© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_1

1. One-Sample Continuous Data (One-Sample T-Test, One-Sample Wilcoxon Signed Rank Test, 10 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Because biological processes are full of variations, statistical tests give no certainties, only chances. Particularly, the chance that a prior hypothesis is true. What hypothesis? Often, a nullhypothesis, which means no difference in your data from a zero effect. A zero effect indicates that a factor, like an intervention or medical treatment does not have any effect. The one sample t-test is adequate for assessment.

2 Schematic Overview of Type of Data File

A211753_2_En_1_Figa_HTML.gif

3 Primary Scientific Question

Is the mean outcome value significantly different from the value zero.

4 Data Example

The reduction of mean blood pressure after treatment is measured in a sample of patients. We wish to know whether the mean reduction is significantly larger than zero.
  • Outcome
  • 3
  • 4
  • −1
  • 3
  • 2
  • −2
  • 4
  • 3
  • −1
  • 2
  • outcome = decrease of mean blood pressure after treatment (mm Hg)

5 Analysis: One-Sample T-Test

The data file is in extras.springer.com, and is entitled “chapter1onesamplecontinuous”. Open it in SPSS . For analysis the module Compare Means is required. It consists of the following statistical models:
  • Means,
  • One-Sample T-Test ,
  • Independent-Samples T-Test,
  • Paired-Samples T-Test and
  • One Way ANOVA
Command:
  • Analyze....Compare Means ....One-Sample T-Test ....Test Variable(s): enter "mean blood pressure reduction"....click OK.
In the output sheets is the underneath table.
One-sample test
 
Test value = 0
t
df
Sig. (2-tailed)
Mean difference
95 % confidence interval of the difference
Lower
Upper
VAR00001
2,429
9
,038
1,70000
,1165
3,2835
It shows that the t-value equals 2,429, which means that with 10–1 = 9 degrees of freedom a significant effect is obtained at p = 0,038. The reduction of mean blood pressure has an average value of 1,7000 mm Hg, and this average reduction is significantly larger than a reduction of 0,00 mm Hg.

6 Alternative Analysis: One-Sample Wilcoxon Signed Rank Test

If the data do not follow a Gaussian distribution, this method will be required, but with Gaussian distributions it may be applied even so.
Command:
  • Analyze....Nonparametric tests....One Sample Nonparametric Test s ....click Fields ....Test Fields: enter "mean blood pressure reduction"....click Settings....click Choose Tests....mark Customize Tests....mark Compare median to hypothesized ....Hypothesized median: type "0,00"....click Run.
The underneath table is in the output sheet. The median of the mean blood pressure reductions is significantly different from zero. The treatment is, obviously, successful. The p-value is very similar to that of the above one sample t-test .
Hypotheses test summary
A211753_2_En_1_Tab2_HTML.gif
Asymptotic significances are displayed. The significance level is ,05

7 Conclusion

The significant effects indicate that the nullhypothesis of no effect can be rejected. The treatment performs better than no treatment. It may be prudent to use non-parametric test s , if normality is doubtful or can not be proven like with small data as those in the current example.

8 Note

The theories of null hypotheses and frequency distributions are reviewed in Statistics applied to clinical studies 5th edition, Chaps. 1 and 2, entitled “Hypotheses data stratification” and “The analysis of efficacy data”, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html