© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_2

2. Paired Continuous Data (Paired T-Test, Wilcoxon Signed Rank Test, 10 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Studies where two outcomes in one patient are compared with one another are often called crossover studies, and the observations are called paired observations.
As paired observations are usually more similar than unpaired observations, special tests are required in order to adjust for a positive correlation between the paired observations.

2 Schematic Overview of Type of Data File

A211753_2_En_2_Figa_HTML.gif

3 Primary Scientific Question

Is the first outcome significantly different from second one.

4 Data Example

The underneath study assesses whether some sleeping pill is more efficaceous than a placcebo. The hours of sleep is the outcome value.
Outcome 1
Outcome 2
6,1
5,2
7,0
7,9
8,2
3,9
7,6
4,7
6,5
5,3
8,4
5,4
6,9
4,2
6,7
6,1
7,4
3,8
5,8
6,3
Outcome = hours of sleep after treatment

5 Analysis: Paired T-Test

The data file is in extras.springer.com and is entitled “chapter2pairedcontinuous”. Open it in SPSS. We will start with a graph of the data.
Command:
  • Graphs....Bars....mark Summary separate variables....Define....Bars Represent: enter "hours of sleep [outcomeone]"....enter "hours of sleep [outcometwo]"....click Options....mark Display error bars....mark Confidence Intervals....Level (%): enter 95,0....Continue....click OK.
A211753_2_En_2_Figb_HTML.gif
The above graph is in the output. It shows that the mean number of sleeping hours after treatment 1 seems to be larger than that after treatment 2. The whiskers represent the 95 % confidence intervals of the mean hours of sleep. They do not overlap, indicating that the difference between the two means must be statistically significant. The paired t-test can analyze the level of significance. For analysis the module Compare Means is required. It consists of the following statistical models:
  • Means,
  • One-Sample T-Test,
  • Independent-Samples T-Test,
  • Paired-Samples T-Test and
  • One Way ANOVA
Command:
  • Analyze....Compare Means....Paired Samples T Test....Paired Variables: Variable 1: enter [outcomeone]....Variable 2: enter [outcometwo]....click OK.
Paired samples test
 
Paired differences
     
     
95 % confidence interval of the difference
Mean
Std. Deviation
Std. Error mean
Lower
Upper
t
df
Sig. (2-tailed)
Pair1
Hours of sleep – hours of sleep
1,78000
1,76811
,55913
,51517
3,04483
3,184
9
,011
The above table is in the output. The outcomeone performs significantly better than does the outcometwo at a p-value of 0.011, which is much smaller than 0.05. The difference is, thus, statistically highly significant.

6 Alternative Analysis: Wilcoxon Signed Rank Test

If the data do not have a Gaussian distribution, this method will be required, but with Gaussian distributions it may be applied even so. For analysis 2 Related Samples in Nonparametric Tests is required.
Command:
  • Analyze....Nonparametric....2 Related Samples....further as above (Wilcoxon has already been marked in the dialog window).
Test statisticsa
 
Hours of sleep – hours of sleep
Z
−2,346b
Asymp. Sig. (2-tailed)
,019
aWilcoxon signed ranks test
bBased on positive ranks
As demonstrated in the above table, also according to the nonparametric Wilcoxon’s test the outcomeone is significantly larger than the outcometwo. The p-value of difference here equals p = 0.019. This p-value is larger than the p-value of the paired t-test, but still a lot smaller than 0.05, and, so, the effect is still highly significant. The larger p-value here is in agreement with the type of test. This test takes into account more than the t-test, namely, that Nongaussian data are accounted for. If you account more, then you will prove less. That’s why the p-value is larger.

7 Conclusion

The significant effects indicate that the null hypothesis of no difference between the two outcomes can be rejected. The treatment 1 performs better than the treatment 2. It may be prudent to use the nonparametric tests, if normality is doubtful like in the current small data example given. Paired t-tests and Wilcoxon signed rank tests need, just like multivariate data, more than a single outcome variable. However, they can not assess the effect of predictors on the outcomes, because they do not allow for predictor variables. They can only test the significance of difference between the outcomes.

8 Note

The theories of null hypotheses and frequency distributions and additional examples of paired t-tests and Wilcoxon signed rank tests are reviewed in Statistics applied to clinical studies 5th edition, Chaps. 1 and 2, entitled “Hypotheses data stratification” and “The analysis of efficacy data”, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html