© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_15

15. Trend Test for Continuous Data (30 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Trend tests are wonderful, because they provide markedly better sensitivity for demonstrating incremental effects from incremental treatment dosages, than traditional statistical tests.

2 Schematic Overview of Type of Data File

A211753_2_En_15_Figa_HTML.gif
The outcome variable is continuous, the predictor variable is categorical, and can be measured either as nominal (just like names) or as ordinal variable (a stepping pattern not necessarily with equal intervals). In the Variable View of SPSS “Measure” may, therefore, be changed into nominal or ordinal, but, since we assume an incremental function the default measure scale is OK as well.

3 Primary Scientific Question

Do incremental treatment dosages cause incremental beneficial outcome effects.

4 Data Example

In a parallel-group study of three incremental dosages of antihypertensive treatments.
The mean reduction of mean blood pressure per group is tested.
Outcome (mean blood pressure, mm Hg)
Treatment group
113,00
1,00
131,00
1,00
112,00
1,00
132,00
1,00
114,00
1,00
130,00
1,00
115,00
1,00
129,00
1,00
122,00
1,00
118,00
2,00

5 Trend Analysis for Continuous Data

The entire data file is in extras.springer.com, and is entitled “chapter15trendcontinuous”. We will, first, perform a one way analysis of variance (ANOVA) (see also Chap. 13) to see, if there are any significant differences in the data. If not, we will perform a trend test using simple linear regression. For analysis the statistical model One Way ANOVA in the module Compare Means is required.
Command:
  • Analyze....Compare Means....One-Way ANOVA....Dependent List: blood pressure Factor: treatment…click OK.
ANOVA
VAR00002
 
Sum of squares
df
Mean square
F
Sig.
Between groups
246,667
2
123,333
2,035
,150
Within groups
1636,000
27
60,593
   
Total
1882,667
29
     
The above table shows that there is no significant difference in efficacy between the treatment dosages, and so, sadly, this is a negative study. However, a trend test having just 1° of freedom has more sensitivity than a usual one way ANOVA, and it could, therefore, be statistically significant even so. For analysis the model Linear in the module Regression is required.
Command:
  • Analyze....Regression....Linear....Dependent: blood pressure....Independent(s): treatment....click OK.
ANOVAa
Model
Sum of squares
df
Mean square
F
Sig.
1
Regression
245,000
1
245,000
4,189
,050b
Residual
1637,667
28
58,488
   
Total
1882,667
29
     
aDependent Variable: VAR00002
bPredictors: (Constant), VAR00001
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
125,333
3,694
 
33,927
,000
Treatment
−3,500
1,710
−,361
−2,047
,050
aDependent Variable: blood pressure
Four tables are given, we will only use the third and fourth ones as shown above. The tables show that treatment dosage is a significant predictor of treatment response wit a p-value of 0,05. There is, thus, a significantly incremental response with incremental dosages.

6 Conclusion

Trend tests are wonderful, because they provide markedly better sensitivity for demonstrating incremental effects from incremental treatment dosages, than traditional statistical tests do. One way ANOVA using 2 degrees of freedom was not significant in the example given, while linear regression using 1 degrees of freedom was significant at p = 0,05.

7 Note

More background, theoretical, and mathematical information of trend testing is given in Statistics applied to clinical studies 5th edition, Chap. 27, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html