cox Time Dependent in the module Survival is again required.
Command:
  • Survival…..Cox w/Time-Dep Cov….Compute Time-Dependent Covariate….
  • Expression for T_COV_: enter (T_ > = 1 & T_ < 11) * VAR00004 + (T_ > = 11 & T_ < 21) * VAR00005 + (T_ > = 21 & T_ < 31)….Model….Time: enter Var 1….Status: enter Var 2 (Define events enter 1)….Covariates: enter T_COV_ ....click OK).
Variables in the equation
 
B
SE
Wald
df
Sig.
Exp(B)
T_COV_
−,056
,009
38,317
1
,000
,945
The above table shows that the independent variable, segmented frailty variable T_COV_, is, indeed, a very significant predictor of the day of discharge. We will, subsequently, perform a multiple segmented time dependent Cox regression with treatment modality as second predictor variable.

7 Multiple Segmented Time Dependent Cox Regression

Command:
  • same commands as above, except for Covariates: enter T_COV and treatment….click OK.
Variables in the equation
 
B
SE
Wald
df
Sig.
Exp(B)
T_COV_
−,060
,009
41,216
1
,000
,942
VAR00003
,354
,096
13,668
1
,000
1,424
The above table shows that both the frailty (variable T_COV_) and treatment (variable 3) are very significant predictors of the day of discharge with hazard ratios of 0,942 and 1,424. The new treatment is about 1,4 times better and the patients are doing about 0,9 times worse per frailty score point. If treatment is used as a single predictor unadjusted for frailty, then it is no longer a significant factor.
Command:
  • Analyze….Survival….Cox regression…. Time: day of discharge ….Status: cured or lost….Define: cured = 1….Covariates: treatment….click OK.
Variables in the equation
 
B
SE
Wald
df
Sig.
Exp(B)
VAR00003
,131
,072
3,281
1
,070
1,140
The p-value of treatment (variable 3) has risen from p = 0,0001 to 0,070. Probably, frailty has a confounding effect on treatment efficacy, and after adjustment for it the treatment effect is, all of a sudden, a very significant factor.

8 Conclusion

Cox regression assesses time to events, like death or cure, and the effects on it of predictors like treatment efficacy, comorbidity, and frailty. If a predictor is not significant, then time dependent Cox regression may be a relevant approach. It assess whether the time-dependent predictor interacts with time. Time dependent Cox has been explained in Chap. 56. The current chapter explains segmented time dependent Cox regression. This method goes one step further and assesses whether the interaction with time is different at different periods of the study. It is shown that a treatment variable may be confounded with time dependent factors and that after adjustment for it a statistically significant treatment efficacy can be demonstrated.

9 Note

More background, theoretical and mathematical information of segmented Cox regression is given in Statistics applied to clinical studies 5th edition, Chap. 31, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html