Die Farbe der Geschwindigkeit

Hubble sollte seine im vorangegangenen Kapitel beschriebenen Demonstrationen, die meisten Nebel seien keine Gaswolken in der Milchstraße, sondern ferne Galaxien, mit einer bemerkenswerten Entdeckung krönen: Je weiter eine Galaxie von uns entfernt ist, desto schneller bewegt sie sich von uns fort. Der scheinbar majestätische und unbewegliche Nachthimmel wurde also in Wirklichkeit mit phänomenaler Geschwindigkeit auseinandergesprengt. Und diese Tatsache sollte sich als bedeutsamer Schub erweisen, der Lemaître half, seine Theorie wiederzubeleben und die Vorstellung vom Urknall bekannt zu machen.

Die Technik, die diese Beobachtung möglich machte, war auf Farben angewiesen und war erstmals mit bemerkenswerter Genauigkeit eingesetzt worden, um die in Sternen vorhandenen Elemente zu entdecken und um dann ein Gefühl dafür zu bekommen, wie sich Sterne und Galaxien im Verhältnis zu uns bewegen.

Diese Fähigkeit, weit ins Weltall hinauszuschauen und zu entdecken, woraus ein Stern besteht, war das Ergebnis eines quantenmechanischen Effekts. Aber er ging auf einige Entdeckungen zurück, die im siebzehnten Jahrhundert von dem britischen Wissenschaftler und Genie Isaac Newton gemacht worden waren. Er wurde 1642 in dem Dorf Woolsthorpe in der Grafschaft Lincolnshire geboren und hatte eine schwierige Kindheit, bevor ihm seine Mutter widerwillig erlaubte, als «Sizar» an die Universität von Cambridge zu gehen – eine Position, in der er einem wohlhabenderen Studenten als Diener zur Verfügung stehen musste, um sich seinen Lebensunterhalt zu verdienen.

Anfangs verhielt sich Newton nicht unbedingt wie ein Student, aber im Lauf einer zweijährigen Unterbrechung, als die Pest im Winter 1664 Cambridge heimsuchte, machte Newton ein paar bemerkenswerte Fortschritte bei seinen Vorstellungen über Licht, Mathematik, Mechanik, Gravitation und einiges mehr. Seine Beschäftigung mit dem Licht wurde von einem Spielzeug inspiriert, das er auf einem Jahrmarkt gekauft hatte. Der Jahrmarkt von Stourbridge fand auf Gemeindeland flussabwärts von Cambridge statt. Das war knapp außerhalb der Gerichtsbarkeit der Universitätspolizei und der Aufsichtsbeamten, was den Studenten ein wenig Spaß bescherte, der ihnen in der Stadt selbst verwehrt wurde. Hier kaufte Newton ein primitives Prisma.

Als er damit in einem verdunkelten Raum herumspielte, konnte er als Erster zeigen, dass weißes Licht aus einer Mischung der Farben im Regenbogenspektrum zusammengesetzt war. Und es war ebenfalls Newton, der daraus die Einsicht gewann, warum ein spezielles Objekt eine bestimmte Farbe hat. Wenn wir zum Beispiel einen knallroten Hydranten sehen, trifft ihn das weiße Licht der Sonne. Der Hydrant absorbiert die meisten Farben im Spektrum, sodass er nur das Rot wieder abgibt. Deshalb nehmen wir den Hydranten als rot wahr.

Was Newton nicht wusste, war der Grund, warum dies geschah. Heute wissen wir, dass das einstrahlende Licht eine Mischung aus Photonen mit unterschiedlicher Energie ist, vom Rot mit relativ niedriger Energie bis zum hochenergetischen Blau. Wenn ein Photon auf die Elektronen trifft, die die Materieatome umgeben (in unserem Beispiel die rote Farbe des Hydranten), absorbiert ein Elektron die Energie des Photons und springt auf eine höhere Ebene. Der größte Teil dieser Energie wird allmählich als Wärme in dem Objekt zerstreut, aber ein wenig davon wird verwendet, um neue Photonen hervorzubringen, und diese werden dann eine charakteristische Energie haben, die mit dem Material in Verbindung gebracht wird. Im Fall der Hydrantenfarbe ist es die Energie, die eine Rotfärbung verursacht.

Wenn wir daher Licht auf ein gefärbtes Objekt richten, lässt es effektiv einen oder mehrere Abschnitte des Lichtspektrums hervortreten und gibt dieses Licht wieder ab. Aber wir sehen ja nicht nur beleuchtete Objekte. So leuchten Sterne zum Beispiel aus sich selbst heraus. Wenn das geschieht, ist die Temperatur des Objekts so hoch, dass Elektronen durch die Wärmeenergie gezwungen werden, auf ein höheres Niveau zu springen. Manchmal fallen sie wieder hinunter, und die dabei frei werdende Energie bestimmt die Farbe, die mit dem abgegebenen Photon verbunden ist.

