© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_26

26. Loess and Spline Modeling (90 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Plasma concentration time curves are the basis of pharmacokinetics. If traditional nonlinear models do not fit the data well, spline and loess (locally weighted scatter plot smoothing) modeling will provide a possible solution.

2 Schematic Overview of Type of Data File

A211753_2_En_26_Figa_HTML.gif

3 Primary Scientific Question

Does loess and spline modeling produce a better fit model for the plasma concentration – time relationships of medicines than traditional curvilinear estimations (Chap. 25).

4 Data Example

In 90 patient a plasma concentration time curve study of intravenous administration of zoledronic acid (ng/ml) was performed.
Conc
Time
1,10
1,00
,90
1,00
,80
1,00
,78
2,00
,55
2,00
,65
3,00
,48
4,00
,45
4,00
,32
4,00
,30
5,00
conc = plasma concentration of zoledromic acid (ng/ml)
time = hours

5 Some Background Information

Usually, the relationship between plasma concentration and time of a drug is described in the form of an exponential model. This is convenient, because it enables to calculate pharmacokinetic parameters like plasma half-life and equations for clearance. Using the Non-Mem program of the University of San Francisco a non linear mixed effect model of the data is produced (= multi-exponential model). The underneath figure of the data shows the exponential model. There is a wide spread in the data, and, so, the pharmacokinetic parameters derived from the model do not mean too much.
A211753_2_En_26_Figb_HTML.gif

6 Spline Modeling

If the traditional models do not fit your data very well, you may use a method called spline modeling. The term spline stems from thin flexible wooden splines formerly used by shipbuilders and cardesigners to produce smooth shapes. A spline model consists of 4, 5 or more intervals with different cubic curves (= third order polynomes, like y = a + bx3, see also Chap. 25) that have the same y-value, slope, and curvature at the junctions.
Command:
  • Graphs….Chart Builder….click Scatter/Dot….click in Simple Scatter and drag to Chart Preview…. click plasma concentration and drag to the Y-Axis….click time and drag to the X-Axis….OK…..double-click in GGraph ….Chart Editor comes up….click Elements….click Interpolation….dialog box Properties….mark Spline….click Apply….click Edit….click Copy Chart.
The underneath figure shows the best fit spline model of the above data.
A211753_2_En_26_Figc_HTML.gif

7 Loess (Locally Weighted Scatter Plot Smoothing) Modeling

Also loess modeling works with cubic curves (third order polynomes), but unlike spline modeling it does not work with junctions, but, instead, it chooses the best fit cubic curves for each value with outlier data given less weight.
Command:
  • Graphs….Chart Builder….click Scatter/Dot….click in Simple Scatter and drag to Chart Preview…. click plasma concentration and drag to the Y-Axis….click time and drag to the X-Axis….OK…..double-click in GGraph ….Chart Editor comes up….click Elements….Fit Line at Total….in dialog box Properties….mark: Loess….click: Apply…. click Edit….click Copy Chart.
The underneath figure shows the best fit Loess model of the above data.
A211753_2_En_26_Figd_HTML.gif

8 Conclusion

Both spline and loess modeling are computationally very intensive methods that do not produce simple regression equations like the ones given in the Chap. 25 on curvilinear regression. They also require fairly large, densely sampled data sets in order to produce good models. For making predictions from such models direct interpolations / extrapolations from the graphs can be made, and, given the mathematical refinement of these methods, these predictions should, generally, give excellent precision. We conclude.
1.
Both spline and loess modeling are computationally intensive models that are adequate, if the data plot leaves you with no idea about the relationship between the y- and x-values.
 
2.
They do not produce simple regression equations like the ones given in Chap. 25 on curvilinear regression.
 
3.
For making predictions from such models direct interpolations / extrapolations from the graphs can be made, and, given the mathematical refinement of these methods, these predictions generally give excellent precision.
 
4.
Maybe, the best fit for many types of nonlinear data is offered by loess.
 

9 Note

More background, theoretical, and mathematical information of loess and spline modeling is given in Statistics applied to clinical studies 5th edition, Chap. 24, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html