© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_43

43. Repeated Measures Binary Data (Cochran’s Q Test), (139 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

With repeated observations in one patient, the paired property of the observations has to be taken into account because of the, generally, positive correlation between paired observations in one person. with two repeated observations Mc Nemar’s test is adequate (Chap. 41). However, with three or more observations Cochran’s Q test should be applied.

2 Schematic Overview of Type of Data File

A211753_2_En_43_Figa_HTML.gif

3 Primary Scientific Question

Is there a significant difference between the numbers of responders who have been treated differently three times.

4 Data Example

In 139 patients three treatments are given in a three period crossover design. The scientific question was: is there a significant difference between the numbers of responders who have been treated differently three times.
Treatment 1
Treatment 2
Treatment 3
,00
,00
,00
,00
,00
1,00
,00
,00
1,00
,00
,00
1,00
,00
,00
1,00
,00
,00
,00
,00
1,00
,00
,00
1,00
1,00
,00
1,00
1,00
,00
,00
1,00
0 = no responder, 1 = yes responder
The above table gives three paired observations in each patient (each row). The paired property of these observations has to be taken into account, because of the, generally, positive correlation between paired observations. Cochran’s Q test is appropriate for that purpose.

5 Analysis: Cochran’s Q Test

The data file is in extras.springer.com, and is entitled “chapter43repeatedmeasuresbinary”. Start by opening the data file in SPSS. For analysis the statistical model K Related Samples in the module Nonparametric Tests is required.
Command:
  • Analyze....Nonparametric Tests....Legacy Dialogs....K Related Samples....mark Cochran’s Q....Test Variables: treat 1, treat 2, treat 3....click OK.
Frequencies
 
Value
 
0
1
Treat 1
93
46
Treat 2
75
64
Treat 3
67
72
Test statistics
N
139
Cochran’s Q
10,133a
df
2
Asymp. Sig.
,006
a0 is treated as a success
The above tables, in the output sheets show that the test is, obviously, highly significant with a p-value of 0,006. This means, that there is a significant difference between the treatment responses. However, we do not yet know where: between the treatments 1 and 2, 2 and 3, or between 1 and 3. For that purpose three separate McNemar’s tests have to be carried out.

6 Subgroups Analyses with McNemar’s Tests

Command:
  • Analyze....Nonparametric Tests....Legacy Dialogs....2 Related Samples....mark McNemar....Test Pairs; Pair 1....Variable 1: enter treat 1....Variable 2: enter treat 2....click OK.
Test statisticsa
 
Treat 1 & treat 2
N
139
Chi-squareb
4,379
Asymp. Sig.
,036
aMcNemar Test
bContinuity Corrected
The above output table shows that the difference between treatment 1 and 2 is statistically significant at p = 0,036. Subsequently, treatment 1 and 3, and 2 and 3 have to be tested against one another.
Test statisticsa
 
Treat 1 & treat 3
N
139
Chi-squareb
8,681
Asymp. Sig.
,003
aMcNemar Test
bContinuity Corrected
Test statisticsa
 
Treat 2 & treat 3
N
139
Chi-squareb
,681
Asymp. Sig.
,409
aMcNemar Test
bContinuity Corrected
The above three separate McNemar’s tests show, that there is no difference between the treatments 2 and 3, but there are significant differences between 1 and 2, and 1 and 3. If we adjust the data for multiple testing, for example, by using p = 0,01 instead of p = 0,05 for rejecting the null-hypotheses, then the difference between 1 and 2 loses its significance, but the difference between treatment 1 and 3 remains statistically significant.

7 Conclusion

With repeated observations in one patient, the paired property of the observations has to be taken into account. With two repeated observations Mc Nemar’s test is adequate. However, with three or more observations Cochran’s Q test should be applied.

8 Note

McNemar’s test for comparing two repeated binary outcomes is reviewed in the Chap. 41.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html