In einem Stern ist die Temperatur so beschaffen, dass es eine breite Energiepalette in den produzierten Photonen gibt. Aber auf dem Weg aus dem Stern heraus müssen diese Photonen die äußeren Schichten des Sterns passieren. Dabei werden einige Frequenzen absorbiert, und das Ergebnis ist eine Reihe schwarzer Linien im Farbspektrum. (Wenn das Licht durch die Erdatmosphäre dringt, müssen wir sorgfältig hinschauen, da andere Linien hervorgerufen werden.) Jedes Element hat seine eigenen, charakteristischen schwarzen Linien, und daraus lassen sich die Elemente ableiten, aus denen der Stern besteht. Diese Linien werden mit Hilfe eines Spektroskops festgestellt, eines Instruments, das in seiner einfachsten Form ein Prisma wie das des jungen Newton ist, das die unterschiedlichen Farben des Lichts aufspaltet, verbunden mit einem Mikroskop, mit dem man die Unterteilungen detaillierter untersuchen kann.

Die Spektroskopie wurde erstmals benutzt, um die Bestandteile der äußeren Schichten eines Sterns zu analysieren, aber als Hubble seine zweite große Entdeckung gemacht hatte, sollten Spektroskope auf andere Art und Weise ins Spiel kommen. Jetzt wurden die Instrumente nicht eingesetzt, um die chemischen Inhalte zu identifizieren, sondern um eine Verschiebung in der Farbe des Lichts zu verfolgen. Es lohnt sich, einen Augenblick darüber nachzudenken, was bei der optischen Verschiebung passiert, die wir beobachten, wenn sich eine ferne Galaxie bewegt. Wie wir bereits gehört haben, hat dieses Phänomen mit dem vertrauten Dopplereffekt zu tun. Wenn ein Zug an einem Eisenbahnübergang vorbeifährt, verrutscht der Pfiff der Lokomotive auf eine niedrigere Frequenz und macht dabei ein charakteristisches, abstürzendes Geräusch. Während der Zug auf uns zukommt, hören wir einen hohen Ton, der tiefer wird, wenn der Zug an uns vorbeigefahren ist. Dasselbe gilt für die Sirenen von Polizeiautos und Krankenwagen.

Etwas sehr Ähnliches geschieht mit dem Licht. Bewegt sich ein Objekt auf uns zu, erhöht sich die Frequenz des Lichts, die es abgibt. Man kann sich das vorstellen, indem man an eine Lichtwelle denkt, die aus dem Objekt hervorgeht. Bevor die nächste Welle kommen kann, wird das Objekt ein Stück näher gekommen sein als im Augenblick davor, sodass die Welle zusammengedrückt wird (was eine kürzere Wellenlänge und eine höhere Frequenz zur Folge hat). Sie wird ins Blaue hinein verschoben. Sie erfährt eine Blauverschiebung.

Wenn Sie, wie ich, lieber die Perspektive des Photons einnehmen, dann ist eine Blauverschiebung nur eine Energiezunahme des Photons. Die Bewegung des Wellen abgebenden Körpers auf uns zu gibt den Photonen einen Energieschub, so wie ein aus einem fahrenden Auto geworfener Tennisball uns mit mehr Energie trifft, als hätte ihn jemand geworfen, der am Straßenrand steht. Im Fall des Tennisballs bewirkt die zusätzliche Energie eine höhere Geschwindigkeit, während das Licht nicht beschleunigt werden kann. Es kann nur mit einer einzigen Geschwindigkeit unterwegs sein, nämlich mit Lichtgeschwindigkeit. Stattdessen gewinnt jedes Photon mehr Energie – eine Verschiebung entlang des Energiespektrums hin zu höheren Werten.

Dies bedeutet, dass sichtbares Licht, das von Objekten abgegeben wird, die sich auf uns zu bewegen, ans blaue Ende des Spektrums verschoben wird: Das Licht wird also blauer oder energiereicher. Bewegt sich ein Objekt von uns fort, wird das abgestrahlte Licht zum roten, niedrigfrequenten Ende des Spektrums verschoben. Es besitzt weniger Energie. Gäbe es keine Spektroskope, wäre die Messung einer solchen Blau- oder Rotverschiebung nicht möglich. Nehmen wir an, Sie sehen einen roten Stern. Wie können Sie wissen, ob es nicht einfach nur ein Stern ist, der zufällig rot leuchtet, oder ob es ein rotverschobener Stern ist?

Die Antwort liegt in jenen Mustern aus schwarzen Linien im Spektrum des ausgestrahlten Lichts. Das Muster dieser Linien ist wie ein Fingerabdruck. Das voraussichtliche Muster für jedes Element ist gut bekannt und kann auch dann identifiziert werden, wenn das Licht blau- oder rotverschoben ist. Deshalb können wir uns das Licht eines Sterns oder einer Galaxie ansehen und feststellen, wie stark es verschoben ist. Daher ist es nicht schwer, die Geschwindigkeit des Himmelskörpers zu berechnen, mit der er sich im Verhältnis zu uns bewegt.

Diese Technik war nicht neu, als Hubble sie anwendete. Der britische Astronom William Huggins erkannte, gemeinsam mit seiner Frau Mary, als Erster, wie viel sich über Sterne und über unsere Sonne in Erfahrung bringen ließ, als man anfing, die Spektroskopie in der Astronomie einzusetzen. Er war auch der Erste, dem 1868 bei der Entdeckung einer Rotverschiebung in dem Stern Sirius auffiel, dass jede Positionsverschiebung jener fest umrissenen Linien benutzt werden konnte, um die relative Geschwindigkeit eines lichtproduzierenden Körpers im Weltall zu identifizieren.

Vor dem Urknall
cover.html
haupttitel.html
inhaltsvz.html
chapter1.html
chapter2.html
chapter3.html
chapter4.html
chapter5.html
chapter6.html
chapter7.html
chapter8.html
chapter9.html
chapter10.html
chapter11.html
chapter12.html
chapter13.html
chapter14.html
chapter15.html
chapter16.html
chapter17.html
chapter18.html
chapter19.html
chapter20.html
chapter21.html
chapter22.html
chapter23.html
chapter24.html
chapter25.html
chapter26.html
chapter27.html
chapter28.html
chapter29.html
chapter30.html
chapter31.html
chapter32.html
chapter33.html
chapter34.html
chapter35.html
chapter36.html
chapter37.html
chapter38.html
chapter39.html
chapter40.html
chapter41.html
chapter42.html
chapter43.html
chapter44.html
chapter45.html
chapter46.html
chapter47.html
chapter48.html
chapter49.html
chapter50.html
chapter51.html
chapter52.html
chapter53.html
chapter54.html
chapter55.html
chapter56.html
chapter57.html
chapter58.html
chapter59.html
chapter60.html
chapter61.html
chapter62.html
chapter63.html
chapter64.html
chapter65.html
chapter66.html
chapter67.html
chapter68.html
chapter69.html
chapter70.html
chapter71.html
chapter72.html
chapter73.html
chapter74.html
chapter75.html
chapter76.html
chapter77.html
chapter78.html
chapter79.html
chapter80.html
chapter81.html
chapter82.html
chapter83.html
chapter84.html
chapter85.html
chapter86.html
chapter87.html
chapter88.html
chapter89.html
chapter90.html
chapter91.html
chapter92.html
chapter93.html
chapter94.html
chapter95.html
chapter96.html
chapter97.html
chapter98.html
chapter99.html
chapter100.html
chapter101.html
chapter102.html
chapter103.html
chapter104.html
chapter105.html
chapter106.html
chapter107.html
chapter108.html
chapter109.html
chapter110.html
chapter111.html
chapter112.html
chapter113.html
chapter114.html
chapter115.html
chapter116.html
chapter117.html
chapter118.html
chapter119.html
chapter120.html
chapter121.html
chapter122.html
chapter123.html
chapter124.html
chapter125.html
chapter126.html
chapter127.html
chapter128.html
chapter129.html
chapter130.html
chapter131.html
chapter132.html
chapter133.html
chapter134.html
chapter135.html
chapter136.html
chapter137.html
chapter138.html
chapter139.html
chapter140.html
chapter141.html
chapter142.html
chapter143.html
chapter144.html
chapter145.html
chapter146.html
chapter147.html
chapter148.html
chapter149.html
chapter150.html
chapter151.html
chapter152.html
chapter153.html
chapter154.html
chapter155.html
chapter156.html
chapter157.html
chapter158.html
chapter159.html
chapter160.html
chapter161.html
chapter162.html
chapter163.html
chapter164.html
chapter165.html
chapter166.html
chapter167.html
chapter168.html
info_autor.html
info_buch.html
impressum.html
lovelybooks_buchfrage.xhtml