© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_17

17. Multivariate Analysis with Path Statistics (35 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Multivariate analysis is a method that, simultaneously, assesses more than a single outcome variable. It is different from repeated measures analysis of variance and mixed models, that assess both the difference between the outcomes and the overall effects of the predictors on the outcomes. Multivariate analysis, simultaneously, assesses the separate effects of the predictors on one outcome adjusted for the other. E.g., it can answer clinically important questions like: does drug-compliance not only predict drug efficacy but also, independently of the first effect, predict quality of life.
Path statistics can be used as an alternative approach to multivariate analysis of variance (MANOVA) (Chap. 18), with a result similar to that of the more complex mathematical approach used in MANOVA.

2 Schematic Overview of Type of Data File

A211753_2_En_17_Figa_HTML.gif

3 Primary Scientific Question

Does the inclusion of additional outcome variables enable to make better use of predicting variables.

4 Data Example

The effects of non compliance and counseling on treatment efficacy of a new laxative was assessed in the Chap. 16. But quality of life scores are now added as additional outcome variable. The first 10 patients of the data file is given underneath.
Stools
Qol
Counsel
Compliance
24,00
69,00
8,00
25,00
30,00
110,00
13,00
30,00
25,00
78,00
15,00
25,00
35,00
103,00
10,00
31,00
39,00
103,00
9,00
36,00
30,00
102,00
10,00
33,00
27,00
76,00
8,00
22,00
14,00
75,00
5,00
18,00
39,00
99,00
13,00
14,00
42,00
107,00
15,00
30,00
stools = stools per month
qol = quality of life scores
counseling = counselings per month
compliance = non-compliance with drug treatment

5 Traditional Linear Regressions

The entire data file is entitled “chapter17multivariatewithpath”, and is in extras.springer.com. Start by opening the data file in SPSS. For analysis the statistical model Linear in the module Regression is required.
Command:
  • Analyze....Regression....Linear....Dependent: therapeutic efficacy....Independent(s): counseling....OK.
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
8,647
3,132
 
2,761
,009
Counseling
2,065
,276
,794
7,491
,000
aDependent Variable: ther eff
The above table shows (1) the effect of counseling on therapeutic efficacy.
Similar commands produce
(2) the effect of counseling on quality of life (qol)
(3) the effect of compliance on qol
(4) the effect of compliance on therapeutic efficacy
(5) the effect of compliance on counseling.
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
69,457
7,286
 
9,533
,000
Counseling
2,032
,641
,483
3,168
,003
aDependent Variable: qol
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
59,380
11,410
 
5,204
,000
Non-compliance
1,079
,377
,446
2,859
,007
aDependent Variable: qol
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
10,202
6,978
 
1,462
,153
Non-compliance
,697
,231
,465
3,020
,005
aDependent Variable: ther eff
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
4,228
2,800
 
1,510
,141
Non-compliance
,220
,093
,382
2,373
,024
aDependent Variable: counseling
Next similar commands are given to produce two multiple linear regressions:
(6) the effects of counseling and compliance on qol
(7) the effects of counseling and compliance on treatment efficacy.
Model summary
Model
R
R square
Adjusted R square
Std. error of the estimate
1
,560a
,313
,270
13,77210
aPredictors: (Constant), non-compliance, counseling
ANOVAa
Model
Sum of squares
df
Mean square
F
Sig.
1
Regression
2766,711
2
1383,356
7,293
,002b
Residual
6069,460
32
189,671
   
Total
8836,171
34
     
aDependent Variable: qol
bPredictors: (Constant), non-compliance, counseling
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
52,866
11,092
 
4,766
,000
Counseling
1,541
,667
,366
2,310
,027
Non-compliance
,740
,384
,306
1,929
,063
aDependent Variable: qol
Model summary
Model
R
R square
Adjusted R square
Std. error of the estimate
1
,813a
,661
,639
5,98832
aPredictors: (Constant), non-compliance, counseling
ANOVAa
Model
Sum of squares
df
Mean square
F
Sig.
1
Regression
2232,651
2
1116,326
31,130
,000b
Residual
1147,520
32
35,860
   
Total
3380,171
34
     
aDependent Variable: therapeutic efficacy
bPredictors: (Constant), non-compliance, counseling
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
2,270
4,823
 
,471
,641
Counseling
1,876
,290
,721
6,469
,000
Non-compliance
,285
,167
,190
1,705
,098
aDependent Variable: therapeutic efficacy
The above tables show the correlation coefficients of the two multiple regressions (r = 0,813 and 0, 560), and their levels of significance. Both of them are significant, meaning that the correlation coefficients are much larger than zero than could happen by chance.

6 Using the Traditional Regressions for Multivariate Analysis with Path Statistics

First, we have to check whether the relationship of either of the two predictors with the two outcome variables, treatment efficacy and quality of life, is significant in the usual simple linear regression: they were so with p-values of 0,0001, 0,005, 0,003 and 0,007. Then, a path diagram with standardized regression coefficients is constructed. The underneath figure gives the decomposition of correlation between treatment efficacy and qol.
The standardized regression coefficients of the residual effects are obtained by taking the square root of (1- R Square). The standardized regression coefficient of one residual effect versus another can be assumed to equal 1.00.
A211753_2_En_17_Figb_HTML.gif
1.
Direct effect of counseling
 
0.79 × 0.48 =
0.38
2.
Direct effect of non-compliance
 
0.45 × 0.47 =
0.21
3.
Indirect effect of counseling and non-compliance
 
0.79 × 0.38 × 0.45 + 0.47 × 0.38 × 0.48 =
0.22
4.
Residual effects
 
1.00 × 0.58 × 0.83 =
0.48 +
 
Total
1.29
A path statistic of 1.29 is considerably larger than that of the single outcome model: 1.29 versus 0.46 (Chap. 16), 2.80 times larger. Obviously, two outcome variables make better use of the predictors in our data than does a single one. An advantage of this nonmathematical approach to multivariate regression is that it nicely summarizes all relationships in the model, and it does so in a quantitative way as explained in the above figure.

7 Conclusion

Multivariate analysis is a linear model that works with more than a single outcome variable. It, thus, simultaneously, assesses the separate effects of the predictors on one outcome adjusted for the other. E.g., it can answer clinically important questions like: does drug-compliance not only predict drug efficacy but also, independently of the first effect, predict quality of life. The current chapter shows that path statistics can be used as an alternative approach to multivariate analysis of variance (MANOVA) (Chap. 18), with a result similar to that of the more complex mathematical approach used in MANOVA.

8 Note

More background, theoretical, and mathematical information of multivariate analysis with path statistics is given in Statistics applied to clinical trials 5th edition, Chap. 25, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html