© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_40

40. Trend Tests for Binary Data (106 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Trend tests are wonderful, because they provide markedly better sensitivity for demonstrating incremental effects from incremental treatment dosages, than traditional statistical tests. In the Chap. 15 trend tests for continuous outcome data are reviewed. In the current chapter trend tests for binary outcome data are assessed.

2 Schematic Overview of Type of Data File

A211753_2_En_40_Figa_HTML.gif

3 Primary Scientific Question

Do incremental dosages of a medicine cause incremental numbers of patients to become responders.

4 Data Example

In a 106 patient study the primary scientific question was: do incremental dosages of an antihypertensive drug cause incremental numbers of patients to become normotensive. The entire data file is in extras.springer.com, and is entitled “chapter40trendbinary”.
Responder
Treatment
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
2,00
responder: normotension 1, hypertension 0
treatment: incremental treatment dosages 1–3

5 A Contingency Table of the Data

The underneath contingency table shows that with incremental dosages the odds of responding rises from 0.67 to 1.80.
 
Dosage 1
Dosage 2
Dosage 3
Numbers responders
10
20
27
Numbers non-responders
15
19
15
Odds of responding
0.67(10/15)
1.11(20/19)
1.80(27/15)
First, we will try and summarize the data in a graph. Start by opening the data file in SPSS.

6 3-D Bar Charts

Command:
  • Graphs....Legacy Dialogs....3-D Bar Charts....X-axis represents....mark Groups of cases....Z-axis represents....mark Groups of cases....click Define....X Category Axis: treatment....Z Category Axis: responders....click OK.
A211753_2_En_40_Figb_HTML.gif
The above graph is shown in the output sheets. The treatment-1-responder-0 bar is invisible.
Command:
  • Double-click the graph in order to activate it....“Chart Editor” comes up....click Rotating 3-D chart....3-D Rotation....Horizontal: enter 125....the underneath graph comes up showing the magnitude of the treatment-1-responder-zero bar.
A211753_2_En_40_Figc_HTML.gif
The above two graphs show, that incremental treatment dosages of an antihypertensive drug seem to cause incremental numbers of responders (patients becoming normotensive). However, the numbers of non-responders are the controls, and their pattern is, equally, important. We, first, will perform a multiple groups chi-square test in order to find out, whether there is any significant difference in the data.

7 Multiple Groups Chi-Square Test

For analysis the statistical model Crosstabs in the module Descriptive Statistics is required.
Command:
  • Analyze....Descriptive Statistics....Crosstabs....Row(s): responder....Column(s): treatment....Statistics....Chi-Square Tests....click OK.
Chi-square tests
 
Value
df
Asy mp. Sig. (2-sided)
Pearson chi-square
3,872a
2
,144
Likelihood ratio
3,905
2
,142
Linear-by-linear association
3,829
1
,050
N of valid cases
 106
   
a0 cells (,0%) have expected count less than 5. The minimum expected count is 11,56
The above table shows that, indeed, the Pearson chi-square value for multiple groups testing is not significant with a chi-square value of 3,872 and a p-value of 0,144, and we have to conclude that there is, thus, no significant difference between the odds of responding to the three dosages.

8 Chi-Square Test for Trends

Subsequently, a chi-square test for trends can be executed, a test, that, essentially, assesses, whether the above odds of responding (number of responder/numbers of non-responders per treatment group) increase significantly. The “linear-by-linear association” from the same table is appropriate for the purpose. It has approximately the same chi-square value, but it has only 1 degree of freedom, and, therefore, it reaches statistical significance with a p-value of 0,050. There is, thus, a significant incremental trend of responding with incremental dosages.
Chi-square tests
 
Value
df
Asy mp. Sig. (2-sided)
Pearson chi-square
3,872a
2
,144
Likelihood ratio
3,905
2
,142
Linear-by-linear association
3,829
1
,050
N of valid cases
 106
   
a0 cells (,0%) have expected count less than 5. The minimum expected count is 11,56
The trend in this example can also be tested using logistic regression with responding as outcome variable and treatment as independent variable (enter the latter as covariate, not as categorical variable).

9 Conclusion

Trend tests provide markedly better sensitivity for demonstrating incremental effects from incremental treatment dosages, than traditional statistical tests. In the Chap. 16 trend tests for continuous outcome data are reviewed. In the current chapter trend tests for binary outcome data are assessed.

10 Note

More background, theoretical, and mathematical information of trend testing is given in Statistics applied to clinical studies 5th edition, Chap. 27, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